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1 Introduction.

By a hyperbolic 3-manifold, we shall always mean a complete orientable hyperbolic 3-manifold of
finite volume. We recall that if ' is a Kleinian group then it is said to be geometrically finite if
there 1s a finite-sided convex fundamental domain for the action of I' on hyperbolic space. Otherwise,
I' is geometrically infinite. If I' happens to be a surface group, then we say it is quasi-Fuchsian if
the limit set for the group action is a Jordan curve C' and T preserves the components of 5% \ C.
The starting point for this work is the following theorem, which i1s a combination of theorems due
to Marden [10], Thurston [14] and Bonahon [1].

Theorem 1.1 Suppose that M is a closed orientable hyperbolic 3-manifold. If g : S & M 1is a
my-injective map of a closed surface into M then exactly one of the two alternatives happens:

o The geometrically infinite case: there is a finite cover M of M to which ¢ lfts and can be
homotoped to be a homeomorphism onto a fiber of some fibration of M over the circle.

o The geometrically finite case: g.m1(S) is a quasi-Fuchsian group.

The dichotomy between geometrically finite and geometrically infinite is fundamental and despite
the fact that these two cases exhibit widely different behaviour, it seems to be a very difficult
problem in general to find a criterion in terms of the image ¢(.S) which distinguishes them.

In this paper we shall give such a criterion which covers a very natural class of m-injective
immersions in the special case that the hyperbolic 3-manifold is a surface bundle over the circle.
To state our main theorem, we need some notation. Suppose that ¢ : S & M is a mi-injective
immersion into a closed hyperbolic 3-manifold M which fibers over the circle. The fact that M is a
bundle gives some extra structure which comes from the presence of a canonical (up to isotopy) flow
L and two canonical foliations. The flow £ comes from the suspension flow of the product structure
on {fiber} x I and the foliations come by suspending the foliations left invariant by the monodromy
of the bundle, which is pseudo-Anosov as we assume throughout that the bundle is hyperbolic. To
exploit this extra structure, we shall also assume that the image g(.S) is transverse to the flow.
Then either suspended foliation induces on .S a foliation, denoted Fgs and our first theorem is the
following:

Theorem 1.2 Suppose that M is a closed hyperbolic 3-manifold which fibers over the circle and that
the immersion g : S % M is w-injective and transverse to the suspension flow. Then g.(m1(5)) is
geometrically infinite of and only of Fg contains no closed leaf.

In fact, one can say much more about the structure of the induced foliation in the quasi-Fuchsian
case. Define a foliation of a surface to be finite if it consists of some finite number of closed leaves
and each end of every other leaf spirals towards one of these closed leaves. Then a sharper result is:

*Partially supported by the NSF
tPartially supported by the A. P. Sloan Foundation and the NSF
{Partially supported by the NSF



Theorem 1.3 Suppose that M is a closed hyperbolic 3-manifold which fibers over the circle and that
the immersion g : S % M is w-injective and transverse to the suspension flow. Then g.(m1(5)) is
a quasi-Fuchsian subgroup if and only if the foliation Fg is a finite foliation.

This seems to be the only criterion known for distinguishing the quasi-Fuchsian from the geometri-
cally infinite in terms of the image of the immersion in the bundle M. Moreover, these conditions
are checkable in examples - in §4 we give an example of a surface immersed into a bundle which is
shown to be quasi-Fuchsian by proving that the resulting foliation has a closed leaf.

Another reason that an understanding of such immersions is interesting is related to the virtual
Betti number of M, which by definition is

sup{rank(Hi(Mp;R)| MF is a finite covering of M}

The conjecture is that for a closed hyperbolic 3-manifold, the virtual Betti number is infinite; though
even going from Betti number zero to Betti number one is an outstanding open problem. One reason
that these problems seem to be hard is that in general there is no way known to find a w;-injective
immersion of a closed surface into the manifold. This gives a second reason that bundles are a useful
class; it is possible to give constructions which produce many immersions of the type required by
the hypothesis of Theorem 1.3. This is done in §2.

One immediate consequence of the truth of the above conjecture would be that every hyperbolic
3-manifold contains an immersion of a surface corresponding to a quasi-Fuchsian surface group; this
follows because of the following theorem of Thurston [16]

Theorem 1.4 If (M,0M) is a compact oriented 3-manifold and if Hy(M,0M) has rank at least 2
then M possesses at least one incompressible surface which is not the fiber of any fibration.

In the context of bundles, this leaves only the case of a rank one bundle not covered. We are
able to show:

Theorem 1.5 Every closed hyperbolic surface bundle over the circle contains an tmmersion of a
quasi-Fuchsian surface.

We conclude with a section which discusses examples. The first, alluded to above, is an immersion
shown to be quasi-Fuchsian by these methods, the second example exhibits an embedded quasi-
Fuchsian surface which is transverse to the flow coming from a pseudo-Anosov map. We have also
included an appendix sketching the proofs of some of the results of [2].

The third author thanks the University of Texas at Austin for its hospitality during the comple-
tion of this work.

2 Constructing immersed surfaces.

In this section we give a construction which provides a large number of incompressible immersions
inside a bundle which are amenable to the techniques we develop in later sections. Throughout this
paper we consider a closed surface I’ and a pseudo-Anosov homeomorphism @ of F'.

Lemma 2.1 Given any essential simple curve C C F, there is a finite cover F of F, a map 7

covering 0 and a curve C covering C, so thal C is disjoint from HN(CN') Further, C' U HN(C’) is
nonseparating on F.

Proof. Fix an integer p > 1 and consider the epimorphism m,(F) — H;(F,Z,) which determines
the finite covering m : F,, — F. Observe that any simple closed curve element of the commutator



subgroup lifts to a nonseparating curve in Fp. This is easily seen since there are only a finite number
of such curves up to homeomorphism and for each such curve one can construct by inspection a Zj-
covering for which the curve lifts and becomes nonseparating; now an argument using the transfer
map shows that the curve is therefore nonseparating in the covering Fp.

Thus, if the given curve C' separates, we may replace C' by a non-separating curve covering it.
Also notice that this covering corresponds to a characteristic subgroup therefore 6 is covered by a
homeomorphsim of Fp. We may now assume that C' does not separate.

Given C suppose that |CNA(C)| = K. Fix a curve C covering C (it covers C' p-to-1) and a map
§ covering 0. Then IC'N é(CN')| < pK, in particular C' meets at most pK components of 7=1(00).

