
6 Classical dualities and reflexivity

1. Classical dualities. Let (Ω,A, µ) be a measure space. We will describe
the duals for the Banach spaces Lp(Ω) .

First, notice that any f ∈ Lp′ , 1 ≤ p ≤ ∞ , generates the linear functional
Ff on Lp by the rule

Ff (u) =
∫

Ω

uf dµ, u ∈ Lp.

Indeed, by the Hölder inequality

|Ff (u)| =
∣∣∣∣∫

Ω

fu dµ

∣∣∣∣
≤ ‖f‖p′‖u‖p.

Thus ‖Ff‖∗ ≤ ‖f‖p′ . Consequently the mapping

Ip : Lp
′
−→ Lp∗

f 7−→ Ff ,

1 ≤ p ≤ ∞ , is a one to one bounded linear operator with

‖Ip‖B(Lp′ ,Lp∗) ≤ 1.

The classical spaces lp , 1 ≤ p ≤ ∞ , fit in this picture since

‖f‖lp = ‖f‖Lp(N,µc)

for any sequence f : N → C . Here µc is the counting measure. The
classical duality theorem due to Riesz states that under some additional
(rather general) assumptions, Ip is a linear bijective isometry for p <∞ .

2. Theorem 1 Let (Ω,A, µ) be a σ -finite measure space. Then for 1 ≤
p <∞ the map Ip is a linear bijective isometry for Lp

′ ∼= Lp∗ . That is,
for any φ ∈ Lp∗ there exist f ∈ Lp′ , such that

〈φ, u〉 =
∫

Ω

uf dµ ∀u ∈ Lp,

and ‖φ‖∗ = ‖f‖p′ .
The Riesz representation theorem does not hold for p =∞ . The relations

〈Ipf, u〉 =
∫

Ω

uf dµ, ∀f ∈ Lp
′
, u ∈ Lp,

〈φ, u〉 =
∫

Ω

uI−1
p (φ) dµ ∀φ ∈ Lp∗, u ∈ Lp,

are useful for the problem solving.
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3. For the classical spaces of sequences we have a substitute for the Riesz
representation theorem in the case p = ∞ . Every sequence in l1 gener-
ates a bounded linear functional on l∞ . For the narrower space c0 ⊂ l∞
this procedure gives all linear functionals.

Theorem 2 The map I0 : l1 → c∗0 given by

〈I0f, u〉 =
∞∑
n=1

unfn

is a linear bijective isometry.

4. Reflexivity. Let X = (X, ‖ · ‖) an arbitrary normed space over C (or
R ). For a fixed x ∈ X consider the map

Fx : X∗ −→ C

φ 7−→ 〈φ, x〉.

Clearly Fx ∈ (X∗)′ . Moreover, by the dual expression of the norm

‖Fx‖X∗∗ = sup
‖φ‖∗=1

Fx(φ)

= sup
‖φ‖∗=1

〈φ, x〉

= ‖x‖.

Hence the mapping

ican : X −→ X∗∗

x 7−→ Fx

is a linear isometry, ‖icanx‖∗∗ = ‖x‖ . Thus we obtain a canonical isomet-
ric embedding of X into X∗∗ .
The standard (somewhat confusing) way of stating this is

"X is a subspace of X∗∗ ".

What is really meant by this, is the canonical identification X ∼= ican(X)
with the subspace ican(X) ⊂ X∗∗ .

5. A Banach space X is called reflexive if the canonical isometry ican is an
onto mapping (and hence ican is a linear bijective isometry X ∼= X∗∗ ).
In general

ican(X) ⊂ X∗∗, ican(X) 6= X∗∗,

is a proper algebraic subspace. Indeed, X∗∗ is complete as a dual of a
normed space. Thus

ican(X) = X∗∗ =⇒ X is complete.
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However, the completeness is not sufficient for the reflexivity. For many
Banach spaces arising in the applications the inclusion is strict. Observe
that

X is complete =⇒ ican(X) is a closed subspace of X

(why?).

6. The reflexivity is a property of the map ican . According to the definition
a mere existence of a linear bijective isometry X ∼= X∗∗ is not enough for
reflexivity. Therefore the standard notation for the reflexivity,

X = X∗∗,

is somewhat confusing. To prove that X is reflexive one must in fact
prove that

∀F ∈ X∗∗ there is xF ∈ X such that
F (ω) = 〈ω, xF 〉 ∀ω ∈ X∗.

Reflexivity happens to be equivalent to other important properties of Ba-
nach spaces.

