
5 Measure theory II

1. Charges (signed measures). Let (Ω,A) be a σ -algebra. A map
φ : A → R is called a charge, (or signed measure or σ -additive set func-
tion) if

φ

 ∞⋃
j=1

Aj

 =
∞∑
j=1

φ(Aj) (5.1)

for any disjoint countable family {Aj} , Aj ∈ A .

2. The equivalent definition is to require that the series in (5.1) converges
absolutely. Indeed, the left hand side in (5.1) does not change if we replace
{Aj} by {Aσ(j)} for any rearrangement (bijective map) σ : N → N .
Hence the number series in the right hand side converges to the same
finite sum after an arbitrary rearrangement of terms. This is equivalent
to the absolute convergence (Riemann’s theorem).

3. Recall that a measure µ on (Ω,A) is a σ -additive map µ : A → [0,∞] .
Thus the measure of a set can be infinite. This is prohibited for signed
measures. Hence

a measure must be nonnegative but can be infinite, but a charge
must be finite but can have arbitrary sign.

We see, that a positive charge φ (or positive signed measure φ ) is nothing
but a finite measure on A (this means φ(Ω) <∞ ).

4. Proposition 1 Let (Ω,A) be a σ -algebra. Then:

(a) the set of all charges with the obvious algebraic operations is a vector
space over R denoted by M = M(Ω,A) ;

(b) for any φ ∈ M and any monotone sequence A1 ⊂ A2 ⊂ · · · (or
A1 ⊃ A2 ⊃ · · · ), A1,2,... ∈ A , we have

lim
j→∞

φ(Aj) = φ

(
lim
j→∞

Aj

)
.

Prove the proposition.

5. For fixed F ∈ A and φ ∈ M define the restriction of φ on F by writing

(φxF )(A) def= φ(F ∩A) ∀A ∈ A.

Prove that φxF ∈ M .

6. Suppose that µ is a measure on (Ω,A) , and that f ∈ L1(Ω, µ) (the real
vector space). Prove that the map

E 7−→
∫
E

f dµ
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is a charge on A . Denote this charge by λf . Prove that the identification
map

i : L1 −→ M
f 7−→ λf (5.2)

is linear and injective. Hence we can identify the real L1 with a subspace
of M and write L1 ⊂ M .

7. Now we establish the Hahn’s decomposition of Ω for a given charge sitting
on it. It asserts that the space Ω is partitioned into the region where the
charge is positive and the region, where the charge is negative.

Let φ ∈ M . A set P ∈ A is positive with respect to φ if

φ(E ∩ P ) ≥ 0 for all E ∈ A.

A set N ∈ A is negative with respect to φ if

φ(E ∩N) ≤ 0 for all E ∈ A.

A set M ∈ A is null with respect to φ if

φ(E ∩M) = 0 for all E ∈ A.

Theorem 2 Let φ ∈ M(Ω,A) . There exist a disjoint decomposition of
Ω (Hahn decomposition) into P,N ∈ A such that

(a) P ∪N = Ω , P ∩N = ∅ ,
(b) P is positive, and N is negative with respect to φ .

If P ′, N ′ is another Hahn decomposition, then

φ(E ∩ P ′) = φ(E ∩ P ), φ(E ∩N ′) = φ(E ∩N) ∀E ∈ A. (5.3)

The sets P and N in Hahn decomposition are not uniquely determined.
Indeed, if M a null set, then P∪M , N\M is also a Hahn decomposition.
However, property (5.3) remedies this flaw.

8. Proof of Hahn decomposition theorem. 1. First we define the set
P whose existence is asserted in the theorem. We will try the natural
candidate. Namely, let us construct a positive P carrying the maximal
charge.

Formally, denote

P = {all sets positive with respect to φ}.

Notice that ∅ ∈ P . It immediately follows that

A1,2 ∈ P =⇒ A1 ∪A2, A1 ∩A2 ∈ P.
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Hence the finite union or intersection of positive sets is positive. Set

a
def= sup{φ(P ) : A ∈ P}, a ≥ 0,

and fix a sequence {Ak} , Ak ∈ P , such that

lim
k→∞

φ(Ak) = a.

Define

P =
∞⋃
k=1

Ak.

