
1. Tensor product of measures and Fubini theorem. Let (Aj ,Ωj , µj) ,
j = 1, 2 , be two measure spaces. Recall that the new σ -algebra A1⊗A2

with the unit element Ω1 × Ω2 is the σ -algebra generated by the direct
products of elements of A1,2 . That is,

A1 ⊗A2 = σΩ1×Ω2 ({E1 × E2 : E1,2 ∈ A1,2}) .

Our goal first will be to define a product measure on A1 ⊗A2 .

2. A measure ν defined on the σ -algebra A1 ⊗A2 , such that

ν(E1 × E2) = µ1(E1)µ2(E2) ∀E1,2 ∈ A1,2

is called the (tensor) product of µ1 and µ2 . A somewhat surprising fact
is that in such general situation the product ν is not unique, although
always exists. We will denote any product measure by µ1 ⊗ µ2 . Thus

ν = µ1 ⊗ µ2

makes sence, but µ1⊗µ2 = ν is a uniqueness statement (which might be
wrong).

3. We shall establish the existence of µ1 ⊗ µ2 by running the Caratheodory
maschine. We need to prepare the setting for it. In the following notice
the strong similarities with the construction of λn on Rn .

4. A (measurable) rectangle is the set of the form X × Y with X ∈ A1 ,
Y ∈ A2 . Notice that the intersection of rectangles is a rectangle

(A×B) ∩ (X × Y ) = (A ∩X)× (B ∩ Y ),

and that the complement of a rectangle is the disjoint union of two rect-
angles

(A×B)c = (Ac × Ω2) ∪ (A×Bc).

These observations will be useful later.

5. For a rectangle X × Y define

π(X × Y ) = µ1(X)µ2(Y ).

The following lemma will be the main tool in the later proofs.

Lemma 1 Let A,A1,2... ∈ A1 , B,B1,2,... ∈ A2 be such that all Aj ×Bj

are disjoint, and
A×B =

⋃
j

Aj ×Bj .

Then
π(A×B) =

∑
j

π(Aj ×Bj).
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Let rectangles C1×D1 , C2×D2 , . . . , Cj ∈ A1 , Dj ∈ A2 , cover A×B ,

A×B ⊂
⋃
j

Cj ×Dj .

Then
π(A×B) ≤

∑
j

π(Cj ×Dj).

Proof. 1. For both parts of the theorem the key is the following
observation. In the first case the formula

χA×B(x, y) = χA(x)χB(y) =
∑

j

χAj
(x)χBj

(y)

holds for all (x, y) ∈ Ω1 × Ω2 . In the second case

χA×B(x, y) = χA(x)χB(y) ≤
∑

j

χAj (x)χBj (y).

2. Let us prove, for example, the case of equality in the lemma. The other
case is proved the same way. Fix x ∈ Ω1 and think of the functions in
the formula as maps from Ω2 . Apply the monotone convergence theorem
on the measure space (A2,Ω2, µ2) . Deduce that

χA(x)µ2(B) = χA(x)
∫

Ω2

χB(y) dµ2(y)

=
∑

j

χAj
(x)
∫

Ω2

χBj
(y) dµ2(y)

=
∑

j

χAj
(x)µ2(Bj).

Next, think of the last formula as the identity for maps from Ω1 . Appli-
cation of the monotone convergence on (A1,Ω1, µ1) completes the proof.
�

6. For any E ⊂ Ω1 × Ω2 define the outer measure

π∗(E) = inf

∑
j

π(Aj ×Bj)

 ,

where the infimum is taken over all coverings of E by at most countable
number of measurable rectangles Aj ×Bj . Similarly to the construction
of the Lebesgue measure in Rn we establish (by a different proof) the
following proposition.
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Proposition 2 The outer measure π∗ : 2Ω1×Ω2 → [0,+∞] enjoys the
following properties:
(i) π∗(∅) = 0 ;
(ii) π∗(E1) ≤ π∗(E2) if E1 ⊂ E2 ;
(iii) semiadditivity holds, that is

π∗

⋃
j

Ej

 ≤∑
j

π∗(Ej);

(iv) π∗(A×B) = π(A×B) for any measurable rectangle A×B .

Proof. 1. The proofs of (i)–(iii) are exactly the same as in the corre-
sponding proposition in part 1. However (iv) requires a completely differ-
ent approach than in part 1 (why?).
2. On the one hand by the definition

π∗(A×B) ≤ π(A×B).