7. For problem solving the following formulae are useful. The isometric in-
clusion

ican : X −→ X∗∗

is defined for any normed X , and

〈ω, x〉 = ican(x)(ω) ∀ω ∈ X∗, ∀x ∈ X. (6.1)

If X is reflexive then i−1
can is defined everywhere on X∗∗ , and

F (ω) = 〈ω, i−1
can(F )〉 ∀ω ∈ X∗, ∀F ∈ X∗∗. (6.2)

8. To illustrate typical arguments for dealing with the reflexivity let us prove
that for a Banach space X

X is reflexive⇐⇒ X∗ is reflexive.

We denote vectors in X by u, v, . . . , functionals in X∗ by φ, ω, . . . ,
functionals in X∗∗ by F,G, . . . , and functionals from X∗∗∗ by Ω,Ψ, . . . .

⇒ Fix Ω0 ∈ X∗∗∗ . Let us find ω0 ∈ X∗ such that

Ω0(F ) = F (ω0) ∀F ∈ X∗∗.

In fact, consider the map Ω0 ◦ ican : X → C and set ω0 = Ω0 ◦ ican . Then
ω0 ∈ X∗ and

〈ω0, u〉 = Ω0(icanu) ∀u ∈ X.

3



But ican is a bijection. Hence we can test the last formula with u =
i−1
can(F ) to derive that

〈ω0, i
−1
can(F )〉 = Ω0(F ) ∀F ∈ X∗∗.

By (6.2)
〈ω0, i

−1
can(F )〉 = F (ω0),

and ω0 is the desired functional.

⇐ Seeking a contradiction suppose that ican(X) 6= X∗∗ . Then since X
is Banach, ican(X) is a proper closed subspace of X∗∗ . Use the Hahn-
Banach theorem to find Ω0 ∈ X∗∗∗ such that

Ω0|ican(X) = 0, Ω0 6= 0.

Utilise the reflexivity of X∗ to find ω0 ∈ X∗ , such that

Ω0(F ) = F (ω0) ∀F ∈ X∗∗,

and therefore ω0 6= 0 . Test the last formula with F = ican(u) , u ∈ X ,
to derive that

0 = Ω0(icanu)
= (icanu)(ω0)
= 〈ω0, u〉

for all u ∈ X . Thus ω0 = 0 , which is a contradiction.

9. Suppose (Ω,A, µ) is a σ -finite measure space. Let us prove that Lp =
Lp(Ω, µ) is reflexive provided 1 < p <∞ .

In fact, fix any F ∈ (Lp∗)∗ . We must find f ∈ Lp , f = fF , such that

F (ξ) = 〈ξ, f〉 ∀ξ ∈ Lp∗.

Recall the isometric identification Lp
′ ∼= Lp∗ through the map

Ip : Lp
′ → Lp∗ ,

〈ξ, f〉 =
∫

Ω

I−1
p (ξ) g dµ ∀g ∈ Lp, ξ ∈ Lp∗.

Hence F ◦ Ip : Lp
′ → C is linear and bounded. But then we can utilise

the identification Lp ∼= (Lp
′
)∗ . Therefore for our F ◦ Ip ∈ Lp

′∗ we find a
unique f ∈ Lp such that

(F ◦ Ip)(u) =
∫

Ω

uf dµ ∀u ∈ Lp
′
.
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Since Ip is a bijection we can test the last formula with u = I−1
p (ξ) ,

ξ ∈ Lp∗ . We derive that

F (ξ) =
∫

Ω

I−1
p (ξ) f dµ

= 〈ξ, f〉

for all ξ ∈ Lp∗ . �

10. Let us show that the space c0 is not reflexive.That is, we must show that
the map ican : c0 → c∗∗0 is not a bijective isometry.

What is the easiest way to see that ican : X → X∗∗ fails to be an iso-
metric bijection? This failure clearly holds if for some reason there are
no linear bijective isometries between X and X∗∗ . Separability is one
of the simplest invariants of Banach spaces with respect to linear bijective
isometries. Hence, if X is separable but X∗∗ is not, there can be no
linear bijective isometry between them. In particular ican cannot be one.

Now, seeking a contradiction suppose that c0 is reflexive. It is separable.
Therefore c∗∗0 must be separable. At the same time c∗0

∼= l1 and l1∗ ∼=
l∞ . It is easy to see that X ∼= Y ⇒ X∗ ∼= Y ∗ (indeed, if the isometry
m provides X ∼= Y , then m∗ provides Y ∗ ∼= X∗ ). Thus c∗∗0

∼= l∞

(write the isometry map explicitly using the classical duality maps Ip ).
But then c∗∗0 is not separable since l∞ is not separable. �

7 Analysis in C(K)

1. In this section we will deal with measures and functions on a compact
topological space K .

The results that we establish, admit generalisations (in a suitably cor-
rected form) to locally compact spaces. We shall not describe these exten-
sions here.