First, we claim that P ∈ P . Indeed, take any E ∈ A . Notice that

j⋃
k=1

Ak, j = 1, 2, . . .

is an increasing sequence of positive sets. Hence by the continuity of φ
along monotone sequences

φ(E ∩ P ) = φ

(
E
⋂ ∞⋃

k=1

Ak

)

= lim
j→∞

φ

(
E
⋂ j⋃

k=1

Ak

)
≥ 0.

Thus P is positive. Next, by the same argument

a ≥ φ(P )

= lim
j→∞

φ

(
j⋃

k=1

Ak

)
≥ lim

j→∞
φ(Aj)

= a,

and consequently
a = φ(P ) < +∞.

2. Define N = Ω \ P . To conclude the proof of the theorem we just
need to show that N is negative with respect to φ . In what follows we
prove this fact.

Seeking a contradiction suppose that N is not negative. This means that
there exists E ⊂ Ω \ P with φ(E) > 0 . The set E cannot be positive
with respect to φ , because otherwise E ∪ P is also positive with

φ(E ∪ P ) = φ(E) + φ(P ) > a,
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which contradicts the definition of a . However, we shall prove that there
is a positive subset of E carrying a positive charge, thereby obtaining the
contradiction.
To find this positive subset we will run a certain iterative process on E .
Informally, each stage of the process consists of throwing away the most
massive negatively charged chunk of E . This idea is used frequently in
analysis and is called the "greedy algorithm".
3. Since E is not positive with respect to φ , it must contain a subset
with strictly negative charge. We pick (one of) the most massive such
subset. Formally, introduce

n1 = min{n ∈ N : there is E1 ⊂ E, φ(E1) ≤ −1/n},

and take any such E1 , so

− 1
n1 − 1

< φ(E1) ≤ − 1
n1
.

Then by additivity

φ(E \ E1) = φ(E)− φ(E1)
> φ(E)
> 0.

Therefore E \E1 cannot be positive with respect to φ . But then E \E1

contains a subset with strictly negative charge. Again define

n2 = min{n ∈ N : there is E2 ⊂ E \ E1, φ(E2) ≤ −1/n},

and take any such E2 , so

− 1
n2 − 1

< φ(E2) ≤ − 1
n2
.

Continuing as before, observe that the set E \ (E1∪E2) carries a positive
charge and cannot be positive with respect to φ . Consequently there
exists a minimal n3 ∈ N such that E \ (E1 ∪ E2) contains E3 with

− 1
n3 − 1

< φ(E3) ≤ − 1
n3
.

Inductively repeating the procedure we obtain a sequence of disjoint sets
{Ek} and a sequence of natural numbers {nk} , such that Ek ⊂ E and

− 1
nk − 1

< φ(Ek) ≤ − 1
nk

for all k

(we set −1/0 = −∞ ). Moreover, by the "greedy" nature of our algorithm
for any G ⊂ E \ (E1 ∪ · · · ∪ Ek−1) the inequality

− 1
nk − 1

< φ(G)
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holds. Indeed, otherwise on the k -th step we could have chosen G instead
of Ek and obtained the number nk−1 (or smaller). But this contradicts
the definition of nk .
Now define

F =
∞⋃
k=1

Ek, F ⊂ E.

By the σ -additivity

φ(F ) =
∞∑
k=1

φ(Ek) ≤ −
∞∑
k=1

1
nk
.

Hence the series converges, and in particular

1/nk → 0 as k →∞. (5.4)

To conclude the proof, observe first that

φ(E \ F ) = φ(E)− φ(F )
> φ(E)
> 0.

Second, we claim that E\F is positive with respect to φ . In fact, seeking
a contradiction suppose that there exits G ⊂ E \ F with φ(G) < 0 . By
(5.4) there exists k0 such that

φ(G) ≤ −1/(nk0 − 1).

But this contradicts the "greedy" choice of nk0 and Ek0 . Hence
φ(G) ≥ 0 , and E \ F must be positive. Finally, the set P ∪ (E \ F )
is positive with

φ(P ∪ (E \ F )) = φ(P ) + φ(E \ F )
> φ(P )
= a,

which contradicts the definition of a .
4. Prove (5.3). �

9. Let φ ∈ M , and let P,N be any Hahn decomposition of Ω for φ . We
rely on (5.3) to define the finite measures φ± ≥ 0 , by writing

φ+(E) = φ(E ∩ P ), φ−(E) = −φ(E ∩N),

for any E ∈ A . That is, φ+ = φxP , φ− = −φxN . Statement (5.3)
says exactly that the measures φ± do not depend on the particular Hahn
decomposition of φ . We also set

|φ| = φ+ + φ−.