On the other hand for any disjoint cover of A×B by rectangles {Aj×Bj}
we have

A×B ⊂ (A×B) ∩

⋃
j

Aj ×Bj


=

⋃
j

(A ∩Aj)× (B ∩Bj).

Hence by Lemma 1

π(A×B) ≤
∑

j

π((A ∩Aj)× (B ∩Bj))

≤
∑

j

π(Aj ×Bj).

We conclude the proof of (iv) by taking the infimum over all covers in the
latter formula. �

7. We see that π∗ satisfies all axioms of the outer measure in the
Caratheodory construction which we developed in part 1. As we em-
phasized there, the theory relies on nothing except the axioms. Apply
the Caratheodory construction to the outer measure π∗ and obtain a
σ -algebra (P,Ω1 × Ω2) of π∗ -measurable sets defined by

P =
{
E ⊂ Ω1 × Ω2 : π∗(X) = π∗(X ∩ E)

+π∗(X ∩ Ec) ∀X ⊂ Ω1 × Ω2

}
.
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Moreover, according to the Caratheodory construction, the restriction
π∗|P is a complete measure on P .

8. Theorem 3 Let (Aj ,Ωj , µj) , j = 1, 2 , be two measure spaces. Then
any rectangle A×B , A ∈ A1 , B ∈ A2 , is π∗ -measurable, and therefore

A1 ⊗A2 ⊂ P.

Moreover
π∗(A×B) = µ1(A)µ2(B).

Proof. 1. The equality was proved in Proposition 2 (iv). We just need
to show that any rectangle is π∗ -measurable.
2. Set S = A×B . To show the measurability of S we take any test set
X ⊂ Ω1 × Ω2 . Fix any ε > 0 . Cover this X by a family of rectangles
{Rj} so that ∑

j

π(Rj) ≤ π∗(X) + ε.

For each j we write

Rj = (Rj ∩ S) ∪ (Rj ∩ Sc),

where the union is disjoint. Every Rj ∩ S is a rectangle and X ∩ S is
covered by {Rj ∩ S} . Similarly Rj ∩ Sc is a disjoint union of at most
two rectangles,

Rj ∩ Sc = C1j ∪ C2j ,

and X ∩ Sc is covered by {C1j , C2j} . For every j by Lemma 1

π(Rj) = π(Rj ∩ S) + π(C1j) + π(C2j).

Therefore

π∗(X) + ε ≥
∑

j

π(Rj ∩ S) + π(C1j) + π(C2j)

≥ π∗(X ∩ S) + π∗(X ∩ Sc).

We can take ε arbitrary small. Hence S is measurable. �

9. For any pair of the measure spaces (Aj ,Ωj , µj) , j = 1, 2 , we constructed
π∗ = µ1⊗µ2 defined on A1⊗A2 . In general situation the tensor product
of measures is not unique (cf. below). However, if the terms µ1,2 are σ -
finite, then µ1 ⊗ µ2 is unique as the following theorem states.

10. On the σ -algebra (R, 2R) consider the measure µ ,

µ(E) =
{

0, E is at most countable
∞, E is uncountable.

Set A = 2R ⊗ 2R . Prove the following statements about µ⊗ µ .
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(a) For E ∈ A define ν(E) = 0 , if E = G∪H for some G,H ∈ A , such
that projx(G) and projy(H) are both countable. Otherwise define
ν(E) =∞ . Prove that ν is a measure on A , and that ν = µ⊗ µ .

(b) Let L = {(x, y) : x = y} be the bisector line in R2 . For E ∈ A
define ρ(E) = 0 , if E = G∪H∪K for some G,H,K ∈ A , such that
projx(G) , projy(H) , and projL(K) are all countable. Otherwise
define ρ(E) = ∞ . Prove that ρ is a measure on A , and that
ρ = µ⊗ µ .

(c) It will be helpful to prove that if ν(E) = 0 or ρ(E) = 0 , then E is
contained in a countable set of lines.

(d) Define E0 = {(x, y) : x = −y} . Prove that E0 ∈ A , and ν(E0) 6=
ρ(E0) .

11. We shall prove that any µ1 ⊗ µ2 must be equal to π∗ obtained from the
Caratheodory construction, provided the terms are σ -finite.

