
Math 134: Homework 4
Due Wednesday, February 11th

Questions followed by * are to be turned in. Questions without * are extra practice. At least one extra
practice question will appear on each exam.

You should solve these problems without the aid of a computer/calculator, as you will
not have one on the exams. Feel free to use one to check your answers, though.

Question 1* (Similar to Strogatz 3.7.4)

Recall the improved model for a fishery

Ṅ = rN

(
1 − N

K

)
−H

N

A+N
,

where H,A > 0. This model is realistic in two respects: it has a fixed point at N = 0 for all values of
the parameters, and the rate at which fish are caught decreases with N . This is plausible—when fewer
fish are available, it is harder to find them, so the daily catch drops.

The system can be rewritten in dimensionless form as

dx

dτ
= x(1 − x) − h

x

a+ x
,

for suitably defined dimensionless quantities x, τ, a, and h. For simplicity, suppose a = 1.

(a) Determine which values of h > 0 cause the system to have one, two, or three fixed points. Classify
the stability of the fixed points in each case. (Hint: the pictures below should help!)

(b) Determine the value of h > 0 at which a bifurcation occurs. Classify the type of bifurcation.

(c) Sketch the bifurcation diagram for h > 0. Label the axes of your diagram and where your curves
intersect the axes.
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Question 2* (Strogatz 3.7.5)

Zebra stripes and butterfly wing patterns are two of the most spectacular examples of biological pattern
formation. Explaining the development of these patterns is one of the outstanding problems of biology;
see Murray (2003) for an excellent review of our current knowledge.

As one ingredient in a model of pattern formation, Lewis et al. (1977) considered a simple example of
a biochemical switch, in which a gene G is activated by a biochemical signal substance S. For example,
the gene may normally be inactive but can be “switched on” to produce a pigment or other gene product
when the concentration of S exceeds a certain threshold. Let g(t) denote the concentration of the gene
product, and assume that the concentration s0 of S is fixed. The model is

ġ = k1s0 − k2g +
k3g

2

k24 + g2
,

where the k′s are positive constants. The production of g is stimulated by s0 at a rate k1, and by an
autocatalytic or positive feedback process (the nonlinear term). There is also a linear degradation of g
at rate k2.

(a) Show that the system can be put in the dimensionless form

dx

dτ
= s− rx+

x2

1 + x2
,

where r > 0 and s ≥ 0 are dimensionless groups.

(b) Show that if s = 0, there are two positive fixed points if r < rc, where rc is to be determined.

(c) Assume that initially there is no gene product, i.e. g(0) = 0, and suppose s is slowly increased
from zero (the activating signal is turned on) to a very large number; what happens to g(t)? What
happens it if s goes back to zero? Does the gene turn off again?

Question 3 (Strogatz 3.7.6)

In pioneering work in epidemiology, Kermack and McKendrick (1927) proposed the following simple
model for the evolution of an epidemic. Suppose that the population can be divided into three classes:
x(t) = number of healthy people; y(t) = number of sick people; z(t) =number of dead people. Assume
that the total population remains constant in size, except for deaths due to the epidemic. (That is,
the epidemic evolves so rapidly that we can ignore the slower changes in the populations due to births,
emigration, or deaths by other causes.)

Then the model is

ẋ = −kxy
ẏ = kxy − ly

ż = ly,

where k and l are positive constants. The equations are based on two assumptions:

(i) Healthy people get sick at a rate proportional to the product of x and y. This would be true if
healthy and sick people encounter each other at a rate proportional to their numbers, and if there
were a constant probability that each such encounter would lead to transmission of the disease.

(ii) Sick people die at a constant rate l.
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The goal of this exercise is to reduce the model, which is a third-order system, to a first order system
that can be analyzed by our methods.

(a) Show that x+ y + z = N , where N is constant.

(b) Use the ẋ and ż equations to show that x(t) = x0 exp(−kz(t)/l), where x0 = x(0).

(c) Show that z satisfies the first-order equation ż = l[N − z − x0 exp(−kz(t)/l)].

(d) Show that this equation can be nondimensionalized to

du

dτ
= a− bu− e−u

by an appropriate rescaling.

(e) Show that a ≥ 1 and b > 0.

(f) Determine the number of fixed points and classify their stability.

Question 4* (Similar to Strogatz 4.1.5 and 4.1.7)

For each of the following vector fields, find and classify all the fixed points, and sketch the phase portrait
on the circle.

(a) θ̇ = sin θ − cos θ

(b) θ̇ = cos kθ, where k is a positive integer

Question 5 (Strogatz 4.1.8)

(a) Consider the vector field on the circle given by θ̇ = cos θ. Show that this system has a potential
V (θ), i.e. a function so that −dV

dθ = cos θ.

(b) Now consider θ̇ = 1. Show that there is no function V (θ) so that −dV
dθ = cos θ.

(c) What’s the general rule? When does θ̇ = f(θ) have a singular-valued potential?

Question 6* (Similar to Strogatz 4.3.3)

Draw the phase portrait for all qualitatively different values of µ. Classify all the bifurcations that occur
as µ varies.

θ̇ = µ cos θ − cos 2θ.

Question 7* (Strogatz 4.5.1)

In the firefly model, the sinusoidal form of the firefly’s response function was chosen somewhat arbitraryily.
Consider the alternative model Ṡ = Ω, θ̇ = ω + Af(S − θ), where f is now given by a triangle wave,
not a sine wave. Specifically, let

f(φ) =

{
φ −π/2 ≤ φ ≤ π/2

π − φ π/2 ≤ φ ≤ 3π/2

on the interval −π/2 ≤ φ ≤ 3π/2, and extend f periodically outside this interval.
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(a) Graph f(φ).

(b) Find the range of entrainment.

(c) Assuming the direly is phase-locked to the stimulus, find a formula for the phase difference φ∗.

Question 8 (Strogatz 4.5.3)

Suppose you stimulate a neuron by injecting it with a pulse of current. If the stimulus is small, nothing
dramatic happens: the neuron increases its membrane potential slightly, and then relaxes back to its
resting potential. However, if the stimulus exceeds a certain threshold, the neuron will “fire” and
produce a large voltage spike before returning to rest. Surprisingly, the size of the spike doesn’t depend
much on the size of the stimulus-anything above threshold will elicit essentially the same response.

Similar phenomena are found in other types of cells and even in some chemical reactions (Winfree
1980, Rinzel and Ermentrout 1989, Murray 1989). These systems are called excitable. The term is hard
to define precisely, but roughly speaking, an excitable system is characterized by two properties: (1) it
has a unique, globally attracting rest state, and (2) a large enough stimulus can send the system on a
long excursion through phase space before it returns to the resting state.

This exercise deals with the simplest caricature of an excitable system. Let θ̇ = µ + sin θ, where µ
is slightly less than 1.

(a) Show that the system satisfies the two properties mentioned above. What object plays the role of
the “rest state”? And the “threshold”?

(b) Let V (t) = cos θ(t). Sketch V (t) for θ0 = 0, π/2, and π.
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