Choose a curve D C F which is simple and meets 6(C) once transversally, and let T be a
punctured torus which is a regular neighbourhood of DU #(C). If ¢ = genus(F) then the index of
Hy(T,7,) in Hi(F,Z,) is p*9=2. Therefore 7=7T has p?/~% components, let T be one of them. Let
E(Tl) be a curve in fl which covers 8C. Now fl contains a curve D which has intersection number
one with E, therefore if Th is a different component of p~'7" then E(Tl) + E(Tz) as elements of
Hl(F). Therefore there are at least p?9~2 distinct homology classes of curves which cover 6(C).

It we choose p so that p?9=2 > pK + 1 then there is at least one component of 7=*0(C') which is
both disjoint from C' and not homologous to it. By adjusting our lift of § we obtain the result. B

Lemma 2.2 Ifél and 6+ are two maps which cover 0 on an n-fold covering F of F, then 675” = HNE”
for some 0 < m < mn.

Proof There is a covering transformation 7 of F such that 672 =70 9~1. Then

(T o] gl)k = T9T1T9 """ Tk_lélf

where 7; = 67217'671_2 18 a covering transformation. Let G be the group of covering transformations of
F thus |G| < n. Therefore for some k and some 0 < m < n that

ToT1T2 T = T0T17T2 ** * Tk4m,

which implies that
L= Tp1miT2 Thgm,

and then conjugating by g—(k+1) gives
1= T0T1 T2 Tm—1-

Hence

3 = (0 61)" = 07",
as required. H

Corollary 2.3 If F~ 15 a finite regular cover of F' and g is map covering 0 then the mapping tori
My of 8 and Mz of 0 have finite covers which are homeomorphic.

In what follows we shall assume that (' is a simple closed curve on F' which is disjoint from 6C'
and that C'U6#C does not separate. Let F_ be the surface obtained by cutting /" open along C' and
6C and then compactifying. Thus dF_ has four components Cy,C_,0C,, #C_ where the signs are
chosen so that 8 takes the + side of (' to the 4 side of #C. Now define S to be the surface obtained
from F_ by identifying Cy with #C_ via 6 and similarly identifying C'_ with #C,. Thus S is an
orientable connected surface.

We now introduce a standing definition: M is the mapping torus of 6. We regard M as the
space obtained from F x [0,1] by identifying (z,1) in F' x 1 with (#z,0) in F' x 0. Projection of



F % [0,1] onto the second factor induces a map of M to the circle which is a fibration with fiber
F. The infinite cyclic covering of M given by this fibration is thus identified with /' x R and the
group of covering transformations is generated by 7(z,t) = (fz,? + 1) where # € F' and t € R. The
foliation of F' x [0,1] by intervals has image in M a one-dimensional foliation which we denote by £
called the suspension flow on M.

Lemma 2.4 There ts an immersion g : S & M which s transverse to L.

Proof. The inclusion F' — M gives a map ¢ : F_ — M to which it is equal on the interior of F_. We
now isotope ¢ along the flow £ in annulus neighborhoods of Cy,C_ to obtain a map ¢’ : ' — M
which is transverse to £ and so that ¢'(C+) = 6(Cx). A more precise description of this isotopy
follows.

Let Ay be an annulus in F_ with one boundary component C; and h : C; x [0,1] — A, a
parameterization so that h(Cy x 1) = Cy. Let k : F x [0,1] — M be the quotient map. Then
g' is defined on Ay by ¢'(h(z,t)) = k(h(xz,t),t). We define ¢’ in a similar manner on an annulus
neighborhood of C_, and on the complement of these two annuli ¢’ = .

It is clear that ¢’ and ¢ are isotopic in M by an isotopy having the property that the track of each
point during the isotopy lies in a single flow line of £. Then g’ factors through a map ¢ : S & M
which is transverse to the suspension flow. W

Remark. This is special case of a more general construction. Start with a finite cover p: F—F
and two sets of simple closed curves Cy,--- ,Cy and Dy, -+ , D, on F which are mutually disjoint and
such that their union does not separate F'. We also require that p(D;) = 6p(C;) for each 1 < i < n.
The composition of p with the inclusion of F — M may be homotoped to an immersion h : F — M
transverse to £. Let F_ be the surface obtained from F by cutting along the two collections of curves
and compactifying as before to get a surface with two boundary curves (C;)+ corresponding to each
C; and two boundary curves (D;)4 corresponding to each D;. Let ¢« : F. — M be the immersion
obtained from A, then as before we isotop ¢ along the flow in an annulus neighborhood of each (C;)4
to obtain a map ¢ such that ¢'(C;)+ = (D;)g. Let S be the closed surface obtained from F_ by
identifying (D;)+ with (Cj)x via 6. As before there is an immersion g : S & M of S transverse to
L.

Lemma 2.5 The immersion g : S % M constructed above is my-injective.

Proof. There is a fibration M — S! with fiber F' and this determines an infinite cyclic covering
M —— M. There is an induced infinite cyclic covering Sof Sand amap §: S — M covering g.
Suppose that v is an essential loop in S which is null homotopic in M. Then 7 lifts to a loop ¥ in S,

Using the identification of M with F' x R we define the subsurface S, = §~*(F x [—n,n]) of S.
We may push g(5) slightly in the direction of the flow £ to arrange that g(S)NF x 0 consists of two
curves parallel to C. Then the boundary of S, consists of two parallel curves on ¥ x n and another
two parallel curves on F' x —n. Now add to ¢S, an annulus in /' X n and another in /' X —n to
give an immersion gt : 5’;{' % M of a closed surface 5’;{' which extends the immersion §|§n This
immersion is also transverse to L.

The composition of the projection py : F' x R — F and g} is an immersion of a closed surface
into another surface and is therefore a covering and so mi-injective. We may choose n large enough
that 9 is contained in S, and this implies that p;g;(7) is essential in F' and therefore in M, a
contradiction. l

Theorem 2.6 Every closed hyperbolic surface bundle over the circle contains an tmmersion of a
quasi-Fuchsian surface.



Proof. By 2.2,2.1,2.3 we may pass to a finite cover of the given bundle in which we may construct
an immersion of a surface ¢ : § & M as described in Lemma 2.4. From 1.1 we see that either this
surface is quasi-Fuchsian (in which case we are done) or else there is a finite covering p : M — M
to which the immersion g lifts to an embedding g, and this embedding is a fiber in some fibration
of M over the circle.

