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1. Introduction

Let G be a semisimple Lie group and � <G a lattice. Following Sarnak [25], a
subgroup � of � is called thin if � has infinite index in � , but is Zariski dense.
Since it is straightforward to exhibit free subgroups of lattices that are Zariski
dense, we shall, in addition insist that a thin group � is finitely generated and
does not decompose as a free product.

There has been a good deal of interest recently in thin groups. This has been
motivated in part by work on expanders, and in particular the so-called affine
sieve of Bourgain, Gamburd and Sarnak [5]. Other recent work that study thin
groups can be found in [13; 14; 15]. We also refer the reader to other papers in
this volume.

The aim of this article is to summarize work in [22; 20; 21], as well as
discussing some other results regarding (sometimes conjectural) constructions of
thin subgroups in lattices.

We begin by outlining our strategy for generating some thin subgroups. We
do this first in broad terms, and then specialize to some cases that we describe in
more detail. In the remainder of this section, � will denote a Fuchsian group (i.e.,
a discrete subgroup of PSL.2;R/) or a Kleinian group (i.e., a discrete subgroup
of PSL.2;C/) of finite covolume, and G a semisimple Lie group not locally
isomorphic to PSL.2;R/ or PSL.2;C/.

Let

Hom0.�;G/D f� W �!G W � is an irreducible representationg

and X.�;G/ the quotient of Hom0.�;G/ under G-conjugation. Then, depending
on G, X.�;G/ is a real or complex algebraic set.

Basic Idea. If X.�;G/ contains a component of positive dimension then look
for specializations that result in integral representations.

In broad terms, integrality is necessary for the image to live in a lattice; however
this does not suffice and subsequent work is usually necessary to arrange the
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image to lie in a lattice of a prescribed Lie group G. Zariski density is typically
fairly simple to arrange. The main issue is exhibiting a certificate to demonstrate
that the image has infinite index; once this is done, the nature of the constructions
here will ensure the free indecomposability of the image.

In general the question of whether the image has infinite index in the lattice
touches on decidability issues. For example, the following question is raised
in [7]: Is the finite presentation problem unsolvable in SL.n;Z/ for some n?
(where one says that the finite presentation problem is solvable if there is an
algorithm that, given a finite set of matrices of SL.n;Z/ generating a finitely
presentable subgroup � of SL.n;Z/ outputs a finite presentation for � .) However
the geometrical constructions offered below give extra information that one can
exploit.

Although this article is for the most part survey, one new result that exploits the
strategy outlined above is the following (we refer to Section 5 for an explanation
of the notation).

Theorem 1.1. Let d be a square-free positive integer and let LDQ.
p

d/ be a
real quadratic number field.

Then the lattice SU.J;OL; �/<SL.3;R/ contains a thin subgroup isomorphic
to the fundamental group of some closed orientable surface of genus � 2.

This result, taken together with [22] and the classification of nonuniform
lattices in SL.3;R/ (see Section 5 for more on this) shows that every nonuniform
lattice inside SL.3;R/ contains a thin hyperbolic surface group.

All the constructions that we outline here produce thin subgroups in nonuni-
form lattices — that is, those lattices � for which G=� has finite volume but is
not compact. Finding thin subgroups in uniform lattices is apparently a good deal
harder. One can certainly attempt to follow the strategy given by the Basic Idea,
but the additional conditions for arithmeticity of uniform lattices thus far seem
prohibitive.

Indeed, it is worth remarking that only recently has the existence of thin
surface subgroups in all lattices in PSL.2;C/ been completed (by the recent
work of Kahn and Markovic [17] in the uniform case and previously in [11] in
the nonuniform case).

2. G D SL.3; R/ and � a cocompact Fuchsian group

We first consider the case where G D SL.3;R/ with � a cocompact Fuchsian
group so that †D H2=� is a closed orientable hyperbolic 2-orbifold. Let j†j
denote the underlying space, kc the number of cone points on † and bc the
number of cone points with cone angle � .