2. Stone-Weierstrass and related theorems. Let K be a compact
space.

3. Riesz representation theorem. Let us first describe the motivating
problem.

Suppose K is a compact space. Let C(K) be the space of all real valued
continuous functions on K . We know that C(K) is a Banach space over
R .

As any topological space, K has a natural σ -algebra. Namely, it is the
Borel σ -algebra generated by the topology of K ,

B(K) = σ({all open subsets of K}).
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Consider the Banach space M = M(K,B(K)) of all charges on (K,B(K))
with the total variation norm

‖φ‖ = |φ|(K), φ ∈ M.

For example, the Dirac mass δp ∈ M for any p ∈ K .
Any ν ∈ M generates a bounded linear functional on C(K) via the
integration. Indeed, let

ν = ν+ − ν−, ν± ≥ 0,

be the Jordan decomposition of ν . That is ν+ = νxP , ν− = −νxN ,
where P,N are the positive and the negative sets in the Hahn decompo-
sition of K with respect to ν . Since any u ∈ C(K) is B(K) -measurable
(why?), we may write

Fν(u) =
∫
K

u dν+ −
∫
K

u dν−. (7.1)

The inequality

|Fν(u)| ≤
∣∣∣∣∫
K

u dν+

∣∣∣∣+
∣∣∣∣∫
K

u dν−
∣∣∣∣

≤ max
K
|u|
(
ν+(K) + ν−(K)

)
= ‖u‖C(K)‖ν‖

implies that Fν ∈ C(K)∗ with ‖Fν‖∗ ≤ ‖ν‖ .
It is easy to see that ‖Fν‖∗ = ‖ν‖ for ν ∈ M , ν ≥ 0 (why?).
These considerations raise the natural questions: is it true that ‖Fν‖∗ =
‖ν‖ ? does any functional in C(K)∗ come from some Borel charge on K ?

4. The classical Riesz representation theorem provides the complete answers
in the case of K = [a, b] , a, b ∈ R , or more generally for a compact set
K ⊂ Rn .

5. Let K be a compact space. A linear functional Φ ∈ C(K)′ is called
positive if

f ∈ C(K), f ≥ 0 on K =⇒ 〈Φ, f〉 ≥ 0.

Positive functionals are continuous (why?).

6. The classical Riesz representation theorem is the following statement.

Theorem 3 Let K ⊂ Rn be a compact set. Let M = M(K,Bn) be the
space of Borel charges on K . The map

i : M −→ C(K)∗

φ 7−→ Fφ

is a linear bijective isometry. If φ is a positive functional, then i−1φ is
a finite positive measure.
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In particular, the theorem states that for any positive functional Φ ∈
C(K)∗ there exists a positive Borel measure µ on K such that

µ(K) = ‖Φ‖C(K)∗ ,

and
〈Φ, u〉 =

∫
K

u dµ ∀u ∈ C(K).

Even in the case K = [a, b] the proof of the theorem is nontrivial. We
will prove the more general theorem below.

7. Let ν be a positive Borel measure in Rn . By the Riesz theorem the
following dual expression for the measure of a compactum K ⊂ Rn holds:

ν(K) = sup
{∫

K

u dν : u ∈ C(Rn), ‖u‖C ≤ 1
}
.

As any dual expression it can be useful in applications.

8. The extension of the classical Riesz theorem to general compact spaces
reveals some subtle issues for Borel measures on (compact) topological
spaces.

We will prove the general Riesz representation theorem for Hausdorff com-
pact space K . This is an additional restriction on K . The basic example
of Hausdorff compact spaces is a compact metric space. Many applica-
tions require only the metric space case. We will see that the general case
is subtler.

9. Let K be a compact space. A positive Borel measure µ is called Borel
regular (or regular with respect to the topology of K ) if for every E ∈
B(K)

µ(E) = inf{µ(O) : E ⊂ O – open}
= sup{µ(F ) : E ⊃ F – closed}

A charge φ ∈ M(K,B(K)) is Borel regular if its total variation |φ| is
a Borel regular measure. This is equivalent to φ± being regular in the
Jordan decomposition φ = φ+ − φ− , φ± ≥ 0 .

For example, if K ⊂ Rn then λnxK is Borel regular. We proved that
during our study of the Lebesgue measure.

We define
M0 = {φ ∈ M : φ is regular} .

10. Surprisingly, there exist compact Hausdorff spaces K for which M0 6= M .
On the positive side the following statement holds.
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Theorem 4 Let K be a compact space. Then M0(K) is a closed sub-
space of the Banach space M(K) .
Let M be a compact metric space. Then M0(M) = M(M) .

