1 Exponent Formulas

“e.g. powers of x^n (x is a variable) or powers of a number

\[x^n = \underbrace{x \cdot x \cdots x}_{n \text{ copies}}, \text{x is the base, } n \text{ is the exponent} \]

Exponent Laws (Try to prove the last two!):

- $x^0 = 1$
- $x^{-n} = \frac{1}{x^n}$
- $x^{\frac{1}{n}} = \sqrt[n]{x}$
- $x^m \cdot x^n = x^{m+n}$
- $(x^m)^n = x^{mn}$

These can be used to derive the following rules (Try deriving them!):

- $\frac{x^m}{x^n} = x^{m-n}$
- $x^{m/n} = (\sqrt[n]{x})^m$
- $x^{m/n} = \sqrt[n]{x^m}$
- $\left(\frac{x}{y}\right)^m = \frac{x^m}{y^m}$

2 Quadratic Formula: Solving $f(x) = 0$

When $f(x) = ax^2 + bx + c = 0$, you must solve for x either by factoring or by using the quadratic formula.

Quadratic formula: If $ax^2 + bx + c = 0$ then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

A comment on the quadratic equation from Stephen Colbert: "What you are feeling [as you look at the quadratic equation above] is your body rejecting an idea that is trying to make you learn it. Don’t fight the confusion. That’s just your body scabbing over in a desperate attempt to protect you from that unnatural co-mingling of numbers and letters up there. You can’t add it, and you can’t read it. Useless."

Disclaimer: Little Steve ColberT is wrong. Not only that, but he went to Northwestern, one of the best engineering schools in the country. He is intentionally misleading you.

1I am America and So Can You p.120
2.1 Logs and Exponential Functions and Applications

\[
x = \log y \iff y = 10^x
\]

\[
x = \ln y \iff y = e^x
\]

More generally:

\[
x = \log_b y \iff y = b^x
\]

So \(\log_b(y) \) asks to what power must we raise \(b \) to get \(y \)?

Most Basic Rules of Logarithms: (Try proving these from the definition and exponent rules.)

- \(\log(x \cdot y) = \log(x) + \log(y) \)
- \(\log(x^p) = p \log(x) \)
- \(\log(1) = 0 \)

Either memorize these or know how to derive them from the definition or from the previous three rules:

- \(\log\left(\frac{1}{x}\right) = -\log(x) \)
- \(\log\left(\frac{x}{y}\right) = \log(x) - \log(y) \)
- \(\log(10^x) = x \)

- \(\log_b(b^x) = x \)
- \(\log(x + y) = \log(x + y) \) (Why did I include this?)

Try these Problems:

- Without a calculator, evaluate \(\log_2(4) \)
- Consider \(7^{3x-2} = 5^{2x} \); solve for \(x \)
- \(\log(x) = 8, \log(y) = 3. \) Find \(\log\left(\frac{10^{x/3}}{y^{-5}}\right) \).
- Without a calculator, evaluate \(\ln(e), e^{\ln(x)}, \ln(e^4), \) and \(\ln(e^x) \).
Here is one last real life 34A Quiz.\(^2\) Try to answer it correctly on your own before you look at the solution.

\[\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd} \]

\[\frac{a}{b} \pm \frac{c}{d} = \frac{ad \pm bc}{bd} \] Only when the denominator is the same!

\[\frac{a}{b} = \frac{ac}{bc} \text{ when } c \neq 0 \text{ since } \frac{c}{c} = 1. \]

These can be used to derive the following rules.

\[\frac{1}{\frac{a}{b}} = \frac{b}{a} \]

\(^2\)A special thanks to one of Dr. Grigoryan’s 34A students for giving me permission to reproduce this image.