Lecture 6

Office hour schedule change:
• Friday, Oct 14th: 1-3 pm
• Monday, Oct 17th: no Otts.

Recall:

Def: Given $F: \mathbb{R} \to \mathbb{R}$ nondecreasing and right cts, define
\[
\mu^*_F(A) = \inf \left\{ \sum_{i=1}^{\infty} F(b_i) - F(a_i) : A \subseteq \bigcup_{i=1}^{\infty} (a_i, b_i], a_i \leq b_i \right\}
\]

Thm: μ^*_F is an outer measure.

Thm: For all $a, b \in \mathbb{R}$, $a \leq b$,
\[
\mu^*_F((a, b]) = F(b) - F(a).
\]
Last time...

"≤" ✓

"≥"

It suffices to show that

\[(a,b] \subseteq \bigcup_{i=1}^{\infty} (a_i, b_i] \Rightarrow F(b) - F(a) \leq \sum_{i=1}^{\infty} F(b_i) - F(a_i) \]

• Since \(F \) is right cts, \(\forall \varepsilon > 0, \exists \delta_i > 0 \) s.t.

\[
F(b_i + \delta_i) < F(b_i) + \frac{\varepsilon}{2}.
\]

• There exists a finite subcover s.t.

\[[a+\varepsilon, b] \subseteq \bigcup_{i=1}^{N} (a_i, b_i + \delta_i) \]

• We may assume \(a_i \leq a_{i+1} \) and \(b_i + \delta_i \leq a_{i+1}, b_{i+1} + \delta_{i+1} \), \(\forall i = 1, \ldots, N-1 \).
Therefore, since \(F \) is nondecreasing,
\[
F(b) - F(a + \varepsilon) \\
\leq F(b_N + \delta_N) - F(a_1) \\
= F(b_N + \delta_N) - F(a_N) + \sum_{i=1}^{N-1} F(a_{i+1}) - F(a_i) \\
\leq F(b_N + \delta_N) - F(a_N) + \sum_{i=1}^{N-1} F(b_i + \delta_i) - F(a_i) \\
= \sum_{i=2}^{N-1} F(b_i + \delta_i) - F(a_i) \\
\leq \sum_{i=2}^{N-1} F(b_i) - F(a_i) + \frac{\varepsilon}{2} \\
\leq \left(\sum_{i=1}^{N-1} F(b_i) - F(a_i) \right) + \varepsilon
\]
Since \(\varepsilon > 0 \) was arbitrary and \(F \) right cts, sending \(\varepsilon \to 0 \) gives the result. \(\square \)
By Carathéodory's theorem, we know \(\mu_F \) is a measure when restricted to \(\mathcal{M}(\mu_F) \), the collection of \(\mu_F \)-measurable sets. We will denote this measure by \(\mu_F \). \(\mu_F \) is known as the Lebesgue-Stieltjes measure associated to \(F \).

How does this help our goals?

Is \(\mu_F \) a Borel measure? Yes.

That is, a measure when restricted to the Borel \(\sigma \)-algebra.

Thm: \(\mathcal{B}(\mathbb{R}) \subseteq \mathcal{M}(\mu_F) \).

Pf:

It suffices to show that, for all \(b \in \mathbb{R} \),

\[(-\infty, b] \subseteq \mathcal{M}(\mu_F), \]

that is, we must show for all \(E \subseteq \mathbb{R} \)

\[\mu_F^*(E) \leq \mu_F^* (E \cap (-\infty, b]) + \mu_F^* (E \cap (-\infty, b]), \]

that means, for all \(E \subseteq \mathbb{R} \)

\[\mu_F^*(E) \leq \mu_F^* (E \setminus (-\infty, b]) + \mu_F^* (E \setminus (-\infty, b]). \]
Fix $\varepsilon > 0$. By definition of μ^*, there exists $\{[a_i, b_i]\}_{i=1}^\infty$ such that $E \subset \bigcup_{i=1}^\infty [a_i, b_i]$ and

