Measure theory 11

. Charges (signed measures). Let (2,.4) be a o-algebra. A map
¢: A — R is called a charge, (or signed measure or o -additive set func-
tion) if

o\ U4 | =D 64 (5.1)
j=1 j=1

for any disjoint countable family {A;}, A; € A.

. The equivalent definition is to require that the series in (5.1) converges
absolutely. Indeed, the left hand side in (5.1) does not change if we replace
{A;} by {As@;)} for any rearrangement (bijective map) o: N — N.
Hence the number series in the right hand side converges to the same
finite sum after an arbitrary rearrangement of terms. This is equivalent
to the absolute convergence (Riemann’s theorem).

. Recall that a measure p on (€,.4) is a o -additive map p: A — [0, 0] .
Thus the measure of a set can be infinite. This is prohibited for signed
measures. Hence

a measure must be nonnegative but can be infinite, but a charge
must be finite but can have arbitrary sign.

We see, that a positive charge ¢ (or positive signed measure ¢ ) is nothing
but a finite measure on A (this means ¢(2) < o).

. Proposition 1 Let (2, A) be a o -algebra. Then:

(a) the set of all charges with the obvious algebraic operations is a vector
space over R denoted by M= M(Q, A) ;

(b) for any ¢ € M and any monotone sequence Ay C Ay C -+ (or
A1 DAy D), Aip. . €A, we have

j—o0 j—o0

Prove the proposition.

. For fixed FF € A and ¢ € M define the restriction of ¢ on F by writing

(BLF)(A) L pFnA) VAe A

Prove that ¢LF € M.

. Suppose that 4 is a measure on (2, A), and that f € L*(, u) (the real
vector space). Prove that the map

EM/Efdu



is a charge on A . Denote this charge by A;. Prove that the identification
map

it L' — M
fr— s (5.2)

is linear and injective. Hence we can identify the real L' with a subspace
of M and write L' C M.

. Now we establish the Hahn’s decomposition of €2 for a given charge sitting
on it. It asserts that the space {2 is partitioned into the region where the
charge is positive and the region, where the charge is negative.

Let ¢ e M. A set Pe A is positive with respect to ¢ if
¢(ENP)>0 foral Fe A

A set N € A is negative with respect to ¢ if
p(FENN)<0 foral E e A

A set M € A is null with respect to ¢ if

p(ENM)=0 forall Fe A

Theorem 2 Let ¢ € M(Q, A). There exist a disjoint decomposition of
Q (Hahn decomposition) into PN € A such that

(a) PUN=Q, PNN=10,

(b) P is positive, and N is negative with respect to ¢ .

If P' N’ is another Hahn decomposition, then

SENPY=¢(ENP), ¢(ENN)=¢(ENN) VE e A. (5.3)

The sets P and N in Hahn decomposition are not uniquely determined.
Indeed, if M anull set, then PUM , N\ M is also a Hahn decomposition.
However, property (5.3) remedies this flaw.

. Proof of Hahn decomposition theorem. 1. First we define the set
P whose existence is asserted in the theorem. We will try the natural
candidate. Namely, let us construct a positive P carrying the maximal
charge.

Formally, denote
P = {all sets positive with respect to ¢}.
Notice that () € P . It immediately follows that

Al,z EP:>A1UA2,A1F\|AQE'P.



Hence the finite union or intersection of positive sets is positive. Set
def
a = sup{¢(P): A€ P}, a>0,
and fix a sequence {Ay}, Ay € P, such that
lim ¢(Ag) = a.
k—o0
Define
oo
P= U Ay
k=1

First, we claim that P € P . Indeed, take any E € A. Notice that

J
U4 =12
k=1

is an increasing sequence of positive sets. Hence by the continuity of ¢
along monotone sequences

S(ENP) = ¢ (Eﬂ fj Ak>
k=1
= jrggogz) (Eﬂ U Ak>
k=1

> 0.

Thus P is positive. Next, by the same argument

a > ¢(P)
J
= lim ¢ U Ak>
I \py
> lim $(4;)
j—00
= a7

and consequently
a = ¢(P) < +o0.

2. Define N = Q\ P. To conclude the proof of the theorem we just
need to show that N is negative with respect to ¢ . In what follows we
prove this fact.

