Part One: Optimal Transport

Katy Craig and Ashwin Trisal*

June 1, 2020

Contents

9 Lecture 9 1

9.1 The Shipper's Problem 2

9.2 Equivalence of Kantorovich problem and dual problem 2

9 Lecture 9

Solving the Kantorovich problem is equivalent to

\[\inf_{\gamma \in \Gamma(\mu, \nu)} K_p(\gamma) = \inf_{\gamma \in M(X \times X)} \sup_{(\varphi, \psi) \in C_b(X) \times C_b(X)} K_p(\gamma) + M_1(\varphi) + M_2(\psi) \]

where \(M_1(\varphi) := \int \varphi \, d(\mu - \pi_1\#\gamma) \), and \(M_2(\psi) := \int \psi \, d(\nu - \pi_2\#\gamma) \).

Our goal is to rewrite the Kantorovich problem as

\[\sup_{v \in U^*} \inf_{(x, u) \in X \times U} \int F(x, u) - \langle u, v \rangle \]

for sufficiently nice \(F \).

Assume that \(\mu, \nu \in \mathcal{P}(X) \), \(X \) a compact metric space. To avoid confusion of notation, we want to fix the following:

(i) The Banach dual space in the optimization problem, \(U^* \), should be \(M(X \times X) \).

(ii) The Banach space \(U \) should be \(C(X \times X) \).

(iii) The Banach space \(X \) should be \(C_b(X) \times C_b(X) \) (this overloads our notation somewhat).

We can rewrite our problem as the optimization

\[K_p(\gamma) + M_1(\varphi) + M_2(\psi) \]

\[= \int \varphi \, d\mu + \int \psi \, d\nu + \int \left[d(x_1, x_2)^p - \varphi(x_1) - \psi(x_2) \right] \, d\gamma(x_1, x_2) \]

\[= \sup_{u \in C(X \times X)} \left\{ \int \varphi \, d\mu + \int \psi \, d\nu + \int u \, d\gamma \left| \, u(x_1, x_2) \leq d(x_1, x_2)^p - \varphi(x_1) - \psi(x_2) \right. \right\} \]

*Based on lectures given by Katy Craig in Math 260L: Optimal Transport, spring quarter 2020, the University of California Santa Barbara
(with the equality being assured by taking \(u = d(x_1, x_2)^p - \varphi(x_1) - \psi(x_2) \)).

Now, take
\[
F((\varphi, \psi), u) = \begin{cases}
- \int \varphi \, d\mu - \int \psi \, d\nu & \text{if } u \leq d^p - \varphi - \psi \\
+\infty & \text{else}
\end{cases}
\]

We compute
\[
\sup_{v \in U^*} \inf_{(x, u) \in X \times U} F(x, u) - \langle u, v \rangle \\
= \sup_{\gamma \in \mathcal{M}(X \times X)} \inf_{(\varphi, \psi) \in C(X) \times C(X), u \in C(X \times X)} F((\varphi, \psi), u) - \langle u, \gamma \rangle \\
= \sup_{\gamma} \inf_{(\varphi, \psi), u} \left\{ - \int \varphi \, d\mu - \int \psi \, d\nu - \int u \, d\gamma \bigg| u \leq d^p - \varphi - \psi \right\} \\
= - \inf_{\gamma} \sup_{(\varphi, \psi), u} \left\{ \int \varphi \, d\mu + \int \psi \, d\nu + \int u \, d\gamma \bigg| u \leq d^p - \varphi - \psi \right\} \\
= - \inf_{\gamma \in \Gamma(\mu, \nu)} K_p(\gamma)
\]

This shows the Kantorovich problem is the dual problem, \(-D_0\), of some problem. What is the corresponding primal problem?