The map φ+ ( φ− ) is called the positive (negative) variation of φ , and
|φ| is called the total variation measure of φ .
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10. The Hahn decomposition of Ω for a charge φ leads to the Jordan decom-
position of φ into the positive and negative parts. Formally we have the
following theorem.

Theorem 3 Let φ ∈ M . Then

(a) φ±, |φ| are positive charges, φ±, |φ| ∈ M ;
(b) the Jordan decomposition φ = φ+ − φ− holds;
(c) if φ = µ− ν for some positive µ, ν ∈ M then

φ+(E) ≤ µ(E), φ−(E) ≤ ν(E) (5.5)

for all E ∈ A .

Proof. Fix any Hahn decomposition of Ω for φ into a positive and
negative sets, Ω = P ∪N , P ∩N = ∅ . Define φ+ = φxP , φ− = φxN .
Prove the statements of the theorem. �

11. Prove that for any E ∈ A

φ+(E) = sup
{
φ(A) : A ⊂ E, A ∈ A

}
,

φ−(E) = − inf
{
φ(A) : A ⊂ E, A ∈ A

}
,

|φ|(E) = sup
{ N∑
j=1

|φ(Aj)| : N ∈ N,

{Aj} is a disjoint partition of E, Aj ∈ A
}

(5.6)

In particular, (5.6) implies

|φ(E)| ≤ |φ|(E) for any E ∈ A.

Prove that any φ ∈ M , which apriori is a map φ : A → (−∞,+∞) , is
actually a map φ : A → [a, b] for some a, b ∈ R . Prove that φ attains
its maximal and minimal values on A .
Let f ∈ L1 and let λf be the corresponding charge (5.2). Find the
formulae (and prove your statements) for λ±f , |λf | .

12. For any φ ∈ M(Ω,A) define

‖φ‖ = |φ|(Ω),

so 0 ≤ ‖φ‖ <∞ . Use (5.6) to show that

|φ|(E) ≤ ‖φ‖;
‖φn − φ‖ → 0, n→∞ =⇒ φn(E)→ φ(E), n→∞

for any E ∈ A .
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13. The number ‖φ‖ is called the total variation norm of φ ∈ M .

Theorem 4 The pair (M, ‖ · ‖) is a complete normed space.

The proof of the completeness part of the theorem is actually similar to
the proof of the completeness of C([a, b]) .

Proof. 1. The axioms of the norm hold. Indeed, by (5.6) ‖φ‖ = 0
implies |φ(E)| = 0 for any E ∈ A . Hence φ = 0 in this case. The
homogeneity also follows immediately from (5.6). To prove that

‖φ+ ψ‖ ≤ ‖φ‖+ ‖ψ‖

for any φ, ψ ∈ M , use (5.6) and the simple triangle inequality |φ(E) +
ψ(E)| ≤ |φ(E)|+ |ψ(E)| , E ∈ A .

2. We prove that M(Ω,A) is complete with respect to ‖ · ‖ . Take a
Cauchy sequence of charges {φj} . For any fixed E ∈ A the number
sequence {φn(E)} is also Cauchy, since

|φn(E)− φm(E)| = |(φn − φm)(E)|
≤ ‖φn − φm‖.

Therefore we may define the map

φ : A −→ R

E 7−→ lim
n→∞

φn(E).

Our goal is to estblish the σ -additivity of φ . It is easy to see that the
map φ is (finitely) additive. Indeed, if A1 ∩A2 = ∅ then

φ(A1 ∪A2) = lim
n→∞

φn(A1 ∪A2)

= lim
n→∞

(φn(A1) + φn(A2))

= lim
n→∞

φn(A1) + lim
n→∞

φn(A2)

= φ(A1) + φ(A2).

In order to strengthen the additivity to the σ -additivity we first establish
a continuity property of φ .

3. We claim that for any decreasing sequence E1 ⊃ E2 ⊃ · · · , Ej ∈ A ,
such that

lim
j→∞

Ej =
∞⋂
j=1

Ej = ∅,

we have
lim
j→∞

φ(Ej) = 0. (5.7)
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Indeed, take any ε > 0 . Use the Cauchy condition to find Nε such that

‖φn − φm‖ < ε ∀n,m ≥ Nε.