Seeking a contradiction suppose that N is not negative. This means that
there exists £ C Q\ P with ¢(E) > 0. The set E cannot be positive
with respect to ¢, because otherwise EU P is also positive with

¢(EU P) = ¢(E) + ¢(P) > a,



which contradicts the definition of a. However, we shall prove that there
is a positive subset of E carrying a positive charge, thereby obtaining the
contradiction.

To find this positive subset we will run a certain iterative process on E .
Informally, each stage of the process consists of throwing away the most
massive negatively charged chunk of E . This idea is used frequently in
analysis and is called the "greedy algorithm".

3. Since FE is not positive with respect to ¢, it must contain a subset
with strictly negative charge. We pick (one of) the most massive such
subset. Formally, introduce

ny = min{n € N: thereis Ey C E, ¢(E1) < —1/n},

and take any such FEj, so

< (b(El) < —i.

Tllfl 1

Then by additivity

Q(E\E1) = ¢(E)—¢(Er)
> P(E)
> 0.

Therefore E\ E; cannot be positive with respect to ¢ . But then E\ E;
contains a subset with strictly negative charge. Again define

ny = min{n € N: thereis Ey C E\ E1, ¢(E3) < —1/n},

and take any such FEs, so

1
Ey) < ——.
n271<¢( 2)_ )

Continuing as before, observe that the set E\ (F1UFE3) carries a positive
charge and cannot be positive with respect to ¢. Consequently there
exists a minimal ng € N such that F\ (Ey U E3) contains Fs with

1
FEy) < ——.
n3—1<¢( 3) < .

Inductively repeating the procedure we obtain a sequence of disjoint sets
{E)} and a sequence of natural numbers {ny}, such that E, C E and

1 1
- < ¢(Er) <—— forall k

ng — 1 ni

(we set —1/0 = —o0 ). Moreover, by the "greedy" nature of our algorithm
for any G C E\ (F1U---UEj_1) the inequality
1
- < ¢(G
L < 4@

4



holds. Indeed, otherwise on the k -th step we could have chosen G instead
of Ej and obtained the number ng—1 (or smaller). But this contradicts
the definition of ny .

Now define -
F=|JE:, FCE.
k=1
By the o -additivity

o) =S 6B < -3 —.

o
k=1 =1
Hence the series converges, and in particular
1/ny —0 as k— oo. (5.4)
To conclude the proof, observe first that
PE\F) = &(E)—o(F)
> ¢(E)
> 0.

Second, we claim that E\F is positive with respect to ¢ . In fact, seeking
a contradiction suppose that there exits G C E'\ F' with ¢(G) < 0. By
(5.4) there exists ko such that

$(G) < =1/(ng, — 1)

But this contradicts the "greedy" choice of ng, and Ej,. Hence
¢(G) >0, and E\ F must be positive. Finally, the set P U (E \ F)
is positive with
P(PU(E\F)) = ¢(P)+o(E\F)

> ¢(P)

= a’
which contradicts the definition of a.
4. Prove (5.3). O

. Let ¢ € M, and let P, N be any Hahn decomposition of 2 for ¢. We
rely on (5.3) to define the finite measures ¢* > 0, by writing

¢T(E)=¢(ENP), ¢ (E)=-¢(ENN),

for any £ € A. That is, ¢T = ¢.P, ¢~ = —¢_N . Statement (5.3)
says exactly that the measures ¢* do not depend on the particular Hahn
decomposition of ¢ . We also set

ol =0T + 0.

The map ¢ (¢ ) is called the positive (negative) variation of ¢, and
|| is called the total variation measure of ¢ .



10. The Hahn decomposition of ) for a charge ¢ leads to the Jordan decom-

11.

12.

position of ¢ into the positive and negative parts. Formally we have the
following theorem.

Theorem 3 Let ¢ € M. Then

(a) ¢F,|6| are positive charges, ¢*,|p| € M;
(b) the Jordan decomposition ¢ = ¢+ — ¢~ holds;
(c¢) if ¢ =p—v for some positive u,v €M then
¢T(E) < p(E), ¢ (B) <v(E) (5.5)
forall E€ A.