CONSTRUCTING THIN GROUPS 153

For each such � , there is a natural embedding of � ,! SL.3;R/ given by

� < PSL.2;R/Š SO0.2; 1/ ,! SL.3;R/:

Thus the Teichmüller component of X.�;SO0.2; 1// is naturally part of
X.�;SL.3;R//, and determines the Hitchin component X Hit.�;SL.3;R//. It was
proven in [16] that all the characters on this component correspond to dis-
crete and faithful representations of � . In fact, Theorem A of [8] shows
that X Hit.�;SL.3;R// is homeomorphic to a cell of dimension �8�.j†j/C

.6kc � 2bc/, and so unless � is a triangle group of type .p; q; r/ with one of
p, q and r equal 2, then X.�;SL.3;R// will contain a component as in the
Basic Idea.

Moreover we also have (see for example Theorem 2.1 of [22]):

Theorem 2.1. Suppose �� 2X Hit.�;SL.3;R// is not the character of the hyper-
bolic structure.

Then the image �.�/ is Zariski dense in SL.3;R/.

One needs to address the issue of specializations that have images that lie in a
lattice in SL.3;R/, but if this can be arranged then the image is necessarily thin,
since a faithful representation of a Fuchsian group must have infinite index in a
rank two lattice.

2.1. The most obvious lattice in SL.3;R/ is SL.3;Z/ and in [22] we analyzed
the above discussion in much more detail for the case of the triangle group of
type .3; 3; 4/. We proved:

Theorem 2.2. The family of representations of the triangle group

�.3; 3; 4/D ha; b j a3
D b3

D .a:b/4 D 1i

given by

a 7!

0@0 0 1

1 0 0

0 1 0

1A and b 7!

0@1 2�tCt2 3Ct2

0 �2C2t�t2 �1Ct�t2

0 3�3tCt2 .�1Ct/2

1A
are discrete and faithful for every t 2 R.

It follows that for all integral values of t the image groups are subgroups of
SL.3;Z/, and using Theorem 2.1 can be shown to be thin. In fact, this line of rep-
resentations determines a line of characters which embeds into X Hit.�;SL.3;R//,
so that for distinct values of t , the images are nonconjugate.

The proof of this result relies on exploiting the method of [10], which allows
for computation of the representation variety and identifies this component
explicitly. This, together with some Diophantine analysis, yields the curve of
representations defined above.
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2.2. By Margulis’ arithmeticity theorem [23], all lattices in SL.3;R/ are arith-
metic, and in the case of SL.3;R/ the totality of the commensurability classes
of nonuniform arithmetic lattices in SL.3;R/ is described by Witte [28] (this
is discussed in Section 5 below). We now discuss the proof of the result stated
in Section 1. As mentioned, this will provide thin surface subgroups in all
nonuniform lattices in SL.3;R/ (again we refer the reader to Section 5 for
notation).

Theorem 2.3. Let d be a square-free positive integer and let L D Q.
p

d/ be
a real quadratic number field. Then the lattice SU.J;OL; �/ contains a thin
subgroup isomorphic to the fundamental group of some closed orientable surface
of genus � 2.

Proof. The proof is very much in the spirit of [22], applied in this case to the
.3; 4; 4/ triangle group.

We follow the Basic Idea, and so first note that from the discussion above,
X Hit.�;SL.3;R// is again 2-dimensional. Following the analysis in [10; 22],
one gets a description of X Hit.�;SL.3;R//:

a 7!

0BBBBB@
1 1

a1

�

0
.1� v/

.�1Cu/
1

0
.�1Cu�u2C vCuv� v2/

.�1Cu/2
.�uC v/

.�1Cu/

1CCCCCA ;

b 7!