By Thurston’s theorem 1.4 if the rank of HZ(M) is at least two there is an embedded surface V/
which is not a fiber of any fibration of M. A theorem of Heil [8] asserts that in a closed irreducible
orientable 3-manifold, an embedded nonseparating surface with non-trivial normalizer is a fiber of
a fibration. Therefore 7V must have trivial normaliser and so cannot be geometrically infinite. It
follows from Theorem 1.1 71V is quasi-Fuchsian.

It therefore suffices to show that the lift of the fiber F' of M (which we denote F) and the
embedding §(5) represent linearly independent classes in HQ(M).

To prove this we note that there is a loop « on S such that ga is dual to the fiber F'. Thus
g(«) is a dual class to the fiber F. However since this loop lies in the 2-sided surface g(S) it can be
pushed off this surface, and thus cannot be a dual loop for the homology class of §(5). Thus F and
§(S) are linearly independent homology classes as required. W

Remark. We remark that in general one cannot expect to find a closed embedded quasi-Fuchsian
surface in a hyperbolic bundle whose homology has rank one. As discussed in the introduction,
whenever the homology has rank greater than one, there is always such a surface, in fact it can be
chosen to be nonseparating.

For example, consider the 2-bridge knot K = 63 which has 2-bridge normal form 5/13 (see [7]). Tt
is alternating, and its Alexander polynomial is monic of degree four, from which it follows that this
knot is fibered with fiber a once-punctured surface of genus 2. It is easy to check that 0/1-surgery
on S3\ K produces a hyperbolic manifold which fibers over the circle, and necessarily has rank one
homology. Let M denote this manifold. Suppose that M did contain a closed embedded quasi-
Fuchsian surface (such a surface must separate since Ho(M) is cyclic). Because S3 \ K contains
no closed embedded incompressible surfaces, it follows that there is, in addition to the fiber, a
separating surface in S3\ K with slope 0/1. However, this is impossible from the results of [7] which
describes all incompressible and boundary incompressible surfaces in 2-bridge knot complements.

3 Finite foliations.

In this section we develop the general picture of 71-injective immersions which are transverse to the
flow. Our point of view is to work in the universal cover of M and flow a pre-image of the immersed
surface §(§) into a reference copy F of the universal cover of F. We prove that this image is all of
F if and only if the immersed surface is geometrically infinite. We show that in the geometrically
finite case that the image is a convex set bounded by lifted leaves of the invariant foliations on F.
Finally, we examine the foliation on this convex set and show that the induced foliation on ¢(.5) is
finite in a certain sense.

Now let 7 : M — M be the universal cover and £ the lifted flow on M. Let F be a component of

7~LF so that F is a plane which meets every flow line of £ once transversely. Thus we may identify
M/E with F by flowing a point in M until it meets F. Let ¢ : M — F be the resulting map which
identifies flow lines to points.

Let g : S % M be any mi-injective immersion of a closed orientable surface S into M which is
everywhere transverse to the flow £. The results of the previous section show that such immersions
are easily constructed. Let S be the universal cover of S and § g: S—Ma map covering g.

The measured foliations for § we denote by (F*,u%) and (F~, u~) respectively. Our convention
for these foliations will be the mnemonic one (as opposed to the convention used by dynamicists)



- the action of # on the measure of an arc « transverse to F¥1 is defined by ut(6a) = Aut(a),
where A > 1 is the dilatation. This pair of measured foliations determines a singular Euclidean
structure on F, and makes F' into a complete metric space. This metric space is locally 1sometric to
the Euclidean plane except in a neighborhood of the singularities of the foliations. The metric at a
k-prong singularity has a cone angle of (k— 2)7. Since k& > 2 the metric is non-positively curved. Tt
follows that between any two points in F' there is a unique shortest arc in any homotopy class. Such
an arc is called a geodesic and is a Euclidean geodesic away from the singularities. A short geodesic
arc in a neighbourhood of a singularity consists of two Fuclidean arcs each having an endpoint on
the singularity. The angle between these two arcs is at least .

The stable and unstable foliations on F' lift to F' and thus the singular Euclidean structure also
lifts to a complete metric on F'. The action of 71 M on M preserves the flow £ and therefore induces,
via ¢, an action on F. In this section we shall examine the action of the surface group m1(S) on the
surface F'. (Here, as in all that follows, we shall suppress reference to the map g. in the context
of fundamental groups.) As a first step we will examine the subset qb(g) of F. This set is clearly
invariant under m(S).

Definition 3.1 A leaf box is a compact convezr subset of F bounded by finitely many segments of
stable and unstable leaves. If a leaf box contains no singularity then it has 4 sides. Otherwise it
contains precisely one singularity, say k-prong, and has 2k sides. An ¢ -leaf box neighborhood
of a point x in Fisa leaf box which contains an e-neighborhood of x.

We will use the notation L(m(S), 5% (M)) for the (usual) limit set for the action of the subgroup
71(S) on the 2-sphere at infinity.

Lemma 3.2 Suppose g : S & M s incompressibly immersed transverse to the flow L. Then each
flow line of £ meels §S at most once.

Proof. The proof falls into two cases:

Case A. The group m(S5) is quasi-Fuchsian.

Since 71'1(5) is quasi-Fuchsian the map § extends to a continuous map § : SUSL (5’) — MUS2 (M (M y ).
Since S is transverse to £, an oriented flow line £ of c always crosses gS in the same direction.
Again using the fact that 71'1(5) is quasi-Fuchsian, there is a self homeomorphism ¢ of the closed
ball M U Sgo(]\Z) which takes the limit set of m(.S) to a round circle.

We will make use of the following from Cannon Thurston [2]. There is a natural identification
of S;(M) with the space obtained by taking two copies D*, D~ of F' U Séo(ﬁ) and making the
following identifications. The two points, one in each of D*, corresponding to a single point in S1_
are identified. Each leaf (regular or singular) of Ftis 1dent1ﬁed to a point in DT. Also each leal
(regular or singular) of F~ is identified to a point in D~. Let ¢* : D¥ — SZ (M y ) be the quotient
maps.

