Question 1 (30 points)

Consider the following dual linear programs

1	minimize	$f(x) = c^t x$		maximize	$g(y) = b^t y$
(I)	subject to	$Ax \ge b$	(II)	subject to	$A^t y = c$
	l	x free	l		$y\geq 0$.

- (a) Show that if x is feasible for (I) and y is feasible for (II), then $c^t x \ge b^t y$. Make clear where you use that $y \ge 0$.
- (b) Show that if x_* is feasible for (I), y_* is feasible for (II), and $c^t x_* = b^t y_*$, then x_* and y_* are optimal for their respective problems.
- (c) Show that $\nabla f(x) = c$.
- (d) Treating (I) as a linear inequality constrained optimization problem, write the first and second-order necessary conditions for x_* to be a local minimizer. If x_* is a local minimizer, is it a global minimizer?
- (e) Let λ_* be the vector of Lagrange multipliers corresponding to x_* from part (d). Show that $y_* = \lambda_*$ is feasible for the dual problem (II).
- (f) Let λ_* be the vector of Lagrange multipliers corresponding to x_* from part (d). Use part (b) to show that $y_* = \lambda_*$ is optimal for the dual problem (II).

Question 2 (25 points)

Consider the problem

minimize
$$f(x) = 2x_1^2 + 4x_2^3$$
,
subject to $x_2 \le 0$.

- (a) Show that $x_* = (0,0)^T$ satisfies all the first order sufficient conditions for being a local minimizer (i.e. the feasibility and Lagrange multiplier conditions).
- (b) Let $x_* = (0,0)^T$ and let \hat{A} be the matrix of active constraints at x_* . Show that if Z is a basis matrix for $\mathcal{N}(\hat{A})$, then $Z^t D^2 f(x_*) Z$ is positive definite.
- (c) Define what it means for x_* to be a local minimizer.
- (d) Show that x_* is **not** a local minimizer by explaining why it fails the criteria in the definition from part (c).
- (e) Since x_* is **not** a local minimizer, the second order sufficient condition must fail. Verify that this is true by computing $Z_+^t D^2 f(x_*) Z_+$ and showing it is not positive definite. (Hint: use the convention that a submatrix with no rows is the zero matrix and a basis matrix for the null space of the zero matrix is the identity matrix.)

Consider the problem

minimize $f(x) = x_1^2 + x_1^2 x_2^2 + 2x_1 x_3 + x_3^4 + 8x_3 + 10$ subject to $4x_1 + 2x_2 + 10x_3 = 6$.

(a) Determine which of the following points are *stationary points* (i.e. points in the feasible region for which the reduced gradient is zero):

$$(0,3,0)^T, (0,2,0)^T, (1,1,0)^T$$

(b) Determine whether each stationary point is a local minimizer, a local maximizer, or neither. (Hint: the determinant of a matrix is the product of its eigenvalues. This may be useful in determining the signs of the eigenvalues.)

Question 4 (20 points)

Consider the following linear program

minimize
$$z = -2x_1 + 2x_2 + x_6$$

subject to $-x_1 + x_2 + 2x_3 + x_5 + 2x_6 = 2$
 $2x_1 - 2x_3 + x_4 - x_6 = 1$
 $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$.

- (a) Write the basic feasible solution corresponding to the set of basic variables $\{x_1, x_5\}$.
- (b) Show that this basic feasible solution is not optimal.
- (c) What is the next basic feasible solution you move to, according to the simplex method? State both the basic feasible solution and the corresponding set of basic variables.
- (d) Is this new basic feasible solution optimal? Justify your answer.

Question 5 (18 points)

Find all local minimizers of the function

$$f(x_1, x_2) = x_1^3 + x_2^3 - 3x_1x_2 + 6$$
.

Question 6 (25 points)

Consider the feasible region defined by the linear equality constraint Ax = b.

- (a) Let Z be a basis matrix for $\mathcal{N}(A)$, and let x be a feasible point. Show that p is a direction of unboundedness at x if and only if $p \in \mathcal{R}(Z)$.
- (b) Show that if x, \bar{x} belong to the feasible region, then $p = x \bar{x}$ is a direction of unboundedness.
- (c) Now suppose A and b are given by

$$A = \begin{bmatrix} -1 & 0 & 2 \\ 0 & 1 & -1 \end{bmatrix} , \quad b = \begin{bmatrix} -4 \\ 3 \end{bmatrix} .$$

Show that

$$x = \begin{bmatrix} 2\\2\\-1 \end{bmatrix} , \quad \bar{x} = \begin{bmatrix} -2\\0\\-3 \end{bmatrix} ,$$

are feasible points for Ax = b.

- (d) With A as defined in part (c), find a basis matrix for $\mathcal{N}(A)$.
- (e) If x, \bar{x} are the feasible points from part (c) and Z is the basis matrix for $\mathcal{N}(A)$ found in part (d), then by parts (a) and (b), you know $x - \bar{x} \in \mathcal{R}(Z)$. Find v so that $x - \bar{x} = Zv$.

Question 7 (24 points)

Given a function $f : \mathbb{R}^n \to \mathbb{R}$, the second order Taylor expansion with remainder is

$$f(y) = f(x) + (\nabla f(x))^T (y - x) + \frac{1}{2} (y - x)^t D^2 f(\xi) (y - x) ,$$

for some ξ between x and y. Use the Taylor expansion to prove the following facts.

- (a) Suppose $D^2 f(z)$ is positive definite for all values of $z \in \mathbb{R}^n$. If x is a stationary point of f, then x is a strict global minimizer.
- (b) Suppose $D^2 f(z)$ is positive semidefinite for all values of $z \in \mathbb{R}^n$. If $(\nabla f(x))^T (y x) \ge 0$, then $f(y) \ge f(x)$.
- (c) Give an example of a function f and points $x, y \in \mathbb{R}^n$ for which $D^2 f(z)$ is positive semidefinite and $(\nabla f(x))^T (y-x) \ge 0$ but x is not a global minimizer. (Hint: you may give an example for n = 1.)

Question 8 (20 points)

Consider the following linear program

minimize
$$z = x_1 + x_2 + x_3 + x_4$$

subject to $x_1 + 2x_2 - 3x_3 = 3$
 $-x_1 + x_2 + 3x_3 + x_4 = -2$
 $x_1, x_2, x_3, x_4 \ge 0$.

- (a) Find all variables $\{x_i, x_j\}$ such that $\{x_i, x_j\}$ is not a set of basic variables.
- (b) There are three choices of basic variables which are not feasible. Two of them are $\{x_3, x_4\}$ and $\{x_2, x_3\}$. What is the third?
- (c) Find all bases $\{x_i, x_j\}$ so that the basic solution is feasible.
- (d) Using part (c), find the optimal solution x_* .

Question 9 (18 points)

- (a) Prove that a function f is convex if and only if -f is concave.
- (b) Suppose g(x) is convex and twice continuously differentiable. Is g(x) + x convex, concave, or neither? Is g(x) - x convex, concave, or neither?