0BBBBBB@

.�1C v/

.�1Cu/
0

b1

�
1� 3uC .2CuCu2/v� 2v2� .�1Cu/

p
D/

.2.�1Cu/2/
1 �1

�b2

2.�1Cu/3
0

.1� v/

.�1Cu/

1CCCCCCA ;

where

D D�7� 4u3
C 4v� 4v2

� 4v3
C 2u.2C 7v/Cu2.�4C v2/;

�D 2
�
2Cu4

� 4vC 5v2
� 3v3

C v4
�u3.3C v/

Cu2.5� vC 2v2/�u.4� 2vC v2
C v3/

�
;

a1 D�.�1Cu/
�
�1Cu3.�2C v/C 2v� 2v2

C 2v3
C
p

D

Cu.v� 4v2
� 2
p

D/Cu2.1C 2vC
p

D/
�
;

b1 D 3� 8uC 11u2
� 8u3

C 2u4
C .�5C 5u�u2

Cu3/v

� .�6C 7u� 2u2
Cu3/v2

C 2.�1Cu/v3
� .�1Cu/2.�1C v/

p
D;
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b2 D�3C 5u� 6u2
C 2u3

C .5Cu2/v� .6�uCu2/v2
C 2v3

C .�1Cu/.�1C v/
p

D:

The hyperbolic representation occurs at uD 7, v D 7.
The reader may easily verify that upon setting uD v, the representation above

may be conjugated to the representation

�v.a/D

0BBB@
1
4

�
�vC

p
.v�7/.vC1/�1

�
1
4

�
v�
p
.v�7/.vC1/C5

�
0

1
4

�
�vC

p
.v�7/.vC1/�1

�
1
4

�
v�
p
.v�7/.vC1/C1

�
1

�
4

vC
p
.v�7/.vC1/�3

1
4

�
v�
p
.v�7/.vC1/C1

�
0

1CCCA ;

�v.b/D

0@ 1 0 1
2

�
�v�

p
.v�7/.vC1/�1

�
0 0 �1

0 1 0

1A :
We will require that these matrices have entries in the ring of integers of a real

quadratic number field. Hence, assuming that a square-free positive integer d

is given, we require that .v� 7/.vC 1/D Y 2d for a positive integer Y . Notice
that .v � 7/.vC 1/ can be rewritten as .v � 3/2 � 16, and so we need to solve
.v� 3/2� 16D Y 2d ; that is, the equation X 2�Y 2d D 16. In particular, given
any square-free positive integer d , choosing a solution .X0;Y0/ 2 N2 of the
Pell’s equation X 2�Y 2d D 1, then v D 4X0C 3 is the desired solution (which
is clearly odd).

To conclude the proof we need to establish that these constraints can be
arranged so that these matrices also preserve a Hermitian form of the required
type. Further computation shows that the image of �v (where we assume that
vD 4X0C3 is an odd positive integer) preserves the Hermitian form Hv defined
by the matrix

JvD

0B@ 2.vC1/ �
1
2
.vC1/ .vC!C1/ �1

2
.vC1/ .vC!C1/

�
1
2
.vC1/ .v�!C1/ 2.vC1/ .vC1/2

�
1
2
.vC1/ .v�!C1/ .vC1/2 2.vC1/

1CA ;
where we have set

! D
p
.v� 7/.vC 1/:

As it stands the form Jv is not of the type described in Section 5, however,
we can argue as follows to show that Jv is equivalent to a matrix as in Section 5.
To see this, first note that Hv determines a 6-dimensional quadratic form over Q

(i.e., the form qv defined by Hv.x;x/ for x 2Q.!/). Checking the characteristic
polynomial of Jv shows that Hv has signature .2; 1/ and so qv is a 6-dimensional
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indefinite quadratic form over Q, and as such is isotropic. Hence Hv is isotropic
as a Hermitian form over Q.!/. It follows from the classification of Hermitian
forms (see, for example, [28, Section 15J]) that Hv is equivalent to a form as
described in Section 5.

Note that by Theorem 2.1, away from the solution u D v D 7, the surface
subgroups will be thin. �
Example. For concreteness we describe an example in the case when d D 30.

