Part One: Optimal Transport

Katy Craig and Ashwin Trisal

May 30, 2020

Contents

7 Lecture 7 1

7.1 Subdifferentials 1

7.2 Convex optimization 2

7 Lecture 7

Last time: we did a crash course on convex analysis.

7.1 Subdifferentials

First: “convex \implies bowl-shaped”: recall that \(f \) is convex if, for any \(x_0, x_1 \in X, \alpha \in \mathbb{R} \), we have the inequality \(f((1-\alpha)x_0 + \alpha x_1) \leq (1-\alpha)f(x_0) + \alpha f(x_1) \). Given sufficient regularity on \(f \), which is not too restrictive, this is the same as asking for \(f'' \geq 0 \).

Definition 7.1. Given \(f : X \to \mathbb{R} \cup \{+\infty\} \), we define
\[
 f^*(y) = \sup_{x \in X} \langle y, x \rangle - f(x).
\]

Definition 7.2. Given \(f : X \to \mathbb{R} \cup \{+\infty\} \), we define the subdifferential
\[
 \partial f(x) := \{ y \in X^* \mid f(x') \geq f(x) + \langle y, x' - x \rangle + o(\|x' - x\|) \text{ as } x' \to x \}.
\]

We need \(f \) to be proper for the above definition: if \(f \) is constantly +\(\infty \), the definition is nonsensical.

If \(f \) is convex, \(\partial f(x) = \{ y \in X^* \mid f(x') \geq f(x) + \langle y, x' - x \rangle \forall x' \in X \} \).

The function \(x' \mapsto f(x) + \langle y, x' - x \rangle \) is affine in \(x' \); in real space, this is asking for the line through \((x, f(x)) \) with slope \(y \). Saying \(f(x') \geq f(x) + \langle y, x' - x \rangle \) means that the line must lie below \(f \), so it is a supporting hyperplane.

If \(f \) is differentiable at \(x_0 \), \(\partial f(x_0) = \{ \nabla f(x) \} \).

*Based on lectures given by Katy Craig in Math 260L: Optimal Transport, spring quarter 2020, the University of California Santa Barbara
Consider \(f(x) = |x| \). This is convex, but not differentiable at 0. In fact, in this case, \(\partial f(0) = [-1, 1] \).

Side note: “subdifferential flows” are the right generalization of gradient flows.

Subdifferentials provide insight into convex conjugate functions via the following:

Theorem 7.3. Suppose \(f \) is proper, convex, and lower semicontinuous. Then \(y \in \partial f(x) \iff x \in \partial f^*(y) \).

Proof. It suffices to show \(\implies \), because \(f^{**} = f \). If \(y \in \partial f(x) \), then

\[
\begin{align*}
 f(x') &\geq f(x) + \langle x' - x, y \rangle \\
 \langle x, y \rangle - f(x) &\geq \langle x', y \rangle - f(x')
\end{align*}
\]

and by taking the supremum over \(x' \), we get \(\langle x, y \rangle - f(x) \geq f^*(y) \). By Young’s inequality, \(f^*(y') + f(x) \geq \langle y', x \rangle \). Summing these inequalities, we get \(f^*(y') \geq f^*(y) + \langle y' - y, x \rangle \forall y' \in X^* \). So \(x \in \partial f^*(y) \). \(\square \)

A similar theorem holds, even when we only have pointwise regularity information about the function.

Theorem 7.4. Suppose \(f \) is proper, convex, and lower semicontinuous at \(x_0 \). Then \(x_0 \in \partial f^*(y) \implies y \in \partial f^*(x_0) \).

Example 7.5 (Mental image of a convex conjugate). Take \((X, \| \cdot \|) = (\mathbb{R}, | \cdot |) \cong (X^*, \| \cdot \|_{X^*})\).

<table>
<thead>
<tr>
<th>(f(x))</th>
<th>(\partial f(x))</th>
<th>(\partial f^*(x))</th>
<th>(f^*(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{2}</td>
<td>x</td>
<td>^2)</td>
<td>({ x })</td>
</tr>
</tbody>
</table>
| \(e^x \) | \(\{ e^x \} \) | \(\begin{cases}
 \{ \ln x \} & \text{if } x > 0 \\
 \emptyset & \text{if } x \leq 0
\end{cases} \) | \(\begin{cases}
 x \ln x - x & \text{if } x \geq 0 \\
 +\infty & \text{if } x < 0.
\end{cases} \) |
| \(|x| \) | \(1_{x>0} + [-1, 1] \cdot 1_{x=0} - 1_{x<0} \) empty outside of \([-1, 1]\) | \(\chi_{[-1,1]}(x) = \begin{cases}
 0 & \text{if } |x| \leq 1 \\
 +\infty & \text{if } |x| > 1
\end{cases} \) |

A sanity check to make sure we got the constants correct:

\[
f^*(0) = \sup_{x \in X} \langle x, 0 \rangle - f(x) = -\inf_{x \in X} f(x).
\]

7.2 Convex optimization

In convex optimization, we are given \(f \) a convex function on \(C \) a convex region. We want to solve

\[
\inf_{x \in C} f(x)
\]

with our questions being:

(i) What is the infimum?
(ii) Is the infimum attained?

(iii) If the minimizer exists, is it unique?

(iv) Can we characterize the minimizer (as a solution of a differential equation, perhaps?)

By defining \(\tilde{f}(x) = \begin{cases} f(x) & x \in C \\ \infty & x \notin C \end{cases} \), we can rewrite the problem as an infimum over all of \(X \), rather than the convex region \(C \).

The key tool, now, is observing how the problem changes under perturbations.

Definition 7.6 (Primal and dual problems). Given \(X, U \) normed spaces, and \(F : X \times U \to \mathbb{R} \cup \{+\infty\} \), we define the

primal problem: \(\mathcal{P}_0 := \inf_{x \in X} f(x), \quad f(x) = F(x, 0) \)

and the

dual problem: \(\mathcal{D}_0 := \sup_{v \in U^*} g(v), \quad g(v) = -F^*(0, v) \).

\(F(x, u) \) encodes the perturbations of \(f(x) \) that we consider. We want to find simple, convex functions \(F \) so that either \(\mathcal{P}_0 \) or \(\mathcal{D}_0 \) match the original problem.

By Young’s inequality, \(\forall x \in X, y \in X^*, u \in U, v \in U^*, F(x, u) + F^*(y, v) \geq \langle y, x \rangle + \langle v, u \rangle \). In particular,

\[F(x, 0) + F^*(0, v) \geq 0 \Leftrightarrow f(x) \geq g(v). \]

So the primal problem is always bigger than or equal to the dual problem.

We now seek conditions to prove \(\mathcal{P}_0 = \mathcal{D}_0 \): that is, we seek to close the “duality gap”.