Proof. Fix any Hahn decomposition of Q for ¢ into a positive and
negative sets, Q = PUN, PNN = . Define ¢+ = ¢.P, ¢~ = ¢.N .
Prove the statements of the theorem. [

Prove that for any F € A
¢H(E) = sup {¢(A); ACE, A€ A},
¢~ (E) = —inf{¢(A): ACE, Ae A},

<=
5
I

N
Sup{z 16(A;)]: N €N,
j=1

{A;} is a disjoint partition of E, A; € .A} (5.6)
In particular, (5.6) implies

|p(E)| < [9|(E) for any E € A.

Prove that any ¢ € M, which apriori is a map ¢: A — (—o0,+00), is
actually a map ¢: A — [a,b] for some a,b € R. Prove that ¢ attains
its maximal and minimal values on A.

Let f € L' and let s be the corresponding charge (5.2). Find the
formulae (and prove your statements) for /\JT L A

For any ¢ € M(Q2, A) define
oIl = l¢(€2),
so 0 < ||¢]| < oo. Use (5.6) to show that

[81(E) < [I4ll;

forany E € A.



13. The number ||¢|| is called the total variation norm of ¢ € M.
Theorem 4 The pair (W, || -||) is a complete normed space.

The proof of the completeness part of the theorem is actually similar to
the proof of the completeness of C([a,b]) .

Proof. 1. The axioms of the norm hold. Indeed, by (5.6) [¢]| =0
implies |¢(E)] = 0 for any E € A. Hence ¢ = 0 in this case. The
homogeneity also follows immediately from (5.6). To prove that

16+l < lloll + [l
for any ¢,¢ € M, use (5.6) and the simple triangle inequality |¢(F) +
V(E) <[o(E)+ (), Ec€A.

2.  We prove that M(Q,.A) is complete with respect to | -||. Take a
Cauchy sequence of charges {¢;}. For any fixed E € A the number
sequence {¢,(F)} is also Cauchy, since

[0n(E) = dm(E)| = [(¢n — ¢m)(E)]

Therefore we may define the map
p: A— R
E+— lim ¢,(E).

Our goal is to estblish the o -additivity of ¢. It is easy to see that the
map ¢ is (finitely) additive. Indeed, if A; N Ay =@ then

G(A1UAy) = lim ¢n(AL U Ay)
= lim (¢n(A1) + ¢n(A2))
= lim ¢n(A1) + lim ¢n(Az)
= ¢(A1) + ¢(A2).

In order to strengthen the additivity to the o -additivity we first establish
a continuity property of ¢ .

3. We claim that for any decreasing sequence F1 D Ey D -+, E; € A,
such that -
i By = m E; =0,
Jj=1
we have
lim ¢(E;) = 0. (5.7)
J—0o0



Indeed, take any ¢ > 0. Use the Cauchy condition to find NN, such that
[fn = mll <& Vn,m > N..

Next, use the continuity of ¢ny. € M along the monotone sequences to
find J. such that
[on.(Ej)| <& Vj=Je

Now for any j > J. we discover that

O(E)] = | lim 6,(5)

< lim |6 (E5)|

= lim |9 (E;) — ¢n.(Ej) + ¢n. (E))|
< low.(Ej)l + lim (¢ — on.)(E;)|
< lon.(Ej)| +limsup [|gn — ¢ |

< 2e. o

Thus (5.7) holds.

4. Let us prove the o-additivity of ¢. Take any sequence of disjoint
sets {A;}. By the finite additivity of ¢

A

J

—

-
ICe

J Jj=N+1

N
> (4,
N
> (4,

def

4 )+ ¢ G A
4 )

+rN

<
—

for any finite N . Continuity (5.7) implies that rny — 0 as N — oco.
Hence letting N — oo we derive that

¢

J

A | =Y 6(4)).
j=1

L3

5. We claim that
|l — pnll =0 as n — oco.

Indeed, take any ¢ > 0. Utilise the Cauchy condition and fix N, such
that
lpn — dmll <& V¥n,m > N..

Then due to (5.6) for any finite disjoint partition of

Q=FU---UEy,



14.

15.

16.

17.