In this case an appropriate unit is given by 11C 2
p

30 which from above
implies that we take v D 47. With this we have

�47.a/D

0@ �12C2
p

30 13�2
p

30 0

�12C2
p

30 12�2
p

30 1

�11C2
p

30 12�2
p

30 0

1A; �47.b/D

0@ 1 0 �24�4
p

30

0 0 �1

0 1 0

1A;
and the Hermitian form is determined by the matrix

J47 D

0@ 1 �
�
12C 2

p
30
�
�
�
12C 2

p
30
�

�
�
12� 2

p
30
�

1 24

�
�
12� 2

p
30
�

24 1

1A :
3. G D SL.4; R/ and � a cocompact Kleinian group

The starting point for this section is to consider certain closed hyperbolic 3-
manifolds M DH3=� described in [10] as flexible, by which one means that the
hyperbolic structure may be deformed when it is regarded as a strictly convex
real projective structure. (See [10] for more details.)

The certificate for thinness in this case comes from the application of deep
results of Koszul [18], Benoist [2; 3], which taken together imply that all of
these deformations are the holonomy of convex real projective structures and in
particular, they are all discrete, faithful representations of the fundamental group
in question. (This part of the construction plays the role of the work of Choi and
Goldman [8] described in [22].) It is also argued in [21] that the resulting image
groups are Zariski dense in SL.4;R/.

This part of the argument is quite general and applies to any flexible hyperbolic
3-manifold (even if these are perhaps quite rare, see [10]), but as in Section 3
some specialization is now necessary to ensure that the deformed group lies inside
a lattice. To this end, we fix attention upon one particular closed hyperbolic
3-manifold, traditionally known as vol 3. Again, the lattices in question are
described in Section 5.

Theorem 3.1. For infinitely many real quadratic number fields L, there exist
lattices SU.J;OL; �/ that contain a thin subgroup isomorphic to a subgroup of
finite index in �1.vol 3/.
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We will not discuss anything about the proof here, nor describe the matrices
other than to say that this proof is similar to that described for Theorem 2.3
(although integrality requires some more delicate computation in this case). We
refer the reader to [21] for more details.

However, for convenience we record one example of the representation.

Example. The fundamental group of vol 3 has a presentation

ha; b j aabbABAbb; aBaBabaaabi;

where A D a�1 and B D b�1. As in [21] (following [10]), we work with an
orbifold QD vol 3=hui which is fourfold covered by vol 3. We denote by �Q the
orbifold fundamental group of Q. Notice that a representation of �Q is discrete
and faithful only if it is discrete and faithful when restricted to �1.vol 3/, so that
it suffices to work with �Q.

From [10] one sees that �Q is generated by two elements of finite order u and
c. The group �1.vol 3/ is recovered as aD u2c and b D .aua/�1u. One such
representation � of �Q given by Theorem 3.1 is

�.u/D

0BB@
0 �1 �4C 3

p
3 �1C 2

p
3

1 0 �2C
p

3 �1

0 0 1 0

0 0 0 1

1CCA ;

�.c/D

0BBB@
0 0 �1C

p
3 0

0 0 0 �1C
p

3

.1C
p

3/=2 0 0 0

0 .1C
p

3/=2 0 0

1CCCA :
This does not have integral entries, but there is a surjection from �1.vol 3/ to
the dihedral group with ten elements where one sends a to a reflection and b

to a rotation. A direct calculation shows that the kernel of this map consists of
elements whose entries lie in ZŒ

