
3 Spaces Lp

1. Appearance of normed spaces. In this part we fix a measure space
(Ω,A, µ) (we may assume that µ is complete), and consider the A -
measurable functions on it.

2. For f ∈ L1(Ω, µ) set

‖f‖1 = ‖f‖L1 = ‖f‖L1(Ω,µ) =
∫

Ω

|f | dµ.

It follows from the above inequalities that for c ∈ C1

‖f + g‖1 ≤ ‖f‖1 + ‖g‖1,
‖cf‖1 = |c|‖f‖1.

With more work we derive that

‖f‖1 = 0⇐⇒ f = 0 µ− a.e..

Factorising by the subspace of functions equal 0 µ -a.e., or redefining the
symbol = between to functions, we conclude that L1(Ω, µ) is a normed
vector space.

3. Definition of a normed space from B, Ch.2 (B-2). Prove that spaces in
B-2, Examples 1, parts 1, 2, 4, 5, 9 (cases l1 , l∞ , and c0 only ), 13, 14,
15–19 are normed. Sets B(x0, r) , B(x0, r) , and S(x0, r) in a normed
space V . Prove that B(x0, r) is the closure of B(x0, r) .

4. Concept of completeness. Cauchy sequences and complete (Banach)
spaces, B-2. Which spaces from the above examples are complete? Provide
proofs.
To establish that a Cauchy sequence (xn) in a normed space X converges,
the following abstract (that is valid for all normed spaces and independent
of the nature of the norm) lemmas are useful:

• If ‖xn − xm‖ → 0 , n,m → ∞ , and if there is a convergent subse-
quence (xnk

) ,
‖xnk

− a‖ → 0, k →∞,
then

‖xn − a‖ → 0, n→∞.
Hence, the entire Cauchy sequence converges provided we can exhibit
a convergent subsequence.

• If ‖xn − xm‖ → 0 , n,m→∞ , then for any positive sequence (εk)
(the useful case is εk = 2−k ) there is a subsequence (xnk

) such that∥∥xnk
− xnk+p

∥∥ < εk ∀k, p ≥ 0.

That is, any Cauchy sequence has a fast Cauchy subsequence. (What
is the meaning of "fast" here?)
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5. We show that L1(Ω, µ) is a Banach space. The proof is a combination of
axiomatic (that is the abstract) arguments and the arguments involving
the specific nature of L1 (which is a certain normed space of functions).

Theorem 1 For any sequence {fj} , fj ∈ L1(Ω, µ) , satisfying

‖fj − fk‖1 → 0, j, k →∞,

there exists f ∈ L1(Ω, µ) such that

‖fj − f‖1 → 0, j →∞.

Proof. 1. According to the axiomatic lemma we just need to produce a
subsequence {fjk} converging in L1 to some f .

2. According to another axiomatic lemma we can extract a fast Cauchy
sequence {fjn} , such that

‖fjn+1 − fjn‖1 < 2−n.

Next, the function sequence {FN} ,

FN =
N∑
n=1

|fjn+1 − fjn |,

is increasing. Moreover,∫
Ω

FN dµ ≤
N∑
n=1

2−n ≤ 1 ∀N.

Therefore by the monotone convergence theorem for the pointwise limit

∞∑
n=1

|fjn+1 − fjn | = lim
N→∞

FN = F

we have F : Ω→ [0,+∞] , ∫
Ω

F dµ ≤ 1,

and
‖FN − F‖1 −→ 0 as N →∞.

This implies in particular, that F < ∞ µ -a.e.. Consequently the tele-
scopic series

∞∑
n=1

fjn+1(x)− fjn(x)
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converges absolutely for any x ∈ Ω \ E with µ(E) = 0 . We conclude at
once that for such x there exists

f(x) = lim
n→∞

fjn(x).

3. We claim that f ∈ L1 and that ‖fjn − f‖1 → 0 as n→∞ . Indeed,
for any ε > 0 by the fast Cauchy property one finds N = Nε , so that∫

Ω

|fjn − fjm | dµ < ε ∀n,m ≥ N.

Let n→∞ in this formula and apply Fatou’s lemma to deduce that

‖f − fjm‖1 ≤ ε ∀m ≥ N.

Hence f ∈ L1 and our original sequence has a subsequence converging to
f in L1 . �

6. Let X = (V, ‖ · ‖) be a normed space. Prove that X is complete if and
only if

for any nested sequence of closed balls
{
B(xn, rn)

}
(this means

B(xn, rn) ⊃ B(xn+1, rn+1) for n = 1, 2, . . . ), such that rn → 0
as n→∞ , there exists a unique x∗ ∈ V for which

∞⋂
n=1

B(xn, rn) = {x∗}.

This property is sometimes called the principle of (contracting) nested
balls.

We see that the Cantor’s principle of (contracting) nested intervals from
the undergraduate analysis is nothing but the principle of nested balls in
the normed space (R, | · |) .

7. Series in normed and Banach spaces, B-2. Give an example of a conver-
gent series in l2 , which does not converge absolutely (cf. discussion after
Theorem 8 in B-2). The completeness of a normed space is equivalent to
the implication

{absolute convergence} =⇒ {convergence},

Theorem 8, B-2.