Cannon and Thurston also show that each flow line ¢ is a quasi-geodesic in the hyperbolic
metric. Now ¢ = # x I for some point # in F. The limit points of £ on S;(M) are ¢Tz. The map
Rt F — S2 (M) given by inclusion into DT followed by ¢t is continuous, and equals the map
obtained by sending a point z in F to the limit point of ¢ given by flowing along ¢ in the forward
direction. h~ is similarly defined by flowing backwards. Observe that the image of F under ht is
71 (M) invariant. We appeal to the following lemma:

Lemma 3.3 The image h"’(F) 15 an R-tree.

Proof. An R-tree is a (nonempty) metric space with the property that (i) Any two points are joined
by a unique arc and (ii) With the induced metric this arc is isometric to an interval.

If we take two distinct points, p; and ps in the quotient space h"’(F), then these correspond to
a pair of leaves in F. To construct an arc in h"’(ﬁ) which connects them without backtracking,



choose any embedded arc  in F running between the relevant leaves. Notice that if two points on
« are sufficiently close together, then they cut out a subarc a; which can be isotoped to an arc o]
which lies inside a leaf of F~. This can be done without changing the leaves which the endpoints
of «; lie on. Notice that the arc of embeds into the quotient space h"’(ﬁ) since it 1s impossible for
a leaf of T to meet af more than once as the leaves are geodesics in the affine metric on F.

By subdividing a random arc joining a pair of leaves in F', we see that any two points in h"’(ﬁ)
can be connected by an arc. One sees easily that if the points are connected by a very short arc
in F then in fact after projection into h"’(ﬁ) the points are connected by a unique arc, whence a
subdivision argument shows that any two points in h"’(ﬁ) are connected by a unique arc. Further,
in an obvious way, we may use the measure of these arcs to produce a metric on h+(ﬁ), which is
therefore an R tree. W

We claim that if B is any leaf box in F then h*(B) is not contained in the quasi-circle
L(m1(S), 52 (M)). The reason is that h*(B) contains an interval I and if this interval is contained
in L(m(S), Sgo(]\Z)) we can use the action of m1(S) to cover the quasi-circle by a finite number of
intervals and deduce that the entire quasi-circle embeds inside the image of hT. However, this is a
contradiction since by the Lemma, h"’(ﬁ) is an R-tree. This proves the claim.

Let B be any compact leaf box, since At is continuous there is an open subset B’ C B with
h*(B') disjoint from L(m1(S), Sgo(M)) By repeating this argument with 2~ we see that B’ contains
a leafbox B” so that h*(B’),h™(B") are both in the domain of discontinuity of g.w(S).

Suppose then that the flowline z x R meets 3(5’) more than once, then by transversality the
same is true for y x R provided that y € F is sufficiently close to z. The above argument shows
that we may choose y so that both endpoint of £ = y x R are in the domain of discontinuity for
¢+m1(S). Choose small closed disc neighbourhoods of the endpoints of £ which lie inside the domains
of discontinuity and use these to attach a I1-handle to M U SZ (M)to form a solid torus 7'

The existence of £ shows that the closure of 3(5’) either represents the generator of Hs(T,0T),
or represents the zero element, depending on whether the endpoints of £ lie in distinct or the same
components of the domain of discontinuity. It is also clear that the cocore of the 1-handle also
represents the generator of this group.

However the union of ¢ and the core of the 1-handle is a l-cycle in T which has algebraic
intersection number at least two with 5(5’), but intersection number one with the cocore. This
contradiction completes the proof of Case A.

Case B. The subgroup m1(S) is geometrically infinite.
The proof is similar in spirit. As observed in the introduction, ¢(5) becomes homotopic to a fiber
S’ in some finite covering M* of M.

Suppose that if we lift to the covering Mg corresponding to the subgroup m(S), the lift ¥ of
some flowline v meets the image of the lifted map g5 : S — Mg more than once. To prove the
theorem, it suffices to show that this cannot happen. It is well known that the periodic points of
a pseudo-Anosov are dense, thus closed flow lines are dense. So by transversality there is a nearby
flow line to ¥ which meets ¢5(.S) more than once and with projection in M* a closed flowline. Thus
we may assume that v is closed.

We claim that ¥ defines a element of H2(Myg). This falls into two cases: If 4 lies in the (normal)
subgroup m1(S) < w1 (M), then it lifts to Ms and visibly defines such a cohomology class. If
not, then n = [y] # 0 in w1 (M™*)/71(S) = Z thus the flowline ¥ is invariant under 7 where 7
is the covering transformation of the cyclic covering Mg — M™. Hence 7 is a properly embedded
1-submanifold in Mg with one end in each end of Mg. Thus 4 defines such a cohomology class in
this case also.

By construction ¥ meets gg(S) always with the same orientation. Clearly [¢5(S)] = [9'] as



classes in Ha(Mg). However ¥ defines an element of H2Z(Mg) and we see that < 7,5 > is either
zero or 1, since S’ separates. On the other hand, by choice of ¥, < §, g5(S) > is at least two. This
contradiction completes the proof of Case B. B

The above result implies that g is an embedding of S into M. In the interest of notational simplicity
we will use § to identify S with §S except where this is likely to cause confusion.

Corollary 3.4 The flow map ¢|§ 15 a homeomorphism ofg onto its image.
Corollary 3.5 The action of m1(S) on QSS 15 free and properly discontinuous.

Here, and elsewhere, the metric we use on F is the singular Fuclidean metric given by the
measured foliations. We shall use several results concerning geometrically infinite groups due to
Cannon and Thurston which are contained in [2]. For the convenience of the reader we include an
appendix sketching the proofs of some of these results.

Recall that [2] introduces a certain singular Solv metric. This is a metric on M which is a Rie-
mannian metric on the complement of the suspension of the singularities of the measured foliations
on F. Tt is defined as follows. If (£, ut) (F~,u~) are the measured foliations on F' and A > 1 is
the stretch factor of the pseudo-Anosov @ then p*(fa) = A*!'u® (). Here « is any arc transverse
to the measured foliations.

A singular Riemannian metric on F' x [0,1] is defined by

ds? = A% dz? + M dy? + d22.

Here z, y are local coordinates along the measured foliations (F*, u), (F~, u™) respectively, and z
is the coordinate in [0, 1]. The map (x,1) — (02,0) of ' x 1 — F x 0 is an isometry of this metric.
Thus M inherits a singular Riemannian metric.