Thus, every Borel measure on a compact metric space is Borel regular.
This is not true in a general compact Hausdorff space.

11. The exact generalisation of the classical Riesz theorem holds for a compact
metric space.

Theorem 5 Let M be a compact metric space. The map

i : M −→ C(M)∗

φ 7−→ Fφ

is a linear bijective isometry. If φ is a positive functional, then i−1φ is
a finite positive measure on M .

Thus, for a compact metric space, the dual of the space of continuous
functions can be identified with the space of Borel charges.

12. We will prove the following version of the Riesz theorem, which implies
the previous statements.

Theorem 6 Let K be a compact Hausdorff space.

(a) For any positive Λ ∈ C(K)∗ there exists a unique Borel regular
measure µ ∈ M0 such that

〈Λ, u〉 =
∫
K

u dµ ∀u ∈ C(K). (7.2)

Moreover, ‖Λ‖C(K)∗ = ‖µ‖ .
(b) The map

i : M0 −→ C(K)∗

ν 7−→ Fν

defined by (7.1) is a linear bijective isometry.

Thus, for compact Hausdorff spaces, the dual of the space of continuous
functions can be identified with the space of Borel regular charges.

13. Notice the following interesting consequence of the theorem. Take any
non-regular measure ν ∈ M(K) . It still generates the positive functional
Fν ∈ C(K)∗ according to (7.1). Apply now the Riesz representation
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theorem to Fν . We derive, that for any Borel measure ν on the compact
Hausdorff K , there exists a regular measure ν0 on K , such that∫

K

u dν =
∫
K

u dν0 ∀u ∈ C(K).

Thus, as far as the action on continuous functions is concerned, all Borel
measures on a compact Hausdorff space can be assumed to be regular.

14. The proof of Theorem 6 will require Urysohn’s theorem (and related state-
ments) for compact Hausddorff spaces. In the case of Stone-Weierstrass
theorem we needed the Hausdorff axiom only for the case of locally com-
pact spaces. For the Riesz representation theorem the Hausdorff axiom is
used even for the compact spaces.

In what follows K denotes a fixed
compact Hausdorff space.

Let u ∈ C(K) . Define the support of u by writing

suppu = {x ∈ K : u(x) 6= 0}.

Thus suppu is a closed set. For u ∈ C(K) we write

u ≺ O

if O ⊂ K is open, 0 ≤ u ≤ 1 , and suppu ⊂ O . We write

F ≺ u

if F ⊂ K is closed, 0 ≤ u ≤ 1 , and u|F = 1 .

15. The Urysohn’s lemma asserts that for F ⊂ O ⊂ K , F closed, O open,
there exists ϕ ∈ C(K) such that

F ≺ ϕ ≺ O.

16. We will need a slightly more general statement called the partition of unity
lemma. For a closed (and hence compact) F ⊂ K and open sets O1,...,N ,
such that

F ⊂ O1 ∪ · · · ∪ON ,

there exist N functions ϕi ∈ C(K) , such that

ϕi ≺ Oi i = 1, . . . , N,

and
F ≺ ϕ1 + · · ·+ ϕN .

The functions ϕ1,...,N are called the partition of unity on F corresponding
to the cover O1,...,N .
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If N = 1 then the statement is just the original Urysohn’s lemma. The
general case is derived from it by an inductive argument.

The partition of the unity will be the main technical tool in the proof of
the Riesz theorem.

17. Proof of Theorem 6, part (a). 1. Fix Λ ∈ C(K)∗ . We use Λ to define
an outer measure on 2K . First, for an open O ⊂ K set

λ(O) def= sup {〈Λ, u〉 : u ≺ O} .

Then, for any A ⊂ K write

λ(A) def= inf {λ(O) : A ⊂ O – open} . (7.3)

If A is open we get the same value since λ is monotone with respect to
inclusion. Since K is compact

λ(A) ≤ 〈Λ, 1〉 <∞.

We shall prove that
λ : 2K −→ [0,∞)

enjoys the following properties

(a) λ(∅) = 0 (triviality);

(b) A1 ⊂ A2 =⇒ λ(A1) ≤ λ(A2) (monotonicity);

(c) for an arbitrary sequence Aj , j = 1, 2, . . . ,

λ

 ∞⋃
j=1

Aj

 ≤ ∞∑
j=1

λ(Aj) (7.4)

(semiadditivity).

In other words, λ is an outer measure on K .