$$\sum_{i=1}^\infty F(b_i) - F(a_i) \leq \mu^*(E) + \varepsilon.$$

Note that

$$[a_i, b_i] \cap (-\infty, b] \subset [a_i, b]$$

$$[a_i, b_i] \cap (b, +\infty) \subset (b, b_i]$$

So

$$E \cap (-\infty, b] \subset \bigcup_{i=1}^\infty [a_i, b]$$

$$E \cap (b, +\infty) \subset \bigcup_{i=1}^\infty (b, b_i]$$

$$\mu^*(E \cap (-\infty, b]) + \mu^*(E \cap (b, +\infty))$$

$$\leq \sum_{i=1}^\infty F(b_i) - F(a_i) + \sum_{j=1}^\infty F(b_j) - F(b)$$

$$= \sum_{i=1}^\infty F(b_i) - F(a_i)$$

$$\leq \mu^*(E) + \varepsilon$$

Since $\varepsilon > 0$ was arbitrary, sending $\varepsilon \to 0$ gives the result. \Box
Def: (Lebesgue measure/outer measure)

When $F(x) = x$, we write

$\lambda^* = \mu_F$ Lebesgue outer measure

$\lambda = \mu_F$ Lebesgue measure

$M_\lambda^* = M_{\mu_F}$ Lebesgue measurable sets

Thus, we know all Borel sets are Lebesgue measurable.

In this way, we have found a Borel measure that gives the “right” length to intervals $(a,b]$. The last “intuitive” property of λ that we seek to show is...

Thm: λ^* is translation invariant on $2^\mathbb{R}$.

λ is translation invariant on M_λ^*.

Pf: For any $a \in \mathbb{R}$, $A \subseteq \mathbb{R}$,

$$A \subseteq \bigcup_{i=1}^{\infty} (a_i, b_i] \iff A + a \subseteq \bigcup_{i=1}^{\infty} (a_i + a, b_i + a]$$

$$\{ x + a : x \in A \}$$
Therefore \(\lambda^*(A) = \lambda^*(A+a) \)

Claim: \(A \in \mathcal{M}_{\lambda^*} \Rightarrow A + a \in \mathcal{M}_{\lambda^*} \)

Proof of Claim:

Fix \(E \subseteq \mathbb{R} \).

WTS \(\lambda^*(E) = \lambda^*(EN(A+a)) + \lambda^*(EN(A+a)^c) \).

\(\lambda^*(E) = \lambda^*(E-a) = \lambda^*((E-a) \cap A) + \lambda^*((E-a) \cap A^c) \)

For any \(S \subseteq \mathbb{R} \),

\((E-a) \cap S = \{ x-a : x \in E, x-a=s \text{ for some } s \in S \} \)

\(= \{ x : x \in E, x=s+a \text{ for some } s \in S \} - a \)

\(= EN(S+a) - a \)

\((S+a)^c = \{ y : y \neq s+a \text{ for some } s \in S \} \)

\(= \{ y : y-a \neq s \text{ for some } s \in S \} \)

\(= \{ y-a : y-a \neq s \text{ for some } s \in S \} + a \)

\(= S + a \)
Therefore,
\[\chi^*(E) = \chi^*((E \cap (A+a))-a) + \chi^*((E \cap (A^c+a))-a) \]
\[= \chi^*((E \cap (A+a))-a) + \chi^*((E \cap (A+a)^c) - a) \]
\[= \chi^*(E \cap (A+a)) + \chi^*(E \cap (A+a)^c) \]

This proves the claim.

Thus, for any \(A \in \mathcal{M} \),
\[\lambda(A) = \chi^*(A) = \chi^*(A+=a) = \chi(A+a) \]

We know that for any \(F: \mathbb{R} \to \mathbb{R} \) that is nondecreasing and right cts, \(\mu_F \) is a Borel measure.

In fact, all finite Borel measures are of this form.

Thm: Suppose \(\mu \) is a finite Borel measure. Then \(\mu = \mu_F \) for \(F(x) = \mu((-\infty, x]) \)
Recall, we already showed that for any finite measure μ on $\mathcal{B}_\mathbb{R}$, $F(x) = \mu((-\infty, x])$ is nondecreasing and right continuous. We seek to show $\mu(E) = \mu_f(E)$ for all $E \in \mathcal{B}_\mathbb{R}$.

First, consider $[a, b]$, $a < b$.

$$\mu([a, b]) + \mu((-\infty, a]) = \mu((-\infty, b])$$

So, $\mu([a, b]) = F(b) - F(a) = \mu_f([a, b])$.