Theorem 4 Let (Aj ,Ωj , µj) , j = 1, 2 , be two measure spaces with σ -
finite µ1,2 . Let ν be any measure on A1 ⊗A2 such that

ν(X1 ×X2) = µ1(X1)µ2(X2)

for all X1,2 ∈ A1,2 . Then ν = π∗ on A1 ⊗A2 .

Proof. 1. First suppose ‖µ1,2‖ < ∞ . Then both ν and π∗ are
also finite. Take any E ∈ A1 ⊗A2 . For any sequence of rectangles {Rj}
covering E we derive

ν(E) ≤ ν

⋃
j

Rj


≤

∑
j

ν(Rj)

= π(Rj).

Take the infimum over all such coverings to discover

ν(E) ≤ π∗(E) ∀E ∈ A1 ⊗A2. (0.1)

On the other hand in the formula

ν(E) + ν(Ec) = µ1(Ω1)µ2(Ω2) = π∗(E) + π∗(Ec)

we utilise the finiteness of all terms to deduce

ν(E) = π ∗ (E) + π∗(Ec)− ν(Ec)
≥ π∗(E)

since π∗(Ec)− ν(Ec) ≥ 0 by (0.1).
2. Write down a limit argument from the finite to the σ -finite case to
complete the proof of the theorem. �
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12. Now we turn to the proerties of the integral with respect to µ1⊗µ2 . Our
goal is to establish relation between the "double" and "repeated" integrals.
This circle of ideas is usually called the Fubini’s theorem, despite there
are more than one theorem there.
We need to introduce the following objects. For any E ⊂ Ω1 ×Ω2 define
its sections by writing

Ex
def= {y ∈ Ω2 : (x, y) ∈ E} ,

and
Ey def= {x ∈ Ω1 : (x, y) ∈ E} ,

Similarly for a function f : Ω1 × Ω2 → R define its sections by

fx : Ω2 −→ R

y 7−→ f(x, y),

and

fy : Ω1 −→ R

x 7−→ f(x, y).

Thus fx = f(x, ·) , fy = f(·, y) .

13. Lemma 5 (i) For any E ∈ A1 ⊗ A2 and any x ∈ Ω1 , y ∈ Ω2 the
sections are measurable: Ex ∈ A2 , Ey ∈ A1 .
(ii) For any A1⊗A2 -measurable function f the sections are measurable:
fx is A2 -measurable, fy is A1 -measurable.
Proof. 1. Prove (i) using the principle of good sets from the part 1.
Namely, prove that the collection of all sets E ⊂ Ω1 × Ω2 , such that all
Ex , Ey are measurable, is a σ -algebra. Then prove that all rectangles
are in this collection. Conclude then that the entire A1 ⊗ A2 is also a
part of this collection.
2. Fix any x ∈ Ω1 Let us show, for example, that f−1

x ((t,+∞)) ∈ A2

for any t ∈ R . Indeed, clearly

f−1
x ((t,+∞)) = {y ∈ Ω2 : f(x, y) > t}

= ({(x, y) ∈ Ω1 × Ω2 : f(x, y) > t})x .

Hence the statement follows from the measurability of f and part (i). �

14. The main technical part of the Fubini’s theory is the following lemma.

Lemma 6 Let (Aj ,Ωj , µj) , j = 1, 2 , be two measure spaces with σ -
finite µ1,2 . For any E ∈ A1 ⊗A2 define f1,2 : Ω1,2 → R̄ by writing

f1(x) = µ2(Ex), x ∈ Ω1

f2(y) = µ1(Ey), y ∈ Ω2.
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Then f1,2 are A1,2 -measurable, and

µ1 ⊗ µ2(E) =
∫

Ω1

f1 dµ1 =
∫

Ω2

f2 dµ2.

15. Accepting this lemma let us prove the main theorems. The following
Tonelli’s theorem claims that for positive measurable functions the finite-
ness of the "double" integral is equivalent to the finiteness of the "re-
peated". We will see later that for sign changing functions this is not the
case.

Theorem 7 Let (Aj ,Ωj , µj) , j = 1, 2 , be two measure spaces with σ -
finite µ1,2 . Let

F : Ω1 × Ω2 → R̄, F ≥ 0,

be A1 ⊗A2 -measurable. Then the functions

f(x) =
∫

Ω2

Fx dµ2, x ∈ Ω1,

and
g(y) =

∫
Ω1

F y dµ1, y ∈ Ω2,

are measurable, and∫
Ω1

f dµ1 =
∫

Ω2

g dµ2 =
∫

Ω1×Ω2

F d(µ1 ⊗ µ2).