18.

we have

J
> 16n(E)) = dm(Ej)| <& Vn,m > N..
j=1

Since J is finite, we let m — oo to obtain that
J
D 16n(Ey) = ¢(Ej)| <& Vn>N..
j=1

Taking supremum over all partitions of 2 and again using (5.6), discover
that ||¢, — ¢|| <e forall n>N.. O

Prove that i in (5.2) is an isometric map from L' into M. That is, show
that

gl =1 fllze-
Prove that L' C M (more precisely i(L') C M) is a closed subspace.

Absolute continuity and singularity of charges with respect to a
measure. Let (9, A) be a fixed o -algebra.

In this section by p we denote a fixed measure on (£2,.4) . Thus
p: A—[0,00], and p ¢ M in general.

We say that ¢ € M is absolutely continuous with respect to p, and write

O < p,

if for any A € A the implication p(A) =0 = ¢(A) =0 holds. We say
that ¢ is singular with respect to p, and write

oLy,

if there exists Z € A such that u(Z) =0 and ¢(A) = ¢(ZN A) for any
AecA.

Let v be a measure with the density (recall the definition from chapter
2)
dv
Z_f>0
m f=
for some f € L'(Q,u). Prove that v € M and v < p.
Let ¢ € M. Prove that ¢ < |¢@].

Let peM, Se A and p(S)=0. Prove that (¢.S) L p.

We state some properties of absolutely continuous and singular signed
measures, which follow more or less directly from the definitions.



19.

20.

Proposition 5 Let p be a measure on a o -algebra (2, A) .
(i) Define

Mo(p) = {P€M: ¢ < p},

My(p) = {peM: o Lpu}.
Then Mg (1) CM are closed subspaces of M such that

Mo (p) N Ms(p) = {0}
(i) For any ¢ € M

{o< (W} & {p"<(L)pand ¢~ < (L) p}
& {lol < (L) p}-

Prove the proposition.

Closed subspaces of Banach spaces, direct topological sum of subspaces,
B-2, Theorem 9.

We explore the new notions by giving the equivalent e-§ -type conditions
for the absolute continuity and singularity of charges.

Theorem 6 Let u be a measure, on a o -algebra (2, A), and let
P eEMQ,A). Then ¢ < p if and only if for any € > 0 there exists
0 >0 such that

H(A) < 5= B(4)] < e

forany Ae A.

Proof. By the Jordan decomposition it is enough to prove the theorem for
positive ¢ € M.

Assume that ¢ < 1, ¢ > 0. Seeking a contradiction suppose that the e-0
condition does not hold. Consequently there is a fixed £y > 0 such that
for any § > 0 there exists As € A for which u(As) <0 and ¢(As) > eo .
Test this statement with § =277 and obtain a sequence 4; € A, j =1,
2, ..., such that

H(Ay) <277, B(4;) > =,

Define the sets

They form a decreasing sequence F; O Fy D --- with

#(Er) > ¢(Ax) > €0

10



and the limit set -
E= ﬂ E.
k=1

By the continuity of measures on the monotone sequences

p(E) = lim p(By) < lim (2277 | =0,
j=k
and
¢(E) = lim ¢(Ey) > eo,
k—oo
which contradicts ¢ < .
Prove the other direction in the theorem [

Prove that the theorem does not hold in general if ¢ is a (infinite) mea-
sure.

Where in the proof did we use that |¢| is finite?

Theorem 7 Let p be a measure on a o -algebra (Q,A), and let
o eMQ,A). Then ¢ L u if and only if for any € > 0 there exists
E. € A such that

wE) <e and [9|(Q\ E:) <e.

Proof. Suppose that the e-condition in the theorem holds. Let us show
that ¢ L p. Indeed, take € =277 to obtain a sequence E; € A, j=1,

2, ..., such that u(E;) <27/ and |¢|(ES) <277 . Define
E =limsup Ej.
Jj—oo

By the Borel-Cantelli’s lemma p(E) = 0. At the same
B =liminf 27 = | ) (] B,
k=1j=k
Notice that for any k
ol | () E5 | <Iel(Bj) =277 forall j>Fk.
j=k

Consequently E° is the countable union of null sets and hence |¢|(E°) =
0.

Prove the other direction in the theorem. O

11



21. The statements formulated above naturally lead to some questions. For
example:

is it true that any positive charge ¢ < v, ¢ > 0, can be written
as d¢ = |f|dy with some f € L'?