Next, use the continuity of φNε ∈ M along the monotone sequences to
find Jε such that

|φNε
(Ej)| < ε ∀j ≥ Jε.

Now for any j ≥ Jε we discover that

|φ(Ej)| = | lim
n→∞

φn(Ej)|

≤ lim
n→∞

|φn(Ej)|

= lim
n→∞

|φn(Ej)− φNε(Ej) + φNε(Ej)|

≤ |φNε(Ej)|+ lim
n→∞

|(φn − φNε)(Ej)|

≤ |φNε(Ej)|+ lim sup
n→∞

‖φn − φNε‖

< 2ε.

Thus (5.7) holds.

4. Let us prove the σ -additivity of φ . Take any sequence of disjoint
sets {Aj} . By the finite additivity of φ

φ

 ∞⋃
j=1

Aj

 =
N∑
j=1

φ(Aj) + φ

 ∞⋃
j=N+1

Aj


def=

N∑
j=1

φ(Aj) + rN

for any finite N . Continuity (5.7) implies that rN → 0 as N → ∞ .
Hence letting N →∞ we derive that

φ

 ∞⋃
j=1

Aj

 =
∞∑
j=1

φ(Aj).

5. We claim that

‖φ− φn‖ → 0 as n→∞.

Indeed, take any ε > 0 . Utilise the Cauchy condition and fix Nε such
that

‖φn − φm‖ < ε ∀n,m ≥ Nε.

Then due to (5.6) for any finite disjoint partition of Ω ,

Ω = E1 ∪ · · · ∪ EJ ,
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we have
J∑
j=1

|φn(Ej)− φm(Ej)| < ε ∀n,m ≥ Nε.

Since J is finite, we let m→∞ to obtain that

J∑
j=1

|φn(Ej)− φ(Ej)| ≤ ε ∀n ≥ Nε.

Taking supremum over all partitions of Ω and again using (5.6), discover
that ‖φn − φ‖ ≤ ε for all n ≥ Nε . �

14. Prove that i in (5.2) is an isometric map from L1 into M . That is, show
that

‖λf‖ = ‖f‖L1 .

Prove that L1 ⊂ M (more precisely i(L1) ⊂ M ) is a closed subspace.

15. Absolute continuity and singularity of charges with respect to a
measure. Let (Ω,A) be a fixed σ -algebra.

In this section by µ we denote a fixed measure on (Ω,A) . Thus
µ : A → [0,∞] , and µ /∈ M in general.

16. We say that φ ∈ M is absolutely continuous with respect to µ , and write

φ� µ,

if for any A ∈ A the implication µ(A) = 0 ⇒ φ(A) = 0 holds. We say
that φ is singular with respect to µ , and write

φ ⊥ µ,

if there exists Z ∈ A such that µ(Z) = 0 and φ(A) = φ(Z ∩A) for any
A ∈ A .

17. Let ν be a measure with the density (recall the definition from chapter
2)

dν

dµ
= f ≥ 0

for some f ∈ L1(Ω, µ) . Prove that ν ∈ M and ν � µ .

Let φ ∈ M . Prove that φ� |φ| .
Let φ ∈ M , S ∈ A and µ(S) = 0 . Prove that (φxS) ⊥ µ .

18. We state some properties of absolutely continuous and singular signed
measures, which follow more or less directly from the definitions.
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Proposition 5 Let µ be a measure on a σ -algebra (Ω,A) .

(i) Define

Ma(µ) = {φ ∈ M : φ� µ} ,
Ms(µ) = {φ ∈ M : φ ⊥ µ} .

Then Ma,s(µ) ⊂ M are closed subspaces of M such that

Ma(µ) ∩Ms(µ) = {0}.

(ii) For any φ ∈ M{
φ� (⊥)µ

}
⇔

{
φ+ � (⊥)µ and φ− � (⊥)µ

}
⇔

{
|φ| � (⊥)µ

}
.

Prove the proposition.

19. Closed subspaces of Banach spaces, direct topological sum of subspaces,
B-2, Theorem 9.

20. We explore the new notions by giving the equivalent ε-δ -type conditions
for the absolute continuity and singularity of charges.

