
2 Lebesgue integration

1. Let (Ω,A, µ) be a measure space. We will always assume that µ is com-
plete, otherwise we first take its completion. The example to have in mind
is the Lebesgue measure on Rn , (Rn,Ln, | · |) . We will build the inte-
gration theory for A -measurable functions. We will consider measurable
functions

f : Ω −→ R̄,

where R̄ = R1 ∪ {−∞} ∪ {+∞} (and also functions F : Ω→ C̄ ∪ {∞} ,
where C̄ = C∪{∞} ). First we define integrals of real valued nonnegative
functions, and then reduce the general case to this. We will follow Rudin
very closely.

2. Let f : Ω→ R be a simple function:

f =
N∑
j=1

cjχEj
,

c1,...,N ∈ R , E1,...,N ∈ A , N < +∞ .

It is useful to know that any simple f can be written as a linear com-
bination of χEj

, Ej ∈ A , with distinct c1 , . . . , cN and disjoint E1 ,
. . . , EN . In fact, a simple f takes only a finite number of distinct values
α1 < α2 < · · · < αM . Hence the desired representation is

f =
M∑
m=1

αmχf−1({αm}).

Adding a term with cj = 0 if necessary, we can always assume that

N⋃
j=1

Ej = Ω.

3. Let f ≥ 0 be a simple function written as

f =
N∑
n=1

cnχEn
, Ej ∩ Ek = ∅ if j 6= k.

Define the Lebesgue integral of f with respect to µ over Ω by∫
Ω

f(x) dµ(x) =
∫

Ω

f dµ
def=

N∑
j=1

cjµ(Ej)

agreeing that
0∞ = 0.
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We do not assume here that c1,...,N are distinct. (However, since Ej s are
disjoint, we have c1,...,N ≥ 0 .) The definition is correct. In fact, suppose
we also have

f =
M∑
m=1

dmχFm
, Fj ∩ Fk = ∅ if j 6= k.

Notice that
χA∪B = χA + χB if A ∩B = ∅.

But then

f =
N∑
n=1

M∑
m=1

enmχEn∩Fm ,

enm = cn = dm.

Now, keeping in mind that all sets En (and all Fm ) are disjoint we derive

N∑
n=1

cnµ(En) =
N∑
n=1

cn

M∑
m=1

µ(En ∩ Fm)

=
N∑
n=1

M∑
m=1

enmµ(En ∩ Fm),

and by the same argument

M∑
m=1

dmµ(Fm) =
N∑
n=1

M∑
m=1

enmµ(En ∩ Fm).

4. For a general measurable F ≥ 0 define∫
Ω

F (x) dµ(x) =
∫

Ω

F dµ = sup
f simple,0≤f≤F

∫
Ω

f dµ.

The definition is correct when applied to simple functions. This means,
that for any f ≥ 0 ,

f =
N∑
n=1

cnχEn

with disjoint E1 , . . . , EN , the equality

sup
φ simple,0≤φ≤f

∫
Ω

φdµ =
N∑
n=1

cnµ(En)

holds. In fact, take any simple φ written as

φ =
M∑
m=1

αmχFm
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with disjoint F1 , . . . , FM , such that 0 ≤ φ ≤ f . Then for all m,n

αmχFm∩En
≤ cnχFm∩En

.

Keeping in mind that all sets En (and all Fm ) are disjoint we derive
M∑
m=1

αmµ(Fm) =
M∑
m=1

N∑
n=1

αmµ(Fm ∩ En)

≤
M∑
m=1

N∑
n=1

cnµ(Fm ∩ En)

=
N∑
n=1

M∑
m=1

cnµ(Fm ∩ En)

≤
N∑
n=1

cnµ(En).

At the same time we can take φ = f , which proves the claim.
Finally, for a measurable F ≥ 0 and E ∈ A set∫

E

F dµ =
∫

Ω

FχE dµ.

5. Directly from the definitions we have the following statements.

Proposition 1 Let all functions and sets below be A -measurable. Then:
(i) if 0 ≤ f ≤ g then ∫

E

f dµ ≤
∫
E

g dµ;

(ii) if f ≥ 0 and A ⊂ B then∫
A

f dµ ≤
∫
B

f dµ;

(iii) if f ≥ 0 and constant c ≥ 0 then∫
E

cf dµ = c

∫
E

f dµ;

(iv) if f = 0 µ -a.e. on E then∫
E

f dµ = 0

even if µ(E) = +∞ ;
(v) if µ(E) = 0 then ∫

E

f dµ = 0

for any f ≥ 0 , even if f |E = +∞ .
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6. Consider the measure space
(
N, 2N, µc

)
, where µc is the counting mea-

sure. Any measurable function f : N→ [0,∞] is just a positive sequence
(fn) . Find the formula (and prove it) for∫

N

f dµc

in terms of (fn) .