2. Indeed, the triviality and monotonicity clearly hold. Let us prove
semiadditivity (7.4).

First, we claim that for open O1,2

λ(O1 ∪O2) ≤ λ(O1) + λ(O2). (7.5)

Indeed, take any u ≺ O1 ∪ O2 . Thus the compactum suppu is covered
by O1,2 . Let ϕ1,2 be the partition of unity on suppu subordinated to
this cover. Then u = uϕ1 + uϕ2 with uϕi ≺ Oi . Hence

〈Λ, u〉 = 〈Λ, uϕ1〉+ 〈Λ, uϕ2〉
≤ λ(O1) + λ(O2).
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Maximising over u we derive (7.5).

Next, we establish (7.4). Fix any ε > 0 . For any Aj use (7.3) to find an
open Oj ⊃ Aj such that

λ(Oj) < λ(Aj) +
ε

2j
.

Then
∞⋃
j=1

Aj ⊂ O =
∞⋃
j=1

Oj ,

and by the monotonicity

λ

 ∞⋃
j=1

Aj

 ≤ λ(O).

To estimate λ(O) take any u ≺ O . By the compactness of suppu , there
exists a finite N , such that O1,...,N covers suppu . Let ϕ1,...,N be the
partition of unity on suppu subordinated to this cover. Then

u = uϕ1 + · · ·+ uϕN ,

uϕi ≺ Oi.

Consequently

〈Λ, u〉 = 〈Λ, uϕ1 + · · ·+ uϕN 〉
= 〈Λ, uϕ1〉+ · · ·+ 〈Λ, uϕN 〉
≤ λ(O1) + · · ·+ λ(ON )

<

∞∑
j=1

λ(Aj) + ε.

Maximising over u , we deduce that

λ(O) ≤
∞∑
j=1

λ(Aj) + ε

for any ε > 0 . Hence (7.4) follows.

3. It is temting at this stage to launch the Caratheodory construction
for the outer measure λ in order to obtain desired measure in (7.2). Such
aproach works well in the case of a compact metric space K . The case
of the compact Hausdorff space causes some difficulties. We approach it
without explicitly appealing to the Caratheodory construction.

Define A to be the collection of all E ⊂ K for which

λ(E) = sup{λ(F ) : E ⊃ F – closed}.
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We shall prove that A is a σ -algebra. The proof is long, and we brake
it into several steps.

4. We claim that all closed sets are in A , and that

λ(F ) = inf{〈Λ, u〉 : F ≺ u} for F closed. (7.6)

Let F be a closed set. Clearly F ∈ A by the monotonicity of λ . To
prove (7.6) take any ε > 0 . Use (7.3) to find Oε ⊃ F , such that

λ(F ) > λ(Oε)− ε.

Use Urysohn’s lemma to find f ∈ C(K) such that F ≺ f ≺ Oε . Deduce
at once that

λ(F ) > 〈Λ, f〉 − ε
≥ inf{〈Λ, u〉 : F ≺ u} − ε

for any ε > 0 .

To prove the opposite inequality fix any u ∈ C(K) , F ≺ u . For any
ε > 0 the set

Oε = {z ∈ K : u(z) > 1− ε}

is open, and F ⊂ Oε . Observe that

v ≺ Oε =⇒ v ≤ u/(1− ε).

But then by the positivity of Λ

λ(F ) ≤ λ(Oε)
= sup{〈Λ, v〉 : v ≺ Oε}

≤ 1
1− ε

〈Λ, u〉

Minimising over such u derive

λ(F ) ≤ 1
1− ε

inf{〈Λ, u〉 : F ≺ u}.

Now (7.6) follows since ε is arbitrary.

5. Let us show that all open sets are in A .

Indeed, fix an open set O . By the monotonicity of λ

λ(O) ≥ sup{λ(F ) : O ⊃ F – closed}.

To prove the opposite inequality, fix any ε > 0 . Find uε ≺ O , such that

λ(O) < 〈Λ, uε〉+ ε.
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Notice that the estimate

〈Λ, uε〉 ≤ λ(suppuε)

holds. Indeed, for an arbitrary open V , V ⊃ suppuε , we have uε ≺ V .
Therefore

〈Λ, uε〉 ≤ λ(V ),

and the desired estimate follows by (7.3) after minimising over V . Thus

λ(O) < λ(suppuε) + ε

≤ sup{λ(F ) : O ⊃ F – closed}+ ε.

Since ε is arbitrary, we conclude that O ∈ A .

6. Let F1,2 be compact sets, F1 ∩ F2 = ∅ . We claim that

λ(F1 ∪ F2) = λ(F1) + λ(F2).