p
3�. One can also check that a nondegenerate

� -Hermitian form for the image of � is

J D

0BBB@
2 0 2� 2

p
3 �2

p
3

0 2 6� 4
p

3 2� 2
p

3

2C 2
p

3 6C 4
p

3 �4 0

2
p

3 2C 2
p

3 0 �4

1CCCA ;
which in turn can be checked as being equivalent to the form diag.1; 1; 1;�5/.
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Remarks. (i) The manifold vol 3 is rather well understood and it is shown in [24]
that vol 3 has a finite sheeted cover that fibers over S1 with fiber a closed surface
F . The image of this fiber group will have the same Zariski closure as �1.vol 3/;
that is, this exhibits a thin surface subgroup H in an SL.4;R/-lattice, which has
the additional property that its normalizer N in SL.4;R/ contains an element ı
for which ın 62H for all n 2 Zn f0g. Motivated by the situation in PSL.2;C/ we
refer to such a surface group as geometrically infinite. Summarizing, we have as
a corollary of Theorem 3.1:

Corollary 3.2. For infinitely many real quadratic number fields L, there exist
nonuniform lattices SU.J;OL; �/ in SL.4;R/ which contain a geometrically
infinite, thin surface subgroup.

As in the case of nD 3, for a surface group �1.†g/ (g � 2), there is a compo-
nent of X Hit.�1.†g/;SL.4;R// called the Hitchin component. Now Labourie
[19] showed that the mapping class group of †g acts properly discontinuously
on this component. Hence for such surface group representations, there can never
be an element ı as above (i.e., they are never geometrically infinite). Hence we
are led to ask:

Question 3.3. Does there exist a (nonuniform) lattice � in SL.3;R/ that contains
a thin geometrically infinite surface subgroup?

(ii) Compared to SL.3;Z/, the structure of the nonuniform lattices of Theorem 3.1
are far less well understood. For example, unlike SL.3;Z/, these lattices are not
yet known to be boundedly generated by unipotent elements, nor are they known
to be not left-orderable (see [29] for more on this). For general countable groups,
being left-orderable is equivalent to having an orientation-preserving, faithful
action on R. In the context of lattices in SL.n;R/, n� 3, this is also equivalent
to having no faithful action on S1. More precisely, if � is a lattice in SL.n;R/,
n� 3, then Proposition 2.8 of [29] shows that the following two conjectures are
equivalent:

� is not left-orderable.

� has no faithful action on S1.

We note that the proof of equivalence uses that these statements hold for all
lattices, and not just an individual one.

There has also been a great deal of interest recently in left-orderability (and
lack thereof) of 3-manifold groups (see, for example, [6; 9; 12]). In light of the
aforementioned conjectures, we note the following. We begin with a lemma.

Lemma 3.4. �1.vol 3/ is not left-orderable.
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Proof. Since subgroups of left-orderable groups are left-orderable, the lemma
will be deduced from the following observation.

It is shown in [12, Theorem 1] that if M .n/ denotes the n-fold cyclic branched
cover of the figure-eight knot, then �1.M

.n// is not left orderable. In the case
when n D 4, it is shown in [24] that vol 3 is double covered by M .4/. Hence
�1.vol 3/ is not left-orderable as required. �

Now from the discussion above �1.vol 3/ contains a subgroup of finite index
contained in a lattice SU.J;OL; �/. It is now a standard argument (which we
sketch below) that �1.vol 3/ is a subgroup of a lattice � commensurable with
SU.J;OL; �/. Hence � is not left-orderable.

To make this observation more interesting, requires ensuring that � is torsion-
free, which for the moment seems hard to arrange.

We now sketch the proof that �1.vol 3/ is contained in a lattice. Through-
out this discussion, let � denote the image of vol 3 constructed implicitly in
Theorem 3.1, ƒD SU.J;OL; �/ and �0 a normal subgroup of � of finite index
in �\ƒ. Consider

DD O�0 D f†ai
i j ai 2 OL; 
i 2�0g;

where the sums are finite. It is shown in [1, Proposition 2.2 and Corollary 2.3],
that D is an order of a central simple algebra B defined over L and contained
in M.4;L/. Indeed, since �0 is Zariski dense, B D M.4;L/. Then D1 is
an arithmetic group commensurable with SL.4;OL/. Furthermore, since �
normalizes �0, � is contained in the normalizer N of D in SL.4;R/. Then N

is the required arithmetic lattice commensurable with SL.4;OL/.