7. Consider the measure space
(
Ω, 2Ω, δp

)
, where δp is the Dirac mass at

a fixed p ∈ Ω . Then any function f : Ω → [0,∞] is measurable (why?).
Find the formula (and prove it) for∫

Ω

f dδp.

8. Consider the measure space
(
R,L1, λ

1
)
. Prove that the Dirichlet function

( fD is zero at irrationals and one at rationals) is measurable. Find (and
explain the answer) ∫

[0,1]

fD(x) dλ1(x).

9. The first powerful result is the Lebesgue monotone convergence theorem.

Theorem 2 Let {fn} be a sequence of A -measurable functions such that

0 ≤ f1 ≤ · · · ≤ fn ≤ fn+1 ≤ · · · in Ω.

Then
lim
n→∞

∫
Ω

fn dµ =
∫

Ω

lim
n→∞

fn dµ.

Proof. 1. Denote f(x) = lim
n→∞

f(x) , x ∈ Ω . Clearly 0 ≤ fn ≤ f for
any n . The function f is measurable as the pointwise limit of a sequence
of measurable functions. Hence by Proposition 1 and the monotonicty

lim
n→∞

∫
Ω

fn dµ = α, α ∈ [0,∞], α ≤
∫

Ω

f dµ.

Our goal now is to establish the opposite inequality.

2. Fix any ε > 0 and any simple φ , such that 0 ≤ φ ≤ f . Then the
sets

En = {(1− ε)φ ≤ fn}

enjoy the following properties:

(a) En ∈ A for any n since fn and φ are measurable;

(b) E1 ⊂ E2 ⊂ · · · since fn ≤ fn+1 for all n ;
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(c) Ω =
∞⋃
n=1

En . Indeed, for any x0 ∈ Ω there are two possibilities.

Either f(x0) = 0 , and then φ(x0) = fn(x0) = 0 for all n . Hence in
this case x0 ∈ En for any n . Or f(x0) > 0 , and then (1−ε)φ(x0) <
f(x0) . But fn(x0) → f(x0) , n → ∞ . Hence in this case x0 ∈ En
for all n ≥ Nε .

By properties of the integral from Proposition 1∫
Ω

fn dµ ≥
∫
En

fn dµ ≥ (1− ε)
∫
En

φdµ.

The left hand side here limits to α . According to the Lemma below and
the properties of En , we also discover that

(1− ε)
∫
En

φdµ −→ (1− ε)
∫

Ω

φdµ, n→∞.

Hence
α ≥ (1− ε)

∫
Ω

φdµ

for all simple φ , 0 ≤ φ ≤ f , and any ε > 0 . Taking supremum over all
such φ derive that

α ≥ (1− ε)
∫

Ω

f dµ,

which establishes the Theorem, since ε is arbitrary.

3. To conclude the proof of the Theorem we need to show that the
following Lemma holds. (This Lemma is of independent value.)

Lemma 3 Let ϕ be a simple function, ϕ ≥ 0 . Define ν : A → [0,∞]
by writing

ν(E) =
∫
E

ϕdµ, E ∈ A.

Then ν is a measure on (Ω,A) .

Proof of Lemma 3. Suppose

ϕ =
N∑
j=1

cjχEj

with 0 ≤ c1,...,N < ∞ , and disjoint E1,...,N ∈ A . Take any disjoint
sequence of measurable sets {Aj} and denote A = A1 ∪ A2 ∪ A3 ∪ . . . .
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Since the function χAϕ is simple and µ is a measure, we can write

ν(A) =
∫
A

ϕdµ =
∫

Ω

χAϕdµ

=
∫

Ω

cjχA∩Ej dµ

=
N∑
j=1

cjµ(A ∩ Ej)

=
N∑
j=1

cj

∞∑
k=1

µ(Ak ∩ Ej)

=
∞∑
k=1

N∑
j=1

cjµ(Ak ∩ Ej)

=
∞∑
k=1

∫
Ak

ϕdµ

=
∞∑
k=1

ν(Ak),

which proves the Lemma, and also completes the proof of the Theorem.
�

10. The immediate consequence of the monotone convergence theorem is the
Fatou’s lemma.

Theorem 4 Let {fn} , fn ≥ 0 be a sequence of A -measurable functions
such that for all n ∫

Ω

fn ≤M < +∞. (2.1)

Then ∫
Ω

lim inf
n→∞

fn dµ ≤M.