Due to semiadditivity (7.4) we just need to show that

λ(F1 ∪ F2) ≥ λ(F1) + λ(F2)

To prove the latter, fix any ε > 0 . Utilise (7.6) to find uε ∈ C(K) ,
F1 ∪ F2 ≺ u , such that

λ(F1 ∪ F2) ≥ 〈Λ, uε〉 − ε.

Next apply Urysohn’s lemma to find ϕ ∈ C(K) such that ϕ|F1 = 1 ,
ϕ|F2 = 0 . Therefore F1 ≺ uεϕ , F2 ≺ uε(1− ϕ) , and by (7.6)

λ(F1 ∪ F2) ≥ 〈Λ, uε[ϕ+ (1− ϕ)]〉 − ε
= 〈Λ, uεϕ〉+ 〈Λ, uε(1− ϕ)〉 − ε
≥ λ(F1) + λ(F2)− ε.

Letting ε→ 0 deduce that the finite additivity on the compact sets holds.

7. Let Ej ∈ A , j = 1, 2 . . . , be a disjoint sequence. We claim that

∞⋃
j=1

Ej = E ∈ A, (7.7)

and

λ(E) =
∞∑
j=1

λ(Ej). (7.8)

Indeed, fix any ε > 0 . For each Ej by the definition of A we find a
compactum Fj ⊂ Ej , such that

λ(Fj) > λ(Ej)−
ε

2j
.
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Then for any finite N we use the additivity on compact sets to deduce

λ(E) ≥ λ(F1 ∪ · · · ∪ FN )

=
N∑
j=1

λ(Fj)

≥
N∑
j=1

λ(Ej)− ε.

Since ε and N are arbitrary we derive that

λ(E) ≥
∞∑
j=1

λ(Ej).

The opposite inequality holds always due to semiadditivity (7.4). Thus
(7.8) holds. Moreover, taking in the previous argument N = Nε large
enough we deduce that

λ(E) ≥ λ(F1 ∪ · · · ∪ FN ) ≥ λ(E)− 2ε.

A finite union of compact sets is compact. Thus E ∈ A .

8. We claim that

A1,2 ∈ A =⇒ A1 ∪A2, A1 ∩A2, A1 \A2 ∈ A. (7.9)

In other words, A is closed under a finite number of the set theoretic
operations.

To prove this we first establish that for any E ∈ A and any ε > 0 there
exist an open set O and a compact set F such that F ⊂ E ⊂ O , and

λ(O \ F ) < ε. (7.10)

Indeed, by the definition of A we find a compact F and an open O
squeezing E , such that

λ(O)− ε < λ(E) < λ(F ) + ε.

Since O \ F is open we can use the additivity to deduce

λ(F ) + λ(O \ F ) = λ(O) < λ(F ) + 2ε.

Hence (7.10) holds.

Let us prove (7.9). It is enough to show that A1\A2 ∈ A . Fix any ε > 0 .
Squeeze Ai as above: Fi ⊂ Ai ⊂ Oi λ(Oi \Fi) < ε . Notice that F1 \O2

is compact and
F1 \O2 ⊂ A1 \A2.

14



At the same time

A1 \A2 ⊂ O1 \ F2

= (O1 \ F1) ∪ (F1 \O2) ∪ (O2 \ F2).

Therefore by the semiadditivity

λ(A1 \A2) < λ(F1 \O2) + 2ε.

Hence (7.9) holds since ε is arbitrary.

9. Let us summarise what is proved.

(a) (A,K) is a σ -algebra. This follows at once from (7.7) and (7.9).

(b) B(K) ⊂ A since all open and closed sets are in A .

(c) λ is a complete measure on A . This follows immediately from (7.8).
The completeness is obvious from the definition of A .

(d) Define
µ = λ|B(K).

Then µ is a finite Borel measure on K . Directly from the definitions

E ∈ A =⇒ λ(E) = inf{λ(O) : E ⊂ O – open}
= sup{λ(F ) : E ⊃ F – compact}.

Consequently µ is a regular Borel measure.

(e) The completeness of A immediately implies that A is the comple-
tion of B(K) with respect to µ .

10. We have the measure space (K,B(K), µ) , where µ is regular.
Now we establish (7.2) for the integration on this measure space. By the
linearity we just need to show that

〈Λ, u〉 ≤
∫
K

u dµ (7.11)

for all u ∈ C(K) .

To prove (7.11) take any such u . Fix ε > 0 . The set u(K) is compact.
Fix a, b ∈ R such that u(K) ⊂ (a, b) . Divide the interval (a, b) into N
segments of length

|a− b|/N < ε.

Thus a = t0 < t1 < · · · < tN = b .