Hence the completeness of a normed space (X, ‖ · ‖) can be thought of as
any of the following equivalent properties:

• the implication {Cauchy} =⇒ {convergence} ;
• the principle of (contracting) nested balls;
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• the implication {absolute convergence} =⇒ {convergence} .

8. Dense sets in a normed space, completion of a normed space V , Theorem
7 from B-2.

Denote by S the set of all simple functions equipped with the norm
‖ · ‖1 . Prove that S is a normed space. Prove that L1 is (isometric to)
the completion of S . Prove that in the case of Ω = Rn , µ = λn the
space S is not complete. Give an example of (Ω,A, µ) for which S is
complete.

9. Fundamental inequalities for Lp . Jensen’s inequality, Theorem 2,
B-1, and Young’s inequality, Theorem 3, B-1.

10. The Hölder’s and Minkowski’s discrete inequalities, Theorems 6, 7, B-1,
with the Hölder-conjugate exponents 1 ≤ p, p′ ≤ ∞ (or p and q )

p′ =
p

p− 1
, p =

p′

p′ − 1
,

1
p

+
1
p′

= 1.

11. Prove that the sets lpn and lp , 1 ≤ p ≤ ∞ , Examples 6 and 9, Chapter
2, are Banach spaces. Prove that lp1 ⊂ lp2 if 1 ≤ p1 ≤ p2 ≤ ∞ , and that

‖x‖lp2 ≤ ‖x‖lp1

for any sequence x .

12. For any p , 1 ≤ p <∞ , define Lp = Lp(Ω, µ) to be the sets of functions
f : Ω→ C̄ (or f : Ω→ R̄ ) such that

(i) f is A−measurable;

(ii)
∫

Ω

|f |p dµ <∞.

For 1 ≤ p <∞ define

‖f‖p = ‖f‖Lp = ‖f‖Lp(Ω,µ) =
(∫

Ω

|f |p dµ
)1/p

.

Theorem 2 Let p satisfy 1 < p < ∞ . For all f ∈ Lp , g ∈ Lp′ the
Hölder’s inequality holds:∫

Ω

|fg| dµ ≤ ‖f‖p‖g‖p′ .

For all u, v ∈ Lp the Minkovski’s inequality holds:

‖u+ v‖p ≤ ‖u‖p + ‖v‖p.
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Prove the theorem following the proofs of the discrete Hölder’s and
Minkowski’s inequalities.

For 1 ≤ p < ∞ use the Minkowski’s inequality to prove that (Lp, ‖ · ‖p)
is a normed vector space.

13. Let µ(Ω) <∞ . Define the average of f by writing

—
∫

Ω

f dµ =
1

µ(Ω)

∫
Ω

f dµ.

Prove that
Lp2 ⊂ Lp1 if 1 ≤ p1 ≤ p2 <∞

(notice, that the inclusions are the opposite compared to the lp -spaces).
For that establish the following inequality for the averaged Lp -norms:(

—
∫

Ω

|u|p1 dµ
)1/p1

≤
(
—
∫

Ω

|u|p2 dµ
)1/p2

, p1 ≤ p2, u ∈ Lp2 .

Prove that Lp2 * Lp1 , p1 ≤ p2 , in the case µ(Ω) =∞ .

14. Adapt the proof of Theorem 1 and establish that Lp is a complete normed
space if 1 < p <∞ .

15. For an A -measurable function f set

ess sup f = inf{C : µ({f > C}) = 0}
= inf{C : f(x) ≤ C for µ-almost all x}.

Hence the more careful notations should be

ess sup
Ω,µ

f.

Prove that the inf here can be replaced by min , provided it is a finite
number.

16. For an A -measurable function f : Ω→ C define

‖f‖∞ = ‖f‖L∞ = ‖f‖L∞(Ω,µ)
def= ess sup

Ω,µ
|f |.

define L∞ = L∞(Ω, µ) to be the sets of functions f : Ω→ C̄ (or f : Ω→
R̄ ) such that

(i) f is A−measurable;
(ii) ‖f‖∞ <∞.

Prove that L∞ is a normed vector space.
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17. Let f, f1, f2, . . . be A -measurable. Prove that ‖fj − f‖∞ → 0 , j →∞ ,
if and only if there exists E ∈ A , µ(E) = 0 , such that fj → f uniformly
on Ω \ E as j →∞ .

18. Using the argument from the proof of the previous statement show that
L∞(Ω, µ) is a Banach space.

19. Prove the Hölder’s and Minkowski’s inequalities for all p , 1 ≤ p ≤ ∞ .
Prove that Lp2(Ω, µ) ⊂ Lp1(Ω, µ) for 1 ≤ p1 ≤ p2 ≤ ∞ provided µ(Ω) <
∞ .

20. The space L∞ is in many asects the limit case of Lp . For example, prove
that if µ(Ω) <∞ , then

lim
p→∞

‖f‖p = ‖f‖∞.

6