Now, fix $E \in \mathcal{B}_\mathbb{R}$. Consider $\{[a_i, b_i]\}_{i=1}^\infty$ such that $E \subseteq \bigcup_{i=1}^\infty [a_i, b_i]$.

$$\mu(E) = \sum_{i=1}^\infty \mu([a_i, b_i]) = \sum_{i=1}^\infty F(b_i) - F(a_i)$$

Taking the infimum over all such covers,

$$\mu(E) \leq \mu_f(E).$$
It remains to show the opposite inequality. Since $E \in B_\mathbb{R}$ was arbitrary,
\[
\mu(E^c) \leq \mu_F(E^c).
\]

Claim: $\mu(R) = \mu_F(R)$.

Proof of Claim: cty from below
\[
\mu(R) = \mu(\bigcup_{i=1}^{\infty} (-i, i]) = \lim_{i \to \infty} \mu((-i, i])
\]
\[
= \lim_{i \to \infty} \mu_F((-i, i]) = \mu_F(\bigcup_{i=1}^{\infty} (-i, i]) = \mu_F(R).
\]

Thus, since
\[
\mu(E) + \mu(E^c) = \mu(R),
\]
we have...
\[
\mu(E) = \mu(R) - \mu(E^c)
\]
\[
\geq \mu(R) - \mu_F(E^c)
\]
\[
= \mu_F(R) - \mu_F(E^c)
\]
\[
= \mu_F(E).
\]
\[\square\]
We conclude our study of Borel measures on the real line with some regularity properties of Lebesgue-Stieltjes measures.

Lemma: Given $F: \mathbb{R} \to \mathbb{R}$ nondecreasing, right cts, for all $E \subseteq M\mu_F^*$,

$$
\mu_F^*(E) = \inf \left\{ \sum_{i=1}^{\infty} \mu_F((a_i, b_i)): E \subseteq \bigcup_{i=1}^{\infty} (a_i, b_i), a_i = b_i^2 \right\}
$$

\[\text{(*)}\]

Proof:

By HW3, Q2,

$$
\mu_F^*(E) = \inf \left\{ \sum_{i=1}^{\infty} \mu_F(A_i): E \subseteq \bigcup_{i=1}^{\infty} A_i, \sum_{i=1}^{\infty} \mu_F(A_i) \leq \mu_F^*(E) \right\}
$$

Thus, "≤" must hold.

It remains to show "≥".

By defn, $\forall E \subseteq M\mu_F^*$,
\[\mu_F(E) = \inf \left\{ \sum_{i=1}^{\infty} F(b_i) - F(a_i) : E \subseteq \bigcup_{i=1}^{\infty} (a_i, b_i], a_i \leq b_i \right\} \]

Fix \(\varepsilon > 0 \). Then \(\exists \{ (a_i, b_i) \}_{i=1}^{\infty} \) s.t.

\[E \subseteq \bigcup_{i=1}^{\infty} (a_i, b_i] \text{ and } \mu_F(E) + \varepsilon \geq \sum_{i=1}^{\infty} F(b_i) - F(a_i). \]

Furthermore, for any \((a_i, b_i] \), we may define \(B_n := (a_i, b_i + \frac{1}{n}) \), and since \(\mu_F(B_1) < +\infty \), cty from above ensures

\[\lim_{n \to \infty} \mu_F(B_n) = \mu_F(\bigcap_{i=1}^{\infty} B_n) = \mu_F((a_i, b_i]]. \]

Thus, for all \(i \), \(\exists S_i > 0 \) s.t.

\[\mu_F((a_i, b_i + S_i)) \leq \mu_F((a_i, b_i]) + \frac{\varepsilon}{2^i}. \]
Thus,

\[(\forall) \leq \sum_{i=1}^{\infty} \mu_F((a_i, b_i + \delta_i)) \]

\[\leq \sum_{i=1}^{\infty} \mu_F((a_i, b_i]) + \frac{\varepsilon}{2^i} \]

\[\leq \mu_F(E) + 2\varepsilon. \]

Since \(\varepsilon > 0 \) was arbitrary, this shows "\(\geq \)". \(\square \)