The universal cover of M is identified with ' x R and the metric on M induces a metric on
M. Furthermore the suspension flow £ agrees with the product structure on F x & thus flow lines
are geodesics on which z,y are constant. The local z coordinate in M is covered by a global z
coordinate on F' x R given by projection onto the second coordinate. The components of 7T_1(F)
are the horizontal planes F' x n for integers n. We will use the term the height of a point w in M
to mean the z coordinate of w, which is therefore also the (signed) distance of w from F=Fx0.

We wish to choose a nice neighborhood of each point in .S. Given a point z € 5, there is a lift
& € M which lies within a distance 1 of F' x 0. Given a (simply connected) neighbourhood U C S of
x, choose the lift U of U/ which contains Z. We will say that [/ is an 5-leaf box neighbourhood
of 2 if the flowed image ¢(U) C F x 0 is an 7-leaf box neighbourhood of ¢(&).

We observe that the compactness of S implies that there is an ¢(S) > 0 so that every point of S
has an ¢(S)-leafbox neighbourhood. The following result implies that points on S with ¢ i image in
F which are near to the frontier of ¢S are a great height above or below F.

Corollary 3.6 Given a point & in S suppose that Y+ s a pownt in Frontzer(qu) on the same leaf
of F¥£ as (). Define d(¢p&,ys) to be the distance in F between &%) and yx. Let z(&) be the height
of &. Then d(¢F,y+) > €(S)AF (@)=L,

Proof. Let ¢(S) > 0 be a leaf box constant provided by the above paragraph. Denote the universal
covering projection of .S by 71'5 S — S. Let U be an eleaf box neighbourhood of wg(Z) in S and
let U be the component of 7 (U) containing &. We may do a homotopy of ¢ to arrange that U is
contained in F', this homotopy is covered by a homotopy of § which changes the height of all points
by a uniformly bounded amount namely 1. This changes the estimate below by some multiplicative
factor L with A™! < L < A.



Using the singular Solv metric on M above we see that ¢U is a leaf box centered on ¢z which
has a half-width in the F* direction of § = eAF#(%)_ Since this leaf box is contained in ¢S it does
not contain y in its interior and so d(¢z,yx) > 6. W

Definition 3.7 We will call a closed subset P ofF a polygon if:
e P is homeomorphic to a closed disc minus part of its boundary
o The frontier of P is a union of (possibly infinitely many) bi-infinite geodesics.

There is a unique geodesic in the singular flat structure between any pair of points in F, thus one
may talk of convex sets in F' and we see that a polygon is convex. It follows as usual that any
convex set is a disc minus part of its boundary.

Definition 3.8 Define A = A(S’) to be the closure in I of qb(g)

We further define a regular leaf polygon to be a polygon such that each side is a leaf of F* which
is regular on the inside, that i1s to say, if there i1s a singularity on some side ¢ then there are only
two prongs of the singularity which lie in the polygon, and these are contained in /.

Proposition 3.9 A(g) is a regular leaf polygon.

Proof. Since A is visibly path-connected, it suffices to show that the frontier of A consists of
geodesics each of which is regular to the inside and completely contained in the frontier of A.

Let y be a point in the frontier of A and let # be a point in S such that ¢# is a very small
distance d from y. Let U and U be the leaf box neighborhoods of wgz and & used in Corollary
3.6. Then (b[j has one dimension, say the stable leaf direction, of order d or smaller and therefore
the other dimension, the unstable leaf direction, is of order d—'. or larger. This is because vertical
displacement in M changes stable and unstable dimensions by reciprocal factors. Thus the segment
of the unstable leaf through ¢(#) contained in A is very long. As d — 0 we see that the closed set
A must contain a bi-infinite unstable leaf ¢ through y. Furthermore, ¢ is the limit of regular leaves
in A and is therefore regular on the inside of A.

We claim that ¢ is contained in the frontier of A. Suppose that there is a point z on £ with the
property that the segment 7z of £ is maximal with respect to being in the frontier of A. Let w be
a point on £ very close to z and in the interior of A. Now w z is contained in the unstable leaf £ so
by Corollary 3.6 there is a point w € S a large distance below w. Let V be a leafbox neighborhood
of w then (/)V intersects U and it follows that there is a point v near z such the flow line through v
meets S twice, once far above F in U and once far below F in V. But this contradicts Lemma 3.2.

An element of 71 F gives an isometry of F. Since M is fiberd, the fundamental group m1(M) is an
HNN extension of the fiber group and the stable letter acts on F' by some lift g of 6. Thus we see that
the action of & € 71 (M) in local coordinates using the lifted measured foliations is multiplication by
A7" in the stable direction and multiplication by A” in the unstable direction. Here n is the image
of a under the homomorphism w3 M — Z given by the fibration of M with fiber F. The action of
m1 (') extends to the circle at infinity S ~) for F', as does the map § so that the action of m (M)
extends to an action on F'U SL (F).

Suppose that G is a subgroup of w1 (M). We will temporarily use the notation L(z,G) for the
set of accumulation points in F'U Séo(ﬁ) of the orbit of # under G. The subgroup w1 (F) of w1 (M) is
precisely the subgroup which acts by isometries. If i is a subgroup of 71 (F') then an easy argument
shows that L(xz, () is independent of the choice of a single point .

However if GG is not contained in 71 (F") then this need not be the case. For example if G is the
cyclic group generated by ¢ and if this map has a fixed point p in F then L(p,G) = p. Let ¢t and



£~ be the stable and unstable leaves containing p. Then if 2 # p is a point on one of these leaves

then L(z,G) consists of p plus some or all of the limit points of that leaf on S (F). Finally if =

does not lie on either ¢ then L(x,G) contains at least one limit point on S (F) of both ¢+ and
0.

We will use the following two notions of limit set which are independent of the choice of point .
Definition 3.10 The isometric limit set IL(G;S;O(}?)) of the subgroup G of m (M) is
L(x,G N &y (F)). The finite limit set of G is L(G; F) is the set of points in F fized by some
non-trivial element of G.

Since w1 (S)N7(F)ami(S) is a nonelementary group acting on F~as a discrete group of isometries
the isometric limit set of 71 (.S) is a subset of the circle at infinity of F'. Tt is of interest to us because:

Lemma 3.11 IL(ﬂ'l(S);SéO(F)) is w1(S)-invariant.