In other symbols,∫
Ω1

(∫
Ω2

F (x, y) dµ2(y)
)
dµ1(x) =

∫
Ω2

(∫
Ω1

F (x, y) dµ1(x)
)
dµ2(y)

=
∫

Ω1×Ω2

F (x, y) d(µ1 ⊗ µ2)(x, y).

In this theorem we require only that F is A1 ⊗ A2 -measurable. The
integrals can be finite or infinite.

16. Proof of Theorem 7. 1. By Lemma 6 the theorem holds for the case

F = χE , ∀E ∈ A1 ⊗A2.

Then by linearity we at once conclude that the theorem holds for any sim-
ple F . The general case will follow by a careful approximation procedure.

2. Fix any nonnegative measurable F . By the approximation theorem
there exists a monotone sequence of positive simple functions {Φn} ,

Φn ≤ Φn+1 on Ω1 × Ω2,
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such that
Φn −→ F as n −→∞,

pointwisely on Ω1 × Ω2 . For each n define

φn(x) =
∫

Ω2

(Φn)x dµ2, x ∈ Ω1.

From Lemma 6 it follows that for any n the function φn is A1 -
measurable and ∫

Ω1×Ω2

Φn d(µ1 ⊗ µ2) =
∫

Ω1

φn dµ1. (0.2)

We would like to pass in (0.2) to the limit as n→∞ . The left hand side
there is easy: the monotone convergence gives at once that∫

Ω1×Ω2

Φn d(µ1 ⊗ µ2) −→
∫

Ω1×Ω2

F d(µ1 ⊗ µ2), n→∞.

In order to pass to the limit in the right hand side of (0.2) notice first that
for any fixed x ∈ Ω1

(Φn)x ≤ (Φn+1)x on Ω2,

and that
(Φn)x −→ Fx, n→∞, on Ω2.

All functions here are measurable as the sections of measurable functions.
Hence by the monotone convergence we discover that for any fixed x ∈ Ω1

φn(x) =
∫

Ω2

(Φn)x dµ2

−→
∫

Ω2

Fx dµ2, as n→∞.

Monotonicity of {Φn} implies that

φn ≤ φn+1 on Ω1.

Once more apply the monotone convergence on (Ω1,A1, µ1) to derive∫
Ω1

φn(x) dµ1(x) −→
∫

Ω1

(∫
Ω2

Fx dµ2

)
dµ1(x), as n→∞.

Thus passing to the limit as n→∞ in (0.2) we deduce∫
Ω1×Ω2

F d(µ1 ⊗ µ2) =
∫

Ω1

(∫
Ω2

Fx dµ2

)
dµ1(x) =

∫
Ω1

f dµ1.

3. The proof of∫
Ω1×Ω2

F d(µ1 ⊗ µ2) =
∫

Ω2

(∫
Ω1

F y dµ1

)
dµ2(y) =

∫
Ω2

g dµ2

proceeds verbatim. �
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17. The following theorem due to Fubini covers the case of sign changing
functions.

Theorem 8 Let (Aj ,Ωj , µj) , j = 1, 2 , be two measure spaces with σ -
finite µ1,2 . Suppose ∫

Ω1×Ω2

|F | d(µ1 ⊗ µ2) <∞

( that is F ∈ L1(Ω1 × Ω2, µ1 ⊗ µ2) ). Define the functions

f(x) =
∫

Ω2

Fx dµ2, x ∈ Ω1,

and
g(y) =

∫
Ω1

F y dµ1, y ∈ Ω2.

Then f ∈ L1(Ω1, µ1) , g ∈ L1(Ω2, µ2) , and∫
Ω1

f dµ1 =
∫

Ω2

g dµ2 =
∫

Ω1×Ω2

F d(µ1 ⊗ µ2).

In other symbols,∫
Ω1

(∫
Ω2

F (x, y) dµ2(y)
)
dµ1(x) =

∫
Ω2

(∫
Ω1

F (x, y) dµ1(x)
)
dµ2(y)

=
∫

Ω1×Ω2

F (x, y) d(µ1 ⊗ µ2)(x, y).

Proof. Prove the theorem. Hint: split F into a positive and negative
part, F = F+ − F− , and derive the statement from Tonelli’s theorem.
Indicate clearly the step when the assumption F ∈ L1 is crucial. �

18. Give an example showing that the Fubini’s theorem fails if F is only
A1 ⊗A2 -measurable.
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