Proof. Consider the sequence {gk} ,

gk(x) = inf
n≥k

fn(x), x ∈ Ω.

All functions gk are measurable since they obtained from a sequence of
measurable functions by lim - sup - inf operations. Clearly gk ≤ fk , and
due to (2.1) ∫

Ω

gk dµ ≤M

for all k . Also gk ≤ gk+1 for all k , and

lim
k→∞

gk(x) = lim inf
n→∞

fn(x) for any x ∈ Ω.
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It is just left to apply the monotone convergence theorem. �

Fatou’s lemma is the main tool for establishing the finiteness of the integral
of the limit function. Namely, suppose {fn} , fn ≥ 0 is a sequence of
A -measurable functions converging to f pointwisely, and suppose (2.1)
holds. Then by the Fatou’s lemma∫

Ω

f dµ =
∫

Ω

lim
n→∞

f dµ ≤M.

Notice that the lemma does not claim the equality of the limits. This is
essential.
Construct a sequence of simple functions, satisfying the assumptions of
Fatou’s lemma, for which

lim
n→∞

∫
Ω

fn dµ 6=
∫

Ω

lim
n→∞

fn dµ,

and both limits exist and finite.

11. In previous statements we were dealing mainly with the order. Now we
look at the linearity of the integral. We already have (iii) in Proposi-
tion 1. Next, directly from the definition it follows that for simple func-
tions ϕ,ψ ≥ 0 we have∫

E

(ϕ+ ψ) dµ =
∫
E

ϕdµ+
∫
E

ψ dµ.

Earlier we proved the approximation theorem, stating that any measur-
able function is a monotone limit pointwise of simple functions. Now the
monotone convergence theorem imply additivity (even σ -additivity) of
the integral.

Theorem 5 Let {fn} , fn ≥ 0 , be a sequence of measurable functions.
Then ∫

Ω

∑
n

fn dµ =
∑
n

∫
Ω

fn dµ.

12. Using integration we obtain new measures on (Ω,A) by the following
theorem. Prove it using the considerations from the proof of Lemma 3.

Theorem 6 Let f ≥ 0 be A -measurable. For any E ∈ A define

φ(E) =
∫
E

f dµ.

Then φ is a measure on A . Moreover,∫
Ω

g dφ =
∫

Ω

gf dµ

for any A -measurable g ≥ 0 .
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For φ and f ≥ 0 from the theorem we say that the measure φ is abso-
lutely continuous with respect to µ with the density f , and write

dφ = f dµ, f =
dφ

dµ
.

13. Next we would like to define the integral of sign changing (and even com-
plex valued) functions. First, define L1 = L1(Ω, µ) to be the set of all
functions f : Ω→ C such that:

(i) f is A−measurable;

(ii)
∫

Ω

|f | dµ < +∞.

Prove that f ∈ L1 ⇒ |f | < ∞ µ -a.e. in Ω . Describe the spaces
L1(N, µc) , µc is a counting measure, and L1(Ω, δp) , p ∈ Ω .

For complex valued functions we have the pointwise inequalities

|f + g| ≤ |f |+ |g|,
|cf | = |c| |f |.

Thus it follows that L1(Ω, µ) is a linear vector space.

14. Now we give the general definition of the Lebesgue integral. For any
f ∈ L1(Ω, µ) (so, for the general f the integral is defined only if f ∈ L1 )
we write f = u+ iv , and decompose further as

f = u+ − u− + iv− − iv−,

where
u+(x) =

{
|u(x)| if u(x) ≥ 0

0 if u(x) ≤ 0,

u−(x) =
{

0 if u(x) ≥ 0
|u(x)| if u(x) ≤ 0,

so that u = u+ − u− , v = v+ − v− . Now set∫
E

f dµ
def=
∫
E

u+ dµ−
∫
E

u− dµ+ i

∫
E

v+ dµ− i
∫
E

v− dµ.