Theorem 6 Let µ be a measure, on a σ -algebra (Ω,A) , and let
φ ∈ M(Ω,A) . Then φ � µ if and only if for any ε > 0 there exists
δ > 0 such that

µ(A) < δ =⇒ |φ(A)| < ε

for any A ∈ A .

Proof. By the Jordan decomposition it is enough to prove the theorem for
positive φ ∈ M .

Assume that φ� µ , φ ≥ 0 . Seeking a contradiction suppose that the ε-δ
condition does not hold. Consequently there is a fixed ε0 > 0 such that
for any δ > 0 there exists Aδ ∈ A for which µ(Aδ) < δ and φ(Aδ) ≥ ε0 .
Test this statement with δ = 2−j and obtain a sequence Aj ∈ A , j = 1 ,
2 , . . . , such that

µ(Aj) < 2−j , φ(Aj) ≥ ε0.

Define the sets

Ek =
∞⋃
j=k

Aj , k = 1, 2, . . . .

They form a decreasing sequence E1 ⊃ E2 ⊃ · · · with

φ(Ek) ≥ φ(Ak) ≥ ε0
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and the limit set

E =
∞⋂
k=1

Ek.

By the continuity of measures on the monotone sequences

µ(E) = lim
k→∞

µ(Ek) ≤ lim
k→∞

 ∞∑
j=k

2−j

 = 0,

and
φ(E) = lim

k→∞
φ(Ek) ≥ ε0,

which contradicts φ� µ .

Prove the other direction in the theorem �

Prove that the theorem does not hold in general if φ is a (infinite) mea-
sure.

Where in the proof did we use that |φ| is finite?

Theorem 7 Let µ be a measure on a σ -algebra (Ω,A) , and let
φ ∈ M(Ω,A) . Then φ ⊥ µ if and only if for any ε > 0 there exists
Eε ∈ A such that

µ(Eε) < ε and |φ|(Ω \ Eε) < ε.

Proof. Suppose that the ε -condition in the theorem holds. Let us show
that φ ⊥ µ . Indeed, take ε = 2−j to obtain a sequence Ej ∈ A , j = 1 ,
2 , . . . , such that µ(Ej) < 2−j and |φ|(Ecj ) < 2−j . Define

E = lim sup
j→∞

Ej .

By the Borel-Cantelli’s lemma µ(E) = 0 . At the same

Ec = lim inf
j→∞

Ecj =
∞⋃
k=1

∞⋂
j=k

Ecj .

Notice that for any k

|φ|

 ∞⋂
j=k

Ecj

 ≤ |φ|(Ecj ) = 2−j for all j ≥ k.

Consequently Ec is the countable union of null sets and hence |φ|(Ec) =
0 .

Prove the other direction in the theorem. �
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21. The statements formulated above naturally lead to some questions. For
example:

is it true that any positive charge φ� µ , φ ≥ 0 , can be written
as dφ = |f | dµ with some f ∈ L1 ?

In view of the first part of the proposition, it is natural to ask:

does the direct sum decomposition M = Ma(µ) ⊕Ms(µ) hold
for the Banach space M and any measure µ ?

The answers to these questions are negative for a general infinite measure
µ . However, the answers are positive for finite and, more generally, σ -
finite measures µ .

22. Decompositions of charges on σ -finite spaces. A measure µ on a
σ -algebra (Ω,A) is called σ -finite if there exists a sequence of sets {Ωj}
such that

Ω =
∞⋃
j=1

Ωj , Ωj ∈ A, µ(Ωj) <∞ ∀j.

Any finite measure is σ -finite. The Lebesgue measure λn on (Rn,Ln)
is σ -finite, but not finite.

23. Is counting measure on 2Z σ -finite? Is it σ -finite on 2R ? (Prove your
statements/examples.)

24. The central result describing the structure of a charge in terms of a σ -
finite measure is the following Lebesgue and Radon-Nikodym theorems.
The theorems are new and highly nontrivial even if all measures in their
statements are positive and finite.

Theorem 8 Let µ be a σ -finite measure on a σ -algebra (Ω,A) , and
let φ ∈ M(Ω,A) .

(a) There exist unique α, σ ∈ M , such that

α� µ, σ ⊥ µ, φ = α+ σ. (5.8)

(b) There exist f ∈ L1(Ω, µ) and Z ∈ A with µ(Z) = 0 , such that

α(A) =
∫
A

f dµ, σ(A) = φ(A ∩ Z) ∀A ∈ A. (5.9)

(c) If the charge φ is positive (that is, if φ is a finite measure) then
α, σ ≥ 0 , f ≥ 0 µ -a.e. in (5.8), (5.9).