Define
Ej = {tj−1 < u ≤ tj}, j = 1, . . . , N.
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The sets E1,...,N form a disjoint partition of K . The set {u < tj + ε}
is open. Hence using the regularity of µ we can find open sets O1,...,N

such that

u < tj + ε on Oj ,

µ(Oj) < µ(Ej) +
ε

N

for all j = 1, . . . , N . Sets O1,...,N form a finite open cover of K . Let
ϕ1,...,N be the partition of unity on K subordinated to this cover.

Now, we proceed as follows:

〈Λ, u〉 =
N∑
j=1

〈Λ, uϕj〉 since ϕ1 + · · ·+ ϕN = 1

≤
N∑
j=1

(tj + ε)〈Λ, ϕj〉 since uϕj ≤ (tj + ε)ϕj

≤
N∑
j=1

(tj + ε)µ(Oj) since ϕj ≺ Oj

≤
N∑
j=1

(tj + ε)µ(Ej) +
N∑
j=1

(tj + ε)
ε

N

≤
N∑
j=1

(tj − ε+ 2ε)µ(Ej) + (|b|+ 1)ε

≤
N∑
j=1

(tj − ε)µ(Ej) + 2εµ(K) + (|b|+ 1)ε

≤
∫
K

u dµ+ ε(|b|+ 1 + 2µ(K)) since tj − ε ≤ u on Ej .

Since ε is arbitrary we conclude that (7.11) holds.

11. Let us prove the uniqueness statement in part (a). Suppose the
measures µ̃, µ ∈ M0 both satisfy (7.2). Due to their regularity the equality
µ̃ = µ follows as soon as we prove that

µ̃(F ) = µ(F ) ∀F closed. (7.12)

To prove (7.12) take any closed F ⊂ K . Fix any ε > 0 . Due to the
regularity of µ there exists an open set Oε ⊃ F , such that

µ(Oε) < µ(F ) + ε.

Apply the Urysohn’s lemma to obtain u ∈ C(K) such that F ≺ u ≺ Oε .
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But then

µ̃(F ) =
∫
K

1F dµ̃

≤
∫
K

u dµ̃

= 〈Λ, u〉

=
∫
K

u dµ

≤
∫
K

1Oε dµ

= µ(Oε)
≤ µ(F ) + ε.

Thus µ̃(F ) ≤ µ(F ) for any closed F . Similarly the regularity of µ̃
implies µ̃(F ) ≥ µ(F ) for closed F . Hence (7.12) follows.
12. It is left to prove the isometry property. For positive Λ this is easy.
Indeed, on one hand by (7.2)

‖Λ‖C(K)∗ = sup{〈Λ, f〉 : ‖f‖C(K) ≤ 1}

≤
∫
K

1 dµ

= ‖µ‖.

On the other hand by (7.2) 〈Λ, 1〉 = ‖µ‖ . �

18. The proof of the second part of the theorem heavily relies on the first part,
but still requires some work.

19. Proof of Theorem 6, part (b). 1. Let us prove that i is linear.
If µ1,2 ≥ 0 , then∫

K

f d(µ1 + µ2) =
∫
K

f dµ1 +
∫
K

f dµ2

for any integrable f . Indeed, the equality obviously holds for simple f .
Therefor, general case follows from the definition of the integral.
Next, let ν ∈ M ,

ν = ν+ − ν−

= ν1 − ν2,

ν±, ν1,2 ∈ M , and ν±, ν1,2 ≥ 0 . Consequently ν+ + ν2 = ν− + ν1 , and
for any integrable f∫

K

f dν+ +
∫
K

f dν2 =
∫
K

f dν− +
∫
K

f dν1.
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Thus ∫
K

f dν+ −
∫
K

f dν− =
∫
K

f dν1 −
∫
K

f dν2,

and the value Fν in (7.1) does not depend on the representation of ν as
the difference of two positive measures. The linearity of i now follows,
since for µ, ν ∈ M we can always write

µ+ ν = (µ+ + ν+)− (µ− + ν−).

2. Let us prove that i is injective on M0 . By the linearity we need to
show that its kernel is trivial.

Indeed, let ν ∈ M0 be such that Fν = 0 in (7.1). This means that∫
K

u dν+ =
∫
K

u dν− ∀u ∈ C(K),

where the positive measures ν± ≥ 0 are regular. Aply part (a) to the
positive functionals Fν± and utilise the regularity of ν± to discover that
ν+ = ν− . Hence ν = 0 .

3. Let us prove that i is surjective. Fix any Λ ∈ C(K)∗ . The desired
surjectivity follows at once, provided we find positive functionals Λ± on
C(K) , such that Λ = Λ+ − Λ− . In what follows we construct Λ± .