Notice that
0 ≤ u±, v± ≤ |f |,

therefore u±, v± ∈ L1 . Consequently the definition is correct, since all
integrals there are finite.

15. Using the above definition and Proposition 1 derive the following proper-
ties.
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Theorem 7 For f, g ∈ L1 and α, β ∈ C1 we have:∫
E

(αf + βg) dµ = α

∫
E

f dµ+ β

∫
E

g dµ,∣∣∣∣∫
E

f dµ

∣∣∣∣ ≤ ∫
E

|f | dµ.

16. Let us prove two theorems useful in analysis. The first result is the Tcheby-
shev’s inequality.

Theorem 8 Let f ∈ L1 . Then

µ ({|f | > N}) ≤ 1
N

∫
{|f |>N}

|f | dµ

≤ 1
N

∫
Ω

|f | dµ.

The second result is the so-called absolute continuity of the integral.

Theorem 9 Let f ∈ L1 . Then for any ε > 0 there exists δ > 0 such
that ∫

E

|f | dµ < ε for any E ⊂ Ω with µ(E) < δ.

Thus for measures φ and µ , such that dφ = |f | dµ with f ∈ L1(Ω, µ) ,
the following implication holds:

for any ε > 0 there exists δ > 0 such that for any E ∈ A
µ(E) < δ ⇒ φ(E) < ε .

Later we will show that the converse is also essentially true.

17. Lebesgue dominated convergence theorem is important.

Theorem 10 Let {fn} be a sequence of measurable functions such that

fn → f in Ω,
|fn| ≤ g in Ω for all n

for some g ∈ L1 . Then∫
Ω

|fn − f | dµ→ 0, n→∞,

(
and hence, due to Theorem 7

lim
n→∞

∫
Ω

fn dµ =
∫

Ω

lim
n→∞

fn dµ.
)
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18. Integral of any measurable function over a set of measure 0 vanishes.
Hence conditions in dominated or monotone convergence theorems are
allowed to be violated on the sets of measure 0 .

19. We have built Lebesgue integral on any abstract measure space (Ω,A, µ) .
In the particular case of Ω = R1 , A = L1 , µ(·) = | · | (real line with
the sigma algebra of Lebesgue measurable sets and Lebesgue measure on
them) we can now integrate very general functions. Let us compare this
new integral with the old Riemann integral.

Denote I = [a, b] . Recall the Riemann integral construction for
f : I → R .

(a) For any finite partition ξ = {xj}nj=0 of I , a = x0 < x1 < · · · <
xn = b , define the upper and lower Riemann sums

S(ξ, f) =
n∑
j=1

(
sup

[xj−1,xj ]

f

)
|xj − xj−1|,

S(ξ, f) =
n∑
j=1

(
inf

[xj−1,xj ]
f

)
|xj − xj−1|.

The finite nature of the Riemann sums allow to derive their properties
rather easily. The main one is the inequality

S(ξ, f) ≤ S(η, f),

valid for any two partitions ξ and η .
(b) By the last inequality, the lower and upper integrals exist

I(f) = sup{S(ξ, f) : all ξ},
I(f) = inf{S(ξ, f) : all ξ},

and the inequalities

−∞ ≤ I(f) ≤ I(f) ≤ +∞

hold.
(c) If

I(f) = I(f) = I(f) ∈ R,

then we say that f is Riemann integrable and define∫ b

a

f(x) dx = I(f).

(d) Then the following two conditions for the integrability are proved.

f is integrable =⇒ |f | ≤M <∞ on I
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This is easy. Indeed, for example supI f = ∞ immediately implies
that S(ξ, f) =∞ for any ξ . Next,

f ∈ C(I) =⇒ f is integrable.

This is harder to prove. A simple example of a function not Riemann
integrable is the Dirichlet function.

(e) Finally, using the definiton of the set of measure zero on R one
establishes (with a considerable effort) the criterion for the Riemann
integrability. Define

disc(f) = {x ∈ I : f is not continuous at x} .

Then

f is integrable on I ⇐⇒ (i) |f | ≤M <∞ on I,

(ii) |disc(f)| = 0. (2.2)

The last condition can be formulated without a reference to the
Lebesgue measure theory. Namely, a set E ⊂ R has measure zero
(is a null-set) if for any ε > 0 there exists at most countable family
of intervals (aj , bj) covering E such that∑

j

|aj − bj | < ε.