The decomposition (5.8) is called the Lebesgue decomposition of φ into
the absolutely continuous and singular parts with respect to µ . A corol-
lary of the Lebesgue decomposition is the following theorem.
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Theorem 9 Let µ be a σ -finite measure on a σ -algebra (Ω,A) , and
let φ ∈ M(Ω,A) . Suppose φ � µ . Then there exists a unique f ∈ L1

such that
φ(A) =

∫
A

f dµ, ∀A ∈ A. (5.10)

The function f in (5.10) is called the Radon-Nikodým derivative of the
absolutely continuos charge φ with respect to µ . We will refer to the
combined statement of the two theorems as the Radon-Nikodym decom-
position theorem. Thus the Radon-Nikodym decomposition holds, if one
measure is finite (then it can even change sign), and the other is σ -finite.
The decomposition does not hold if µ is a general (infinite) measure. Later
we also establish the Radon-Nikodym decomposition for a pair (φ, µ) of
positive σ -finite measures.

25. Prove that the Banach space direct sum decomposition

M = Ma(µ)⊕Ms(µ)

holds for any σ -finite µ . Moreover, for any φ ∈ M one has

‖φ‖ = ‖α‖+ ‖σ‖

with α , σ from (5.8). To prove the equality use expression (5.6) for the
total variation measure. Hence, the Banach space projections

Pa,s : M −→Ma,s(µ)
φ 7−→ α, σ

both have norm 1 . Because of this the Lebesgue decomposition is fre-
quently called the orthogonal decomposition of M with respect to µ , de-
spite the absent of an inner product in M .

26. Accepting Theorem 8 prove Theorem 9.

27. Proof of Theorem 8. 1. Uniqueness in part (a) is straightforward.
Indeed, if α1 + σ1 = α2 + σ2 with α1,2 ∈ Ma(µ) , σ1,2 ∈ Ms(µ) , then
α1−α2 = σ2− σ1 . Hence α1,2 is simultaneously singular and absolutely
continuous with respect to µ . So, α1 − α2 = 0 .
2. Because of the Jordan decomposition φ = φ+ − φ− , we just need to
establish the rest of the theorem (the existence in (a) , (b) , and (c) ) for
positive φ . Thus in what follows we assume φ ∈ M , φ ≥ 0 .
3. We first prove the theorem assuming that µ is finite. Then we will
treat the σ -finite case using a simple limit argument.
Fix any t > 0 . Let us discretise φ with respect to µ with step t . This
discretisation procedure is the core of the proof of the existence of f in
(5.9). Since φ, µ ∈ M then

φ− tµ ∈ M.
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Let P (t) , N(t) be a Hahn decomposition of Ω with respect to φ− tµ .
Similarly, let N(jt) , P (jt) be Hahn decompositions with respect to the
charges φ− jtµ , j = 1 , 2 , . . . . Clearly

N(t) ⊂ N(2t) ⊂ · · · ,
P (t) ⊃ P (2t) ⊃ · · · .

Define the sets

A1 = N(t),
Aj = N(jt) \N((j − 1)t)

= N(jt) ∩ P ((j − 1)t), j = 2, 3, . . . ,

and

B =

 ∞⋃
j=1

N(jt)

c

=
∞⋂
j=1

P (jt).

They form the disjoint partition of Ω ,

Ω = B ∪A1 ∪A2 ∪ · · · .

Also for any E ∈ A and all j = 1, 2, . . .

(j − 1)tµ(E ∩Aj) ≤ φ(E ∩Aj) ≤ jtµ(E ∩Aj) (5.11)

(heuristically " (j − 1)tµ ≤ φ ≤ jtµ on Aj ").

Notice that the definitions imply that

∞ > φ(B) ≥ φ(P (jt)) ≥ jtµ(B)

for any j ≥ 1 , which is possible only if µ(B) = 0 . We set

σ
def= φxB,

so σ ⊥ µ . In order to write the key estimate for φ we define

ft =
∞∑
j=1

(j − 1)tχAj
,

or, in other words,

ft(x) =
{

(j − 1)t, x ∈ Aj
0, x ∈ B.