Proof. Standard arguments show that

ITL(71(S); SL(F)) = closure({Fiz(y) | v € m(S)Nmi(F)})
If ¢ € m1(S), then g(Fiz(y)) = Fiz(g.y.97") and the result follows. H

We will use the notation L(A, S (F)) for the limit points of A in SL (F).
Theorem 3.12 A(g) is the convex hull of IL(71(S); SL (F))

Proof. We will write C' for the convex hull of IL(7 (S ) (F)) and A for A(g) Since A is invariant
under 1 (S) it follows that L(A, SL (F)) D IL(m(S); S (F)) Since A is a polygon it is convex and
therefore contains C.

From Corollary 3.5 m1(S5) acts freely, properly discontinuously on qb(g) Since C' is the convex
hull of a subset of Séo(ﬁ) it is a polygon. Suppose that C'is a proper subset of A then there is
some point & on some geodesic side £ of C' contained in the interior of A. It follows that ¢ lies in the
interior of A otherwise, since A is a regular leaf polygon, £ would exit A.

Thus the orbit of £ under 71(,5) is in the interior of A. Define C* to be int(C') together with the
orbit of £, this is convex (hence simply connected) and invariant for the action of 1 (S). Moreover,
since Ct is contained in the interior of A, 71(S) acts freely and properly discontinuously on CF.
Thus C*/m1(S) is a surface with boundary whose fundamental group m1(S) is that of a closed
surface, an absurdity. W

Corollary 3.13 R R R
L(A(S); So0 (F)) = IL(m1(S); S (F))-

With these results in hand, we may characterise the geometrically infinite case:
Theorem 3.14 The following are equivalent:
1. The surface group m1(S) is geometrically infinite.
2 TL(m(8); SL(F)) = SL(F).
A(S)=F
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Proof. Suppose that m1(S) is geometrically infinite. Then by Theorem 1.1, there is a finite covering
of M such that the surface S is homotopic to an embedding and is the fiber of a fibration. This
covering corresponds to a subgroup G of finite index in w1 (M) therefore

IL(G; S5 (F)) = IL(m (M); S, (F)) = SL(F).
Now 71(S) is a nonelementary normal subgroup of G so that
TL(my(S); 5% (F)) = IL(G; Sk (F))

as required. Thus (1) implies (2).

Now suppose that 71(.S) is not geometrically infinite so that m1(S) is quasi-Fuchsian. Suppose
that A = F. The set qb(g) is open and has frontier a union of leaves, thus qb(g) = F, it therefore
follows that S meets every flowlne.

We now argue in hyperbolic space. Each component of 771¢.S in the universal cover has limit
set a quasi-circle. Fix some component S. Fix some closed flowline €' in M which defines some free
homotopy class containing a unique hyperbolic geodesic ¢ in the hyperbolic metric on M. Notice
that the immersed annulus coming from the free homotopy shows that any pre-image ¥¢ of y¢ in
M lies within a bounded distance of some pre-image of C.

However m1(M ) has dense limit set in the 2-sphere at infinity, so we may choose some element «
of w1 (M) with a fixed point off the quasi-circle defined by S, Translating ¥¢ by a large power of «
gives a pre-image of y¢ which is a large distance from S. jFrom this it follows that some pre-image
of C' misses S. This contradicts our assumption that 4 = F. Thus (3) implies (1).

The implication (2) implies (3) follows directly from Theorem 3.12 W

Since the surface S is transverse to £, the suspended foliations QF* induce foliations on S which
we shall denote by Fg, usually suppressing =+.

Lemma 3.15 Let { be a leaf of either F* or F~. The subgroup of mi (M) which stabilizes € is either
trivial or infinite cyclic.

Proof. Let I be the stabilizer of ¢, then H contains no non-trivial element of &y (F') otherwise the
image of £ in F would be a compact leaf contradicting the fact that é is pseudo-Anosov. Thus the
projection of H into w1 (M)/m1(F) = 7Z is injective. W

Theorem 3.16 If the surface group m1(S) is geometrically infinite, then Fg contains no closed leaf.

Proof. By Theorem 3.14 the polygon A = F = ¢S, so by Corollary 3.5 71(S) acts freely on F.
However, if Fg contains a closed leaf ¢, the covering translation 7 corresponding to [¢] € m1(95)
stabilises some pre-image {of ¢ in F. Thus 7 must be some lift of some power of the pseudo-Anosov
by the argument in the proof of Lemma 3.15. But then 7 or 77! is a contraction map of Z, and so
has a fixed point on it, contradicting that 7 (S) acts freely. W

Our next goal 1s to show that in fact the converse to this theorem holds and to gain more informa-
tion about the foliations in the case that the surface group is quasi-Fuchsian. This requires some
preliminary work. As our interest is now the case that m1(S) is quasi-Fuchsian, throughout what
follows we shall assume that this is the case, in particular, that the polygon A i1s a proper subset of
F by 3.14. As already observed, the action of 71(S) on S gives rise to a free, properly discontinuous
action on qb(g) = int(A). Our next task is to examine the extension of this action to the closure of

#(S), that is to say, A.

Lemma 3.17 Let {I,}nez be a collection of disjoint closed intervals in S* then the space obtained
by identifying each interval to a point is homeomorphic to a circle.
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Proof. This is a well known fact; we sketch a proof. It suffices to replace S* by the unit interval.
We do this by cutting open S! at a point not contained in any of the given intervals. We will define a
continuous function f from the unit interval to itself. Define f(0) = 0 and f(1) = 1. Then define f on
I, = [an, by] inductively to be [f(L)+ f(R)]/2 where L is the closest point to the left of I,, at which
f has already been defined and R is the corresponding point on the right. Set X = JI,,, then f is
defined and monotonic increasing on X, we extend f over ¢/(X) by f(y) = sup{f(z) |r € X 2 <y},
clearly this extension is continuous and monotonic. The complement of ¢/(X) is open, so we may
extend f continuously by a linear map over each open interval in the complement. It i1s easy to check
that f is continuous, monotonic, and a point pre-image is either one point or some I,,. Therefore
f induces a homeomorphism to the unit interval from the unit interval with each I, identified to a
point. A

According to Cannon and Thurston [2] there is a continuous map
CT:FUSL(F) — MUS> (M)

extending the inclusion of F into M. The map CT identifies two points on SL if and only if they
are limit points of the same leaf of the stable or unstable foliation. We will call a point & of Séo(ﬁ)
injective if CT~1(CTx) = x. Thus z is injective if and only if it is not the endpoint of any leaf in
the stable or unstable foliation.