In view of the first part of the proposition, it is natural to ask:

does the direct sum decomposition M = M, (u) & Ms(u) hold
for the Banach space M and any measure p?

The answers to these questions are negative for a general infinite measure
1. However, the answers are positive for finite and, more generally, o -
finite measures .

22. Decompositions of charges on o -finite spaces. A measure p on a
o -algebra (9,.A) is called o -finite if there exists a sequence of sets {{;}
such that

Q=[]0

3

s Qj €A, M(Qj) < oo Vi

j=1

Any finite measure is o -finite. The Lebesgue measure A" on (R",L,)
is o -finite, but not finite.

23. Is counting measure on 2% o -finite? Is it o -finite on 2B ? (Prove your
statements/examples.)

24. The central result describing the structure of a charge in terms of a o -
finite measure is the following Lebesgue and Radon-Nikodym theorems.
The theorems are new and highly nontrivial even if all measures in their
statements are positive and finite.

Theorem 8 Let p be a o -finite measure on a o -algebra (2, A), and

let o € M(Q,A).
(a) There exist unique a,0 € W, such that
aLy, olypy ¢=a+o. (5.8)

(b) There exist f € LY (Q,pn) and Z € A with u(Z) =0, such that
alA) = / fdu, o(A)=9¢(ANZ) VAec A (5.9)
A

(c) If the charge ¢ is positive (that is, if ¢ is a finite measure) then
a,0>0, f>0 p-ae in (58), (5.9).

The decomposition (5.8) is called the Lebesgue decomposition of ¢ into

the absolutely continuous and singular parts with respect to u. A corol-
lary of the Lebesgue decomposition is the following theorem.

12



25.

26.
27.

Theorem 9 Let p be a o -finite measure on a o -algebra (Q, A), and
let ¢ € M(N,A). Suppose ¢ < p. Then there exists a unique f € L*
such that

$(A) = /A fdu, VA€ A (5.10)

The function f in (5.10) is called the Radon-Nikodym derivative of the
absolutely continuos charge ¢ with respect to p. We will refer to the
combined statement of the two theorems as the Radon-Nikodym decom-
position theorem. Thus the Radon-Nikodym decomposition holds, if one
measure is finite (then it can even change sign), and the other is o -finite.
The decomposition does not hold if y is a general (infinite) measure. Later
we also establish the Radon-Nikodym decomposition for a pair (¢, ) of
positive o -finite measures.

Prove that the Banach space direct sum decomposition
M= Ma(p) ® Ms(p)
holds for any o -finite p. Moreover, for any ¢ € M one has
o]l = llall + llo]l

with a, o from (5.8). To prove the equality use expression (5.6) for the
total variation measure. Hence, the Banach space projections

Pys:M— Mgy (1)

¢o+— a,0

both have norm 1. Because of this the Lebesgue decomposition is fre-
quently called the orthogonal decomposition of M with respect to u , de-
spite the absent of an inner product in M.

Accepting Theorem 8 prove Theorem 9.

Proof of Theorem 8. 1.  Uniqueness in part (a) is straightforward.
Indeed, if a1 +01 = ag + 02 with a1 2 € My(p), 012 € Ms(u), then
o1 —ag =02 — o071 . Hence aq 5 is simultaneously singular and absolutely
continuous with respect to p. So, a3 —as =0.

2. Because of the Jordan decomposition ¢ = ¢+ — ¢~ , we just need to
establish the rest of the theorem (the existence in (a), (b), and (c)) for
positive ¢ . Thus in what follows we assume ¢ € M, ¢ > 0.

3. We first prove the theorem assuming that g is finite. Then we will
treat the o -finite case using a simple limit argument.

Fix any ¢t > 0. Let us discretise ¢ with respect to p with step ¢. This
discretisation procedure is the core of the proof of the existence of f in
(5.9). Since ¢, € M then

¢ —tueM.

13



Let P(t), N(t) be a Hahn decomposition of 0 with respect to ¢ —tu .
Similarly, let N(jt), P(jt) be Hahn decompositions with respect to the
charges ¢ — jtu, =1, 2, .... Clearly

N({t)Cc N(@2t)C -,

Pt)DP2t)D---.