For any E ∈ A combine the expansion

φ(E) = φ(E ∩B) +
∞∑
j=1

φ(E ∩Aj),
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with (5.11) to discover that

σ(E) +
∫
E

ft dµ ≤ φ(E) ≤ σ(E) +
∫
E

ft dµ+ tµ(Ω). (5.12)

4. Consider the discretisation (5.12) with steps t = 2−n , n = 1, 2, . . . ,
and denote the corresponding ft by fn . By construction fn ≥ 0 , and
from (5.12) we have fn ∈ L1(Ω, µ) . We claim that the sequence {fn} is
Cauchy in L1 . In fact, for all m and n deduce from (5.12) that∫

E

fn dµ ≤
∫
E

fm dµ+ 2−m‖µ‖,∫
E

fm dµ ≤
∫
E

fn dµ+ 2−n‖µ‖

for any E ∈ A . Hence∣∣∣∣∫
E

(fn − fm) dµ
∣∣∣∣ ≤ max(2−m, 2−n)‖µ‖ ∀E ∈ A.

Since E here is arbitrary, we can take E = {fn − fm ≥ 0(≤ 0)} . Thus

‖fn − fm‖L1(Ω,µ) → 0, n,m→∞.

By the completeness of L1 there exists f ∈ L1(Ω, µ) such that

‖fn − f‖L1(Ω,µ) → 0 as n→∞, f ≥ 0 µ-a.e..

After taking the limit as n→∞ in (5.12) with t = 2−n we discover that

φ(E) = σ(E) +
∫
E

f dµ ∀E ∈ A.

Thus the theorem holds with Z = B , σ = φxZ , and dα = fdµ , f ≥ 0 ,
f ∈ L1(Ω, µ) , provided that φ ≥ 0 and ‖µ‖ < ∞ . It is left to remove
the last requirement.

5. Suppose that φ ≥ 0 and µ is σ -finite. Then we can write

Ω =
∞⋃
j=1

Ωj , Ωj are disjoint, µ(Ωj) <∞.

For any Ωj the theorem has already been proved. Hence we have a
sequence of functions

{fj}, fj ∈ L1(Ω, µ), fj ≥ 0, fj |Ω\Ωj
= 0,

and a sequence of disjoint sets

{Zj}, Zj ⊂ Ωj , µ(Zj) = 0,
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such that for any E ∈ A and any j the identity

φ(E ∩ Ωj) = φ(E ∩ Zj) +
∫
E

fj dµ

holds. Use the σ -additivity of φ with the Lebesgue monotone conver-
gence theorem to sum over j . Obtain the set Z = Z1 ∪ Z2 ∪ · · · with
µ(Z) = 0 and measurable f ≥ 0 , such that

φ(E) = φ(E ∩ Z) +
∫
E

f dµ

holds for all E ∈ A . We can take E = Ω to discover that f ∈ L1(Ω, µ) .
�

28. Generalisations to pairs of σ -finite measures. Above we have de-
veloped a detailed theory for the relation between a signed measure φ ,
‖φ‖ < ∞ , and a σ -finite measure µ . Now we try to understand which
parts of the theory remain true when we replace the charge φ by a σ -
finite measure ν . This generalisation is important for the applications.
Hence the setting for this part is:

let (Ω,A) be a σ -algebra, and let µ, ν ≥ 0 be a pair of σ -
additive measures on it.

29. The definition of the absolute continuity ν � µ and the singularity ν ⊥ µ
are the same as for the charges. Prove that Theorem 6 does not hold for a
pair of σ -finite measures in general. Prove that Theorem 7 holds for the
σ -finite φ, µ ≥ 0 .

30. Prove that ν ⊥ µ⇔ µ ⊥ ν for ν, µ ≥ 0 .

31. Let us state the Lebesgue-Radon-Nikodym theorems in the new generality.

Theorem 10 Let ν, µ be σ -finite measures on (Ω,A) , and let ν � µ .
Then there exists a measurable function f ≥ 0 such that

ν(E) =
∫
E

f dµ ∀E ∈ A.

Moreover, f is uniquely determined µ -a.e..

Theorem 11 Let ν, µ be σ -finite measures on (Ω,A) . Then there exist
measures α� µ , σ ⊥ µ , such that

ν = α+ σ.

Moreover, the measures α, σ are unique.

Accepting the corresponding results for the finite measures prove the the-
orems.
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