4. Further constructions

In the previous sections, we were able to exhibit thin subgroups, using the
certificate of faithfulness. In this section, we describe some other constructions
where the representation might not be faithful, but the image group could be thin
coming from structural considerations. Nonetheless, the material here is a good
deal more speculative.

The basis of this construction is the 4-strand braid group, B4. It is a standard
property of B4 (see [4]) that there is a surjective homomorphism B4 ! B3

obtained by setting �1 D �3 and that the kernel K is a finitely generated free
group of rank two generated by f�1�

�1
3
; �2�1�

�1
3
��1

2
g.

The connection with matrix representations comes by consideration of the
classical reduced Burau representation [4]. This representation does not have
determinants equal to one, but one can easily arrange this by scaling and one
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obtains ˇ W B4! SL.3;ZŒx; 1=x�/ as

ˇ.�1/D

0@ x2 1=x 0

0 1=x 0

0 0 1=x

1A ; ˇ.�2/D

0@ 1=x 0 0

�x2 x2 1=x

0 0 1=x

1A ;

ˇ.�3/D

0@ 1=x 0 0

0 1=x 0

0 �x2 x2

1A :
It is an old result of Squier [26] that the Burau representation can be regarded

as Hermitian for a certain form. In the case of the representation ˇ, it can be
checked that the matrices are Hermitian for the form

J D

0@ �2C 1=x3Cx3 1� 1=x3 0

1�x3 �2C 1=x3Cx3 1� 1=x3

0 1�x3 �2C 1=x3Cx3

1A ;
by which we mean that they satisfy g�Jg D J where g� means apply the ring
automorphism x! 1=x and then transpose.

Now let k be a real quadratic number field with ring of integers Ok , and u2Ok

a nontrivial unit for which �.u/D 1=u. Setting x D u gives a representation

ˇu W B4=Z4! SL.3;Ok/;

and we will denote the image ˇu.B4=Z4/ by B.u/ and the form J specialized
at u by J.u/.

We prove the following (referring to Section 5 for arithmetic lattices consid-
ered).

Theorem 4.1. (i) B.u/ is a subgroup of a nonuniform lattice in SL.3;R/;

(ii) B.u/ is not virtually free.

(iii) B.u/ is Zariski dense in SL.3;R/.

Proof. It follows from our choice of u and Squier’s result that B.u/ is unitary for
the nondegenerate form J.u/. However as it stands, this is not a form defined over
Z: the diagonal entries are rational integers since they are � -invariant integers of
Ok , but the off diagonal entries need not be.

This can be rectified by doing the Gram–Schmidt process which is a GL.3; k/
change of basis. Denoting the integer 1� 1=u3 D � , one checks easily that the
matrix given by mapping the standard basis fe1; e2; e3g to fe1; �.�/e2; �.�

2/e3g

gives a similarity of J.u/ with a nondegenerate symmetric Z-matrix, ‰.u/.
Identifying B.u/ with its conjugate preserving the form ‰.u/, this discussion
shows that B.u/ contains a subgroup of finite index contained in the lattice
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SU.‰.u/;Ok ; �/. Arguing as in Remark (ii) of Section 3, we see that B.u/ is
also contained in a lattice. That the lattices are nonuniform can be checked by
an argument similar to that used in the proof of Theorem 2.3; that is, checking
that the associated 6-dimensional form over Q is isotropic. This proves part (i).

To prove (ii), we note that in a free group, commuting elements lie in a cyclic
subgroup. However, the matrices ˇu.�1/ and ˇu.�3/ commute but

hˇu.�1/; ˇu.�3/i Š Z�Z:

This persists in a finite index subgroup.
Finally, using the proof of (ii), we deduce that the Zariski closure of B.u/

is a noncompact Lie subgroup of SL.3;R/ of R-rank two. Hence it must be
SL.3;R/. �

We ask:

Question 4.2. Are the groups B.u/ thin?