For u ∈ C(K) , u ≥ 0 , define

Λ+(u) = sup{〈Λ, v〉 : 0 ≤ v ≤ u, v ∈ C(K)}.

It is easy to see that

|Λ+(u)| ≤ ‖Λ‖C(K∗)‖u‖C(K),

and that
Λ+(cu) = cΛ+(u), c ≥ 0.

We also have

Λ+(u1 + u2) = Λ+(u1) + Λ+(u2), ∀u1,2 ∈ C(K), u1,2 ≥ 0. (7.13)

In fact, for any vi ∈ C(K) , 0 ≤ vi ≤ ui , the linearity of Λ implies that

〈Λ, v1〉+ 〈Λ, v2〉 = 〈Λ, v1 + v2〉
≤ Λ+(u1 + u2).

Maximising over v1,2 gives Λ+(u1) + Λ+(u2) ≤ Λ+(u1 + u2) . On the
other hand, for any v ∈ C(K) such that 0 ≤ v ≤ u1 + u2 , we define

v1 = v ∧ u1

v2 = 0 ∨ (v − u1).
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Then 0 ≤ vi ≤ ui , vi ∈ C(K) , and v = v1 + v2 . Hence

〈Λ, v〉 = 〈Λ, v1〉+ 〈Λ, v2〉
≤ Λ+(u1) + Λ+(u2).

Maximising over v produces (7.13).

For an arbitrary u ∈ C(K) write u = u+ − u− , u± ≥ 0 , u± ∈ C(K) ,
and set

Λ+(u) = Λ+(u+)− Λ+(u−).

By (7.13) Λ+(u) does not depend on the decomposition. Hence Λ+ is a
well defined linear functional on C(K) .

If u ≥ 0 , u ∈ C(K) , we also define

Λ−(u) = (−Λ)+(u).

Thus Λ− is also extended to a well defined linear functional on C(K) .
The calculation gives

Λ−(u) = − inf{〈Λ, v〉 : 0 ≤ v ≤ u, v ∈ C(K)}, u ∈ C(K), u ≥ 0.

Thus for any u ∈ C(K) , u ≥ 0 we derive

Λ−(u) = − inf{〈Λ, u〉 − 〈Λ, u− v〉 : 0 ≤ v ≤ u, v ∈ C(K)}
= −〈Λ, u〉+ sup{〈Λ, u− v〉 : 0 ≤ u− v ≤ u, v ∈ C(K)}
= −〈Λ, u〉+ Λ+(u).

Hence Λ = Λ+ − Λ− on positive continuous functions, and therefore on
the entire C(K) .

4. Take any Λ ∈ C(K)∗ . We know that i is bijective. Let ν = i−1(Λ) ,
ν ∈ M0 . Let us prove that

‖Λ‖C(K)∗ = ‖ν‖. (7.14)

Indeed, for any u with ‖u‖C(K) = 1 we derive that

|〈Λ, u〉| ≤
∫
K

|u| dν+ +
∫
K

|u| dν− ≤ |ν|(K).

Thus ‖Λ‖C(K)∗ ≤ ‖ν‖ .
To prove the opposite inequality fix any ε > 0 . Then by the property
of the total variation we can partition K into a finite number of disjoint
pieces A1,...,N , Aj ∈ B(K) , such that

|ν|(K) < ε+
N∑
j=1

|ν(Aj)|.

19



Choose the numbers σj = ±1 such that

N∑
j=1

|ν(Aj)| =
N∑
j=1

±ν(Aj)

=
∫
K

N∑
j=1

σj1Aj
dν

=
∫
K

fε dν

Since ν is regular we can apply the approximation theorem (cf. below)
to the integrable fε . Thus we find a function uε ∈ C(K) such that

‖uε‖C(K) ≤ ‖fε‖C(K)

= 1,

and
‖uε − fε‖L1(K,ν) < ε.

Therefore

|ν|(K) < 2ε+
∣∣∣∣∫
K

uε dµ

∣∣∣∣
= 2ε+ |〈Λ, uε〉|
≤ 2ε+ ‖Λ‖C(K)∗ .

Consequently ‖Λ‖C(K)∗ ≥ ‖ν‖ and (7.14) holds. �

20. Theorem 7 Let K be a compact Hausdorff space, and let µ be a Borel
regular measure on it. Suppose 1 ≤ p <∞ . Then for any ε > 0 and any
f ∈ Lp(K,µ) , there exists a complex valued fε ∈ C(K) such that

‖fε‖C(K) ≤ ‖f‖L∞ and ‖f − fε‖Lp < ε.
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