Let dA be the the frontier of A in F'U SL (F) Since A is convex, A is a circle. In the case that
71(S) is quasi-Fuchsian, L(A4; SL (F)) is nowhere dense in Séo(ﬁ), for example this follows from 3.13
and 3.14. Thus the sides of A in F are dense in dA. Let §A/ ~ be dA with each closed side of A
identified to a point. A side £ of A is contained in leaf of FT or F~ and therefore the two endpoints

of £ on SL (F) are identified to a single point in S2 (M).

Lemma 3.18 Suppose that w1(S) is quasi-Fuchsian then QT(S;O NOA) = L(m(S),Sgo(J\Z)) and
CT induces a homeomorphism h: dA] ~— L(w1(S), S% (M)).

Proof. By Lemma 3.17, we have that 0 A/ ~ is a circle. Suppose that h identifies two distinct points
2,y € A/ ~ . Then a,y separate A/ ~ into two arcs I, I and we show below that there are two
injective points z; € I} and zy € Iy. Thus CT(9A — {z1,22}) is a circle with two distinct points
removed hence is not connected. But (9A — {z1,22})/ ~ is the union of two intervals, and the map
CT identifies a point @ in one interval with a point y in the other interval, thus CT(0A — {z1,22})
is connected yielding a contradiction.

First we establish the existence of one injective point on JA. Let « be an essential closed curve
representing some element of g,71(S) N w1 (F). Then a line £ in F which covers o has two limit
points on Séo(ﬁ) and it is clear that these points are limit points of A and therefore lie in § A. Now
it is well known that a leaf of the stable or unstable foliations on F' cannot limit on the endpoints
of any closed curve; for example this follows from the proof of [3] Lemma 4.5. Let & be one of the
limit points of £ then z is injective.

We claim that the injective points have dense image in 9A/ ~, and this will complete the proof.
Now 71(.S) acts on 9A and it is clear that this action preserves the property of a point being injective.
The closure of the orbit of # under 71 (S) N (F) is IL(ﬂ'l(S);SéO(F)) which by Corollary 3.13,
is L(A, Séo(ﬁ)) Thus injective points are dense in the complement in A/ ~ of the countable set
which is the image of the sides of A. Hence injective points are dense in A/ ~. B

Lemma 3.19 FEvery regular leaf and every singular leaf in the interior of A(S’) has at most one
limit point on SL(F), the other limit points are on sides of A(S).

Proof. Let ¢ be a leaf of % and suppose that £ N int(A) has two distinct limit points x,y on SL .
A side ¢ of A is a leaf which is regular on the A side. Suppose that z and y are limit points of ¢

12



also. Then the bi-infinite leaves ¢ and ¢ in F are parallel. Then the bigon B they bound in Fis
foliated as a product. The image of B in F' is an annulus foliated by circles, but there are no closed
leaves in the invariant foliations of a pseudo-Ansosov. Therefore # and y have distinct images in
JA/ ~ and so by the previous lemma CT'(z) # CT(y). But this implies # and y are not limit points
of the same leaf ¢, a contradiction. l

Recall that a group action is said to be wandering if every point p has a neighbourhood U so that
gU NU # ¢ for only finitely many g.

Lemma 3.20 Fach side of A contains at most one point fized by some non-trivial element of m1(S).
The action of m(S) on A — L(m(S), F) is free and wandering.

Proof. Suppose that o € 71(S) has a fixed point # in some leaf ¢ in the boundary of A. Then
a preserves A and therefore stabilizes £. It follows that « must be some lift of some power of the
pseudo-Anosov and that x is the lift of some periodic point. However a leaf can contain at most one
periodic point and this gives the first statement.

We have already seen in Theorem 3.12 that the action of m1(5) is free and properly discontinuous
on int(A), so acts freely on A — L(m(S5), F) Morevoer to show that the action is wandering we
need only consider points # in 94 — L(w1(S), F)

Since A 1s a regular polygon we may choose a neighbourhood V of z in A to be a quadrilateral,
one side of which is an arc of ¢ and the other 3 sides are arcs in F~ and FT. For the sake of
definiteness we shall suppose that ¢ is contained in a leaf in F+ thus the two arcs 8y, 3> of dV
adjacent to £ are in F~ and the remaining arc of dV is in F*. We may choose V so small that
there is no singularity in the interior of V and using Lemma 3.15 we may arrange that the orbit of
V under the stabilizer of ¢ is disjoint from V. Refer to Figure 1.

Insert Figure 1.

Finally we choose V' so that length(8;) is very small compared to the distance of z from every side
of A other than /.

Suppose now that (V') meets V for some 7 € 71(S). By choice of V' it follows that 7 does not
stabilize £. Thus 7(V') meets a side 7(¢) of V other than ¢. Tt follows that 7(5;) is much longer
than §;. If we now lengthen §; slightly the images 7(/;) move towards £ very rapidly and so will
eventually leave A; a contradiction. l

Lemma 3.21 Let ¢ be any side of A then stab({) = 7.

Proof. By Lemma 3.15, the stabilizer of a leaf is Z or trivial, so suppose that ¢ is a side of A and
that stab(f) is trivial.

Without loss, assume that ¢ is an unstable leaf and let A’ be the union of interior(A) and the
orbit of ¢ under m(S). Set Y = A’'/x1(S). Tt follows from Lemma 3.20 that the map 4" — V is
covering map and so Y is a nonclosed surface which however may fail to be Hausdorff. We shall show
that we may combine Lemma 3.19 together with the assumption that the stabiliser of £ is trivial to
deduce that Y is Hausdorff. But this implies that m1(S) = #1(Y") is a free group, contradicting the
fact that S is a closed surface, not S2.

To show that Y is Hausdorf, it suffices to show that given two distinct points z,y in A’ there are
neighborhoods U of # and V of y, such that the 71(.S)-orbit of U is disjoint from V. By Corollary
3.5 the action of m1(S) on int(A) is free and properly discontinuous. Therefore it suffices to consider
the case that x lies in some side of A which we may assume to be £. Let ¢, ¢, be the intersection of
the stable leaves through x,y with A’. By Lemma 3.19 ¢, has at most one limit point z on St

There are a finite number of elements in 71(.S) which move any endpoint of £; onto a specified
side of A’ because stab(f) is trivial. Therefore we may focus attention on those elements « of 71 (5)
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with the property that «(f;) does not have any endpoint on a side which also contains an endpoint
of £,.