Define the sets

A1 = N(),
Aj = N(@GO\N((G—-1))
= N@EONP((G-1t), j=2.3,...,
and .
B={JNG| =) PG
Jj=1 j=1

They form the disjoint partition of €2,
Q=BUA UAyU--- .
Also forany F € A and all j=1,2,...
G- V(BN A) < G(ENA) < jtu(ENA)  (5.11)
(heuristically " (7 — 1)tp < ¢ < jtp on A;").
Notice that the definitions imply that
o > 6(B) > ¢(P(jt)) > jtu(B)
for any j > 1, which is possible only if u(B) =0. We set

def
o= ¢LB,

so o L p. In order to write the key estimate for ¢ we define

o0

Je= Z(] — D)txa,,

j=1

or, in other words,

) ={ U7 TE

For any F € A combine the expansion

$(E) = ¢(ENB) + Y ¢(ENAy),

j=1

14



with (5.11) to discover that
oB)+ [ fdn<oB)<o®)+ [ frdnr@.  G12)
E E

4. Consider the discretisation (5.12) with steps t =27", n=1,2,...,
and denote the corresponding f; by f,. By construction f, > 0, and
from (5.12) we have f, € L'(Q, ). We claim that the sequence {f,} is
Cauchy in L'. In fact, for all m and n deduce from (5.12) that

/fndu < /fmdu+2—’”||m\,
E E

/h@té/h@”ﬂw
E FE

for any E € A. Hence

/E(fn - fm)du‘ <max(27",27")||u|| VE € A.

Since E here is arbitrary, we can take F = {f, — f,, > 0(<0)}. Thus
lfn = fllLr @) — 0, n,m — oc.

By the completeness of L' there exists f € L*(£, u) such that

Ilfn = fllor@u —0asn—oo, f>0p-ae.

After taking the limit as n — oo in (5.12) with ¢ = 27" we discover that

d)(E):U(E)—i-/Efdu VE € A.

Thus the theorem holds with Z =B, 0 =¢.Z, and da = fdu, f >0,
f € LY, ), provided that ¢ > 0 and |u|| < co. It is left to remove
the last requirement.

5. Suppose that ¢ >0 and p is o -finite. Then we can write
Q= U Q;, Qj are disjoint, p(€;) < oo.

For any §2; the theorem has already been proved. Hence we have a
sequence of functions

{fj}7 fj € L1(97M)7 fj > 0; fj‘Q\Qj :O7

and a sequence of disjoint sets

{Zj}7 Zj C ij ,U'(Zj) =0,

15



28.

29.

30.
31.

such that for any F € A and any j the identity
P(ENQ) =o(ENZ)) +/Efj dp

holds. Use the o -additivity of ¢ with the Lebesgue monotone conver-
gence theorem to sum over j. Obtain the set Z = Z; U Z, U .-+ with
u(Z) =0 and measurable f >0, such that

o(E)=oEN2)+ [ fan
E
holds for all £ € A. We can take E = to discover that f € L*(Q, ).
O

Generalisations to pairs of o -finite measures. Above we have de-
veloped a detailed theory for the relation between a signed measure ¢,
|¢]| < oo, and a o -finite measure p. Now we try to understand which
parts of the theory remain true when we replace the charge ¢ by a o -
finite measure v . This generalisation is important for the applications.
Hence the setting for this part is:

let (2, 4) be a o-algebra, and let p,v > 0 be a pair of o -
additive measures on it.

The definition of the absolute continuity v < p and the singularity v L u
are the same as for the charges. Prove that Theorem 6 does not hold for a
pair of o -finite measures in general. Prove that Theorem 7 holds for the
o -finite ¢, u > 0.

Prove that v L p< pu L v for v,u>0.

Let us state the Lebesgue-Radon-Nikodym theorems in the new generality.

Theorem 10 Let v, pu be o -finite measures on (2, A), and let v < .
Then there exists a measurable function f >0 such that

v(E) :/ fdu VE € A
E
Moreover, f is uniquely determined p -a.e..

Theorem 11 Let v,u be o -finite measures on (2, A) . Then there exist
measures o < (i, o L p, such that

V=«a+o.

Moreover, the measures o, o are unique.

Accepting the corresponding results for the finite measures prove the the-
orems.
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