Potential certificates come from the following observation:

Lemma 4.3. In the notation established above,

ˇ.B4/=ˇ.K/Š B3:

Proof. As remarked above, B4=K Š B3. Hence, the required statement follows
from the first isomorphism theorem and the fact that ker.ˇ/ <K; see [4]. �

In particular, this bypasses the long-standing open problem as to whether
the Burau representation of B4 is faithful, since, independently of whether ˇ is
faithful, if there is any algebraic specialization for which the map ˇ.B4/!B.u/

is faithful, the image group B.u/ has an infinite quotient and therefore cannot
be a rank 2 lattice. It seems rather likely that such specializations exist, but
identifying one seems formidably difficult.

4.1. The figure eight knot group. In some real sense the simplest finite volume
hyperbolic 3-manifold group is the fundamental group of the figure eight knot
complement. This is a hyperbolic 1-punctured torus bundle so that one can
present the fundamental group as

�1.M /D hx;y; z j zxz�1
D xy; zyz�1

D yxyi:

It’s an intriguing question whether this group admits a discrete, faithful represen-
tation in SL.3;R/ and this is a special case of a question due to Labourie.

Question 4.4. Does there exist a finite volume hyperbolic 3-manifold M for
which �1.M / admits a discrete, faithful representation in SL.3;R/?



162 D. D. LONG AND A. W. REID

Unlike the cases considered in Sections 3 and 4, there is apparently no obvious
“natural geometric” representation of a hyperbolic 3-manifold group into SL.3;R/
to attempt to deform. Nevertheless, one can attempt to look for representations
as we now describe.

Given the presentation above, the following two propositions can be checked
directly by matrix multiplication.

Proposition 4.5. Define a map �k W �! SL.3;ZŒk�/ by

�k.x/DXk D

0@1 �2 3

0 k �1� 2k

0 1 �2

1A ; �k.y/D Yk D

0@�2� k �1 1

�2� k �2 3

�1 �1 2

1A ;
�k.z/DZk D

0@0 0 1

1 0 �k

0 1 �1� k

1A :
Then �k is a homomorphism.

Proposition 4.6. Define a map ˇT W �! SL.3;ZŒT �/ by

ˇT .x/DXT D

0@�1CT 3 �T T 2

0 �1 2T

�T 0 1

1A ; ˇT .y/D YT D

0@ �1 0 0

�T 2 1 �T

T 0 �1

1A ;
ˇT .z/DZT D

0@0 0 1

1 0 T 2

0 1 0

1A :
Then ˇT is a homomorphism.

Note that, in either case an integral specialization gives:

Corollary 4.7. For integral k or T , �k.�/; ˇT .�/� SL.3;Z/.

Now it is shown in [20] that the representations �k and ˇT are each irreducible
except possibly for four exceptional values of their parameter, and in particular,
�k is irreducible for all k 2 Z, and ˇT is irreducible for all nonzero T 2 Z.
Moreover, it is also shown in [20] that for k 2 Z (resp. nonzero T 2 Z), the
image groups �k.�/ (resp. ˇT .�/) are Zariski dense subgroups of SL.3;Z/ (and
similarly for the images of the fiber group F ). The issue is in deciding whether
the image is thin. One of the main results of [20] is the following.

Theorem 4.8. Fix a nonzero integer value of T .
Then the group ˇT .F / (and therefore ˇT .�/) has finite index in SL.3;Z/.
Furthermore,

T
T>0 ˇT .F /D 1.
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From the perspective of thin subgroups, this is undeniably disappointing,
however, it is important to note that simply being able to decide that the images of
the ˇT -representations are finite index in SL.3;Z/ is rather remarkable. For that
reason we comment briefly on the proof. Throughout the following discussion,
the parameter T is as described in Theorem 4.8.

