Math 34B

Denis Labutin

March 13, 2012

Click as you do the following:

A)
$$\frac{d}{dx} \left(\frac{1}{x^3} + e^{3x} + k^2 \right)$$

E) $\frac{\partial}{\partial x} (3x^4y^5 + 7xy + 3x + 4y)$

B) $\frac{d}{dx}$ ($x^2 \sin(3x)$) C) $\int 4x^3 + 5k^2 dx$ D) $\int_0^4 ax + b dx$

Click as you do the following:
A)
$$\frac{d}{dx} \left(\frac{1}{x^3} + e^{3x} + k^2 \right)$$

B) $\frac{d}{dx} \left(x^2 \sin(3x) \right)$

B)
$$\frac{d}{dx} \left(x^2 \sin(3x) \right)$$

C)
$$\int 4x^3 + 5k^2 dx$$

D) $\int_0^4 ax + b dx$
E) $\frac{\partial}{\partial x} (3x^4y^5 + 7xy + 3x + 4y)$

$$\frac{\Xi}{(3x^4y^5 + 7xy + 3x + 4y)}$$

$$\frac{(3x^4y^5 + 7xy + 3x + 4y)}{(4x^2 + 3x^2 +$$

A) $-3x^{-4} + 3e^{3x}$

B) $2x \sin(3x) + 3x^2 \cos(3x)$ C) $x^4 + 5k^2x + C$

B)
$$2x \sin(3x) + 3x^2 \cos(3x)$$

C) $x^4 + 5k^2x + C$
D) $8a + 4b$

E) $12x^3v^5 + 7v + 3$

How many did you get right? A=5 B = 4 C = 3 D = 2 E < 1

What is the area between the graph of $y=6x^2$ and the x-axis between x=1 and x=2 ?

What is the area between the graph of $y = 6x^2$ and the x-axis between

What is the area between the graph of
$$y = 6x^2$$
 and the x-axis between $x = 1$ and $x = 2$?

 $\int_{1}^{2} 6x^{2} dx = \left[2x^{3}\right]_{1}^{2} = 2(2)^{3} - 2(1)^{3} = 16 - 2 = 14$

check $\frac{d}{dx}(2x^3) = 2(3x^2) = 6x^2$

The number of Kg of a chemical produced during a reaction depends on the number grams present, x and y of two catalysts called X and Y. The number

number grams present,
$$x$$
 and y of two catalysts called X and Y . The number of Kg produced is $f(x,y)$. If $f(4,2)=20$ and $f_x(4,2)=3$ and $f_y(4,2)=2$

how many Kg will be produced using 4.2 grams of X and 2.1 grams of Y.?

A = 0.6 B = 0.2 C = 20.6 D = 20.8

The number of Kg of a chemical produced during a reaction depends on the number grams present, x and y of two catalysts called X and Y. The number

of Kg produced is
$$f(x, y)$$
. If $f(4, 2) = 20$ and $f_x(4, 2) = 3$ and $f_y(4, 2) = 2$ how many Kg will be produced using 4.2 grams of X and 2.1 grams of Y . ? $A = 0.6$ $B = 0.2$ $C = 20.6$ $D = 20.8$

how many Kg will be produced using 4.2 grams of
$$X$$
 and 2.1 grams of Y . ? $A = 0.6$ $B = 0.2$ $C = 20.6$ $D = 20.8$

how many Kg will be produced using 4.2 grams of
$$X$$
 and 2.1 grams of Y . $A=0.6$ $B=0.2$ $C=20.6$ $D=20.8$ \square $\triangle x=0.2$ and $\triangle y=0.1$

So $f(4 + \Delta x, 2 + \Delta y)$

 $\approx f(4,2) + f_x(4,2)\Delta x + f_y(4,2)\Delta y$ = 20 + (3)(0.2) + (2)(0.1) = 20.8

Initially a lake contains 20000 acre feet of pure water. Then contamination starts to enter so that after t months it is going in at a rate of 4t acre feet per month. How many months until the contamination equals 1% of the initial amount of water?

A = 5 B = 10 C = 20 D = 40

Initially a lake contains 20000 acre feet of pure water. Then contamination starts to enter so that after t months it is going in at a rate of 4t acre feet per month. How many months until the contamination equals 1% of the initial amount of water?

$$A=5$$
 $B=10$ $C=20$ $D=40$ B $V(t)=$ volume of contaminant in lake after t months.

Told V'(t) = 4t so $V(t) = \int_0^t 4t \ dt = 2t^2$. 1% of 20000 is 200.

Contaminant is 1% of pure water when $2t^2 = 200$ so t = 10

Find the minimum of $f(x, y) = x^2 - 2x + y^2 - 4y + 8$ A = 1 B = 2 C = 3 D = 4 Find the minimum of $f(x, y) = x^2 - 2x + y^2 - 4y + 8$ A = 1 B = 2 C = 3 D = 4

$$A=1$$
 $B=2$ $C=3$ $D=4$ \boxed{C}
For min $f_x(x,y)=2x-2$ so $x=1$

and $f_v(x, y) = 2y - 4 = 0$ so y = 2

min is $f(1,2) = (1)^2 - 2(1) + (2)^2 - 4(2) + 8 = 3$