20. As we see, the Lebesgue integral construction for f : I → R is quite differ-
ent. Thus the Dirichlet function is Lebesgue integrable but not Riemann
integrable. In the opposite direction we have the following statement:

f is Riemann integrable on I =⇒ f ∈ L1(I) and

R-
∫ b

a

f dx = L-
∫
I

f dλ1. (2.3)

21. The powerful technique of Lebesgue integration theory allows to give a
straightforward proof (2.2) and (2.3).
Proof of (2.2) and (2.3). 1. Let f : I → R be an arbitrary bounded
function (we do not assume that f is even measurable). For any finite
partition ξ as above (all partitions will be finite in the proof) we define
Ij = [xj−1, xj ] , j = 1, . . . , n ,

φξ =
n∑
j=1

(
sup
Ij

f

)
χIj , ψξ =

n∑
j=1

(
inf
Ij

f

)
χIj .

The functions φξ, ψξ are measurable and simple. The lower and upper
Rieman sums can be expressed as the Lebesgue integrals of the corre-
sponding simple functions

S(ξ, f) =
∫
I

ψξ dλ
1, S(ξ, f) =

∫
I

φξ dλ
1.
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Since f is bounded, we have

−∞ < I(f) ≤ I(f) < +∞.

Consequently we can find the partitions ξ1, ξ2, . . . , such that∫
I

φξk dλ1 → I(f) as k →∞,

and similarly the partitions η1, η2, . . . , such that∫
I

ψηk dλ1 → I(f) as k →∞.

2. Now we modify the partitions ξk , ηk in a special way. A partition
ξ′ is a refinement of a partition ξ if ξ ⊂ ξ′ . For the Riemann sums we
then have

S(ξ, f) ≤ S(ξ′, f), S(ξ, f) ≥ S(ξ′, f).

(Why?) Clearly the partition ξ ∪ η is a refinement (after ordering) of
both ξ and η . First, using the refinement ξk ∪ ηk we make

ξk = ηk.

Then, using the refinements ξ̃k = ξ1 ∪ · · · ∪ ξk , we also force (keeping the
notations unchanged)

ξ1 ⊂ ξ2 ⊂ ξ3 ⊂ · · · .
By the properties of the Riemann sums we derive for φk = φξk , ψk = ψξk ,
that

ψ1 ≤ ψ2 ≤ ψ3 ≤ · · · ,
φ1 ≥ φ2 ≥ φ3 ≥ · · · ,
ψn ≤ f ≤ φn ∀n.

Apply the monotone convergence theorem to obtain the functions φ, ψ ∈
L1(I) , such that φn → φ , ψn → ψ on I as n→∞ , ψ ≤ f ≤ φ in I ,
( φ, ψ are measurable even if f is not), and such that∫

I

ψ dλ1 = I(f) ≤ I(f) =
∫
I

φdλ1.

3. To complete the proof of the theorem we need one more fact. Define

P =
∞⋃
k=1

ξk,

the set of all partition points. The set P is countable as a countable union
of finite sets. In particular λ1(P ) = 0 . We assert that for any x0 ∈ I \P

{f is continuous at x0} ⇐⇒ {f(x0) = φ(x0) = ψ(x0)} . (2.4)
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Prove this using the notion of the oscillation of f at x0 .

4. Suppose that f is integrable by Riemann. Then it must be bounded.
Moreover,

I(f) = I(f) =
∫ b

a

f(x) dx.

Consequently φ− ψ ≥ 0 in I and∫
I

(φ− ψ) dλ1 = 0.

By the properties of the Lebesgue integral we deduce that φ = ψ a.e..
But this implies first of all that f = φ = ψ a.e., and, hence, that f is
measurable. Then we conclude∫

I

f dλ1 =
∫ b

a

f(x) dx,

and thus (2.3) holds. Moreover, φ(x) = ψ(x) = f(x) for all x ∈ I \ E
with λ1(E) = 0 . By (2.4) our f is continuous at any x ∈ I \ (E ∪ P )
with λ1(E) = λ1(P ) = 0 . Thus the statements in the right hand side of
(2.2) also hold.

5. Suppose that f is bounded and continuous at any x ∈ I \ E with
λ1(E) = 0 . Prove that f is Riemann and Lebesgue integrable, and that
the two integrals are equal. �
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