The natural first question is whether the representations ˇT are faithful. Re-
markably, one finds the following relation holds for all parameter values T ,
where X D ˇT .x/ and Y D ˇT .y/:

X �1YX �1YX �1X �1Y Y YXY YXY �1X

DXY �1XY YXY Y YX �1X �1YX �1YX �1:

Now it is not difficult to check that the groups ˇT .�/ contain unipotent
elements — for example ˇT .y

2/ is a unipotent. That ˇT .�/ has finite index in
SL.3;Z/ relies on the following result:

Theorem 4.9 [27, Theorem 3.7]. Suppose that n � 3 and x 2 SL.n;Z/ is a
unipotent matrix such that x�1 has matrix rank 1. Suppose that y 2 SL.n;Z/ is
another unipotent such that x and y generate a free abelian group N of rank 2.
Then any Zariski dense subgroup of SL.n;Z/ containing N virtually, is of finite
index in SL.n;Z/.

Given this result, in [20] we proceed to exhibit unipotent matrices b1 and b2

in ˇT .F / such that b1� 1 has rank 1 and hb1; b2i Š Z˚Z. In terms of X and
Y the matrices are

b1 DX �1Y Y YXY YXY �1X;

b2 DXY �1XY YXY Y YX �1:

It is shown in [20] that there is a conjugation of b1 and b2 so that they have
the form

P�1b1P D

0@1 0 �T 2.�1C 2T /.�5C 3T 3/

0 1 �T .�1C 2T /.�2C 3T 3/

0 0 1

1A ;

P�1b2P D

0@1 0 �3T 2.�1C 2T /

0 1 �T .�1C 2T /.�2C 3T 3/

0 0 1

1A :
It follows from Venkataramana’s result that ˇT .�/ has finite index.

By contrast, the representations �k remain largely mysterious. Apart from
a few small values of k, namely f0; 2; 3; 4; 5g (where we can follow the idea
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described for the ˇT representations described above), at present the following
remains open.

Question 4.10. For k an integer and k ¤ 0; 2; 3; 4; 5 is �k.�/ < SL.3;Z/ a thin
subgroup?

Experimentation suggests that �1.�/ is virtually free (and so will be an infinite
index subgroup of SL.3;Z/).

5. Nonuniform lattices in SL.n; R/

For convenience we recall a construction of nonuniform arithmetic lattices in
SL.n;R/ for n� 3. We refer the reader to [28, Propositions 6.42 and 6.55] for
more details.

Let L be a real quadratic number field with ring of integers OL and nontrivial
Galois automorphism � . For a matrix A 2 SL.n;L/, denote by A� the matrix
obtained by taking the transpose of the matrix obtained from A by applying �
(the nontrivial Galois automorphism) to all its entries.

Theorem 5.1. Let L, OL and � be as above, and let b1; : : : ; bn be nonzero
elements of Z. Setting J D diag.b1; : : : ; bn/, then the group

SU.J;OL; �/D fA 2 SL.n;OL/ jA
�JAD J g

is a nonuniform lattice in SL.n;R/.

Proposition 6.42 of [28] deals with the case of a form that is not diagonal.
Following the lines of Witte’s argument, one can prove the following.

Let J be any matrix of the form

J D

0@0 0 a

0 b 0

a 0 0

1A ;
where a; b 2 Z, ab ¤ 0.

As above, let

SU.J;Ok ; �/D fA 2 SL.3;Ok/ jA
�JAD J g:

Theorem 5.2. SU.J;Ok ; �/ is a (nonuniform) lattice in SL.3;R/.

We also note that Proposition 6.46 of [28] shows that up to conjugacy the
lattices constructed in Theorem 5.1 together with SL.3;Z/ represent the totality
of commensurability classes of nonuniform lattices in SL.3;R/. Indeed, as is
discussed in Section 6 of [28], it suffices to take aD bD 1 in the matrix J above
to describe the totality of commensurability classes of nonuniform lattices in
SL.3;R/ (up to conjugacy).
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