Lecture 8

Recall: Planar, linear systems of ODEs
\[\mathbf{x}' = A\mathbf{x}, \quad \mathbf{x} : \mathbb{R} \to \mathbb{R}^2, \quad A \in \mathbb{M}_2(\mathbb{R}) \]

Case 1: distinct real evales

Case 2: complex evales

Case 3: repeated real evales, i.e. \(A \in \mathbb{R} \) is the only evale \(A \in \mathbb{M}_2(\mathbb{R}) \)

L) Case (i): there are two linearly indep evectors corresp to \(\lambda \)

L) Case (ii): there is only one evector corresp to \(\lambda \)

L) Case (iii): there are no evectors corresp to \(\lambda \)

Recall:

Thm (fundamental theorem of algebra): For any polynomial with real coeff
\[p(x) = a_0x^n + a_1x^{n-1} + \ldots + a_n, \quad a_i \in \mathbb{R}, \]
we may factor \(p(x) \) completely over \(\mathbb{C} \):
\[p(x) = a_0(x - r_1)^{m_1}(x - r_2)^{m_2} \ldots (x - r_k)^{m_k} \]
where \(r_i \in \mathbb{C}, m_i \in \mathbb{N}, m_1 + m_2 + \ldots + m_k = n \)
\[\uparrow \text{(algebraic multiplicity of root)} \]
roots of polynomial

Def (multiplicity of value): Given \(A \in \mathbb{M}_n(\mathbb{R}) \),
we may write
\[
\det(A - \lambda I) = (\lambda - \lambda_1)^{m_1} \cdot (\lambda - \lambda_2)^{m_2} \cdot \ldots \cdot (\lambda - \lambda_k)^{m_k}
\]
\[\uparrow \text{eigenvalue} \]
\[\uparrow \text{(algebraic multiplicity of eigenvalue)} \]

Thus, \(\lambda \) is a repeated real eigenvalue of \(A \in \mathbb{M}_n(\mathbb{R}) \)
iff it's an evalue with multiplicity 2.

Ex: \(A = \begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix} \), \(a \in \mathbb{R} \)

evaluated: \(\det(A - \lambda I) = \det \begin{pmatrix} a - \lambda & 1 \\ 0 & a - \lambda \end{pmatrix} = (a - \lambda)^2 \)

Thus, \(\lambda = a \) is an evalue w/ multiplicity 2.

Case (i): \(\lambda \) is an evalue of \(A \in \mathbb{M}_n(\mathbb{R}) \) w/ mult. 2 and there are two lin indep vectors corresp to \(\lambda \).
By HW 4, Q5: This implies $A = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$.

Now, we can quickly find the general soln:

Suppose $x' = Ax$. Then...

$$x' = (A\mathbf{I}) x = \lambda x \iff \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \lambda x \\ \lambda y \end{pmatrix} \iff \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} c_1 e^{\lambda t} \\ c_2 e^{\lambda t} \end{pmatrix} = e^{\lambda t} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$

Therefore, the gen' soln is:

Thm: If λ is a repeated real eigenvalue of $A \in \mathbb{M}_n(\mathbb{R})$ with two lin indep eigenvectors, then the gen' soln

$$x(t) = c_1 e^{\lambda t} \mathbf{v}_1(t) + c_2 e^{\lambda t} \mathbf{v}_2(t), \quad c_1, c_2 \in \mathbb{R}.$$

Phase portrait:

- $\lambda < 0$: origin is a stable star, all solutions are line solutions (every vector is an eigenvector).
- $\lambda > 0$: origin is unstable star.
Case (i): Suppose \(\lambda \) is an evlue of \(A \in M_2(\mathbb{R}) \) with mult. 2 and \(V \) is the only evector.

By HW3, Q7: if \(A \in M_2(\mathbb{R}) \) has a repeated evlue \(\lambda \), then for any \(V \in \mathbb{R}^2 \):
- either \(V \) is an evector of \(A \)
- or \(W = (A-\lambda I)V \) is an evector of \(A \)

In fact, this is a special case of a more general theorem.

Def (generalized evector): Given \(A \in M_n(\mathbb{R}) \) with an evlue \(\lambda \) of multiplicity \(m \leq n \), a nonzero vec \(V \) is a generalized evector of \(\lambda \) if
\[
(A-\lambda I)^k V = 0 \text{ for } k \in \{1, \ldots, m\}
\]

Rmk:
- Every evlue has at least one evector, \((A-\lambda I)^1 V = 0 \).
- Every evector is a generalized evector.

Thm: Given \(A \in M_n(\mathbb{R}) \) with evlue \(\lambda \) of multiplicity \(m \leq n \), there exists an integer \(k \leq m \) so that the dimension of \(\mathrm{null}(A-\lambda I)^k \) equals \(m \).
Case (i): λ has two lin indep. vectors \Rightarrow
\[n=2, \, m=2, \, k=1 \]

Case (ii): λ only has one vector \Rightarrow
\[n=2, \, m=2, \, k=2 \]

Thus, if we have an eigenvalue of multiplicity m, $\exists \, k$ so we can find an m-clim2 basis for $\forall (A-\lambda I)^k$
\Rightarrow we can find m lin indep generalized eigenvectors.

Goal: combine these to find general soln to $X'=AX$.

Thm: Given $A \in \mathbb{M}_2(\mathbb{R})$ with an eigenvalue λ of multiplicity 2 and a single vector V, the gen'1 soln of $X'=AX$ is

\[X(t) = c_1 e^{\lambda t} V + c_2 (te^{\lambda t} V + e^{\lambda t} W) \]

for $(A-\lambda I)W = V$.

Ex: \(A = \begin{pmatrix} a & 1 \\ b & a \end{pmatrix} \), \(a, b \in \mathbb{R} \), \(a \neq 0 \), \(a > 0 \)

Eigenvalues: \(\det(A - \lambda I) = (a - \lambda)^2 - b = 0 \)

\[\lambda = a \pm \sqrt{b} \]

Eigenvectors:

\[
\begin{pmatrix} a - \lambda & 1 \\ b & a - \lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \pm \sqrt{b} & 1 \\ b & \mp \sqrt{b} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}
\]

\[
\mathbf{v} = \begin{bmatrix} 1 \\ \pm \sqrt{b} \end{bmatrix}
\]

\(a > 0 \)

\(b > 0 \) (distinct real eigenvalues)

Assume \(\sqrt{b} < a \)

- Corresponding to \(\lambda = a + \sqrt{b} \)

\(b = 0 \) (repeated real eigenvalue)

- Degenerate node

\(b < 0 \) (complex eigenvalues)

- Spiral source
To write down the gen'l solution in the case $b=0$, need to find our generalized evector W s.t. $(A-\lambda I)W = V$.

\[
\begin{pmatrix}
 a-\lambda & 1 \\
 0 & a-\lambda \\
 0 & 1 \\
 0 & 0 \\
\end{pmatrix}
\begin{pmatrix}
 x \\
 y \\
 x \\
 y \\
\end{pmatrix}
=
\begin{pmatrix}
 1 \\
 0 \\
 1 \\
 0 \\
\end{pmatrix}
\]

Thus $[0,1]$ is a generalized evector, so the general solution

$X(t) = c_1 e^{at} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + c_2 (te^{at} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{at} \begin{pmatrix} 0 \\ 1 \end{pmatrix})$, $c_1, c_2 \in \mathbb{R}$