Recall that the primal problem is defined by \(\mathcal{P}_0 = \inf_{x \in X} f(x) \), where \(f(x) = F(x, 0) \).

\[
\mathcal{P}_0 = \inf_{(\varphi, \psi) \in C(X) \times C(X)} \left\{ - \int \varphi \, d\mu - \int \psi \, d\nu \bigg| 0 \leq d^p - \varphi - \psi \right\} \\
= - \sup_{(\varphi, \psi) \in C(X) \times C(X)} \left\{ \int \varphi \, d\mu + \int \psi \, d\nu \bigg| \varphi(x_1) + \psi(x_2) \leq d(x_1, x_2)^p \right\}.
\]

9.1 The Shipper’s Problem

The above primal problem has the following interpretation, due to Carfarelli. Say that \(\mu \) represents the amount of a given resource (perhaps hair-cutting supplies) at a location, where it are stored by a large company (Amazon), and \(\nu \) represents the need for those supplies at a particular location. Say that Amazon has a transport cost of \(d(x_1, x_2)^p \). An enterprising student might try to capitalize on the situation by charging Amazon \(\varphi(x_1) \) dollars to pick up the good at location \(x_1 \) and \(\psi(x_2) \) dollars to deliver it at location \(x_2 \). If Amazon will let you ship, they must know that it’s cheaper than for them to do it themselves, so we require that \(\varphi(x_1) + \psi(x_2) \leq d(x_1, x_2)^p \), the largest amount of money you could make.

Duality tells us that \(-\mathcal{P}_0 = -D_0 \), so the largest amount of money you would make is the least amount of effort it would take Amazon to ship it.

9.2 Equivalence of Kantorovich problem and dual problem

Theorem 9.1. Suppose \(X \) is a compact metric space. Then
\[
\sup_{(\varphi, \psi) \in C(X) \times C(X) \text{ s.t. } \varphi + \psi \leq d^p} \int \varphi \, d\mu + \int \psi \, d\nu = \inf_{\gamma \in \Gamma(\mu, \nu)} K_p(\gamma).
\]
Since we have already showed that the left hand side coincides with $-P_0$ and the right hand side coincides with $-D_0$, it suffices to show $P_0 = D_0$.

Lemma 9.2. Given (X, d) compact, and $F \subseteq C(X \times X)$, define

$$G := \{g(x_1) := \inf_{x_2 \in X} f(x_1, x_2) \mid f \in F\}$$

If $\{f(\cdot, x_2) \mid f \in F, x_2 \in X\} \subseteq C(X)$ is equicontinuous, then G is as well.

Proof. Fix $\epsilon > 0$. There is some $\delta > 0$ such that for all x_1, x'_1, x_2, f,

$$d(x_1, x'_1) < \delta \implies |f(x_1, x_2) - f(x'_1, x_2)| < \epsilon.$$

Fix $g \in G$, and $x_1, x'_1 \in X$ such that $d(x_1, x'_1) < \delta$. We show that $g(x_1) - g(x'_1) < \epsilon$, and because the choices of x_1 and x'_1 were arbitrary, this actually shows that $|g(x_1) - g(x'_1)| < \epsilon$. Choose $x_2 \in X$ such that $g(x'_1) \geq f(x'_1, x_2) - \epsilon/2$. Then $g(x_1) - g(x'_1) \leq f(x_1, x_2) - f(x'_1, x_2) + \epsilon/2 < \epsilon$.

We now prove Theorem 9.1.

Proof. To show that $P_0 = D_0$, it suffice to show that

1. F is convex
2. $P(0) < +\infty$
3. P is lower semicontinuous at 0.

Recall that we define F by

$$F((\varphi, \psi), u) = \begin{cases} -\int \varphi \, d\mu - \int \psi \, d\nu & \text{if } u \leq d^p - \varphi - \psi \\ +\infty & \text{else} \end{cases}$$

Also, $$P(u) = \inf_{(\varphi, \psi) \in C(X) \times C(X)} F((\varphi, \psi), u).$$

To show (2), it’s easy to see that

$$P(0) = \inf_{(\varphi, \psi) \in C(X) \times C(X)} F((\varphi, \psi), 0) \leq F((0, 0), 0)$$

and $0 + 0 = 0$, so $F((0, 0), 0) = 0$. So (2) holds.