Choose V' so every stable leaf through V meets a side of A containing an endpoint of £,. This is
possible because £, has at most one limit point which is not an endpoint on some side of 4. We may
choose V so that there is a positive lower bound é to the distance between every point in V' and
every side of A not containing y. We may choose U so that the diameter of U is small compared to
6. Suppose that o € ¥ and all meets V, let ¢/ be the side of A’ which contains ez then the distance
of ax from V is much larger then the diameter of U therefore o expands the stable sides of U. Refer
to Figure 2.

Insert Figure 2.

Then ax is very close to z and alU contains a segment [z, w] of a stable leaf running from ax to a
point w € V. By enlarging U slightly, we see that w hits a side of A’ containing an endpoint of £,.
But this is absurd. W

We may now prove our promised converse to Theorem 3.16. We shall define a foliation to be finite
if 1t consists of a finite number of closed leaves and every other leaf spirals towards one of these
closed leaves at every end. The reason for the terminology is that a foliation is finite if and only if
the lamination obtained by straightening it has only a finite number of leaves. Finite foliations also
arose in Fenley [5] in the context of depth 1 foliations of 3-manifolds. Nonetheless, the connection
between Theorem 1.3 and Fenley’s remains unclear. In particular, even if the surface in Theorem
1.3 is embedded and is a compact leaf of a depth 1 foliation, it is not proven that the two theorems
give the same finite foliation, though presumably this is the case. At any rate, the methods are
somewhat different.

Theorem 3.22 Let f;,fs_ be the foliations on S obtained by intersecting with S the suspension
of the foliations F* F~ on F. If m{(S) is quasi-Fuchsian then these are finite foliations.

Proof. We recall that it is a consequence of our work thus far that the fact that the surface
group is quasi-Fuchsian shows that the polygon A is not the whole disc and that each component
of the frontier is a leaf of either the stable or unstable foliation, regular to the inside and has cyclic
stabiliser.

We first observe that there is a closed leaf in f;’ corresponding to each side of A which is
(contained in) an unstable leaf of F'. This is because if ¢, is an unstable side of A then by lemma
3.21 there is a non-trivial element « of 71(.S) which stabilizes £,,. Now o must have a fixed point »
on f,, let £ be the intersection with A of the stable leaf through =. Then ¢, must be regular in A
and have a limit point on Séo(ﬁ) because /; is stabilized by «. The pre-image under the flow map
¢ of £, in S projects to a closed leaf in f;’.

Let ¢, be the intersection with A of any stable leaf in F, and suppose that £, contains no
singularity. By Lemma 3.19, ¢, has at least one limit point on an unstable side £, of A. Let £
be the leaf constructed above for £,. Then the leaf in S corresponding to ¢, is asymptotic in one
direction to the closed leaf corresponding to ¢;.

We have just shown that the foliation f;’ has the property that every regular leaf is asymptotic
in at least one direction to a closed leaf. Therefore the corresponding lamination has this property
for every nonclosed leaf.

Now it follows from [3] Lemma 4.6 that a leaf of a geodesic lamination which accumulates on a
closed leaf 1s isolated, and we deduce that every nonclosed leaf of this lamination is isolated. Every
isolated leaf 1s the side of some principal region of the complement of the lamination. Therefore
if ¢ = genus(S) then there are at most 12g — 12 isolated leaves and at most 3¢ — 3 closed leaves.
Moreover, an isolated leaf must accumulate in either direction on some non-isolated leaf which
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must therefore be a closed leaf. It follows that in the lamination either end of every nonclosed leaf
accumulates to a closed leaf, so that in the universal cover, a lift of any nonclosed leaf must share
both endpoints with the lift of a closed leaf. Since endpoints are not changed in the passage from
foliation to lamination, we deduce that the foliation is finite. W

4 Two Examples.

Example 1.

We construct an example of an immersion into a hyperbolic bundle of the type that we have
been discussing and use our results to show that the immersion is quasi-Fuchsian. In order to make
this as simple as possible, we construct a pseudo-Anosov map of a genus two surface which moves a
curve disjoint from its image. The method is that of [9], but for the convenience of the reader, we
develop it from first principles.

Let ¢/ : T/ — T’ be an Anosov diffeomorphism of the torus 77 = R?/7Z x 27Z. Let v be an
arc embedded in 7" with endpoints zg and z; which are fixed points of 6’ and let p : F¥ — 1"
be the 2-fold branched cover of 77 branched over xy, z; using the branch cut . Then 6’ is covered
by a homeomorphism @ : F — F, and § is pseudo-Anosov. To see this, let F+(T"), F~(T") be
the invariant measured foliations on 7", then the pull-back of these via p to F' gives two measured
foliations F*(F), F~(F) on F. These foliations each have two 4-prong singularities, one lying above
each of xg, 1. The transverse measures on F' are also obtained from those on 7" by pull-back, and it
is clear that in local coordinates the action of @ is isometrically conjugate to the action of 8, where
the metrics involved are those determined by the measured foliations on F' and 7. Therefore the
eigenvalues of ' and @ are the same. In particular this implies that no power of # can stabilise any
finite curve system and 6 is therefore pseudo-Anosov.

Now suppose that there is a free orientation preserving involution 7 on 7" which commutes with
6" and swaps xo with 1. Then T = T"/7 is also a torus and 6’ covers a map 6 on T. Furthermore
Fis a 4-fold irregular branched cover of 7" branched over the single point zqg = z; in 7.

We will now apply this construction in a particular case. We will regard 7' = R?/Z? and let 6
be the linear homeomorhism on 7" induced by the linear map on R? with matrix

(ED-( ()

Define two simple closed curves m, £ on 7" to be the images of the z-axis and y-axis respectively.
Let 7(m), 7(£) be the Dehn twist around these curves, then

=2 1) rw=(g 1)

thus @ is isotopic to the product of Dehn twists 7(€£)~27(m)?.

Observe that a Dehn twist 7(a)™ about the core curve « of an annulus A lifts to an n-fold
covering Aof Ato give a Dehn twist 7(&)P about the core curve & of A. We can use this observation
to calculate the lift of any mapping class of a compact surface to a branched or unbranched cover
of that surface by expressing the mapping class as a product of Dehn twists.

Now we form the 2-fold cover p; : 7 — T by unwrapping in the ¢ direction, more formally
this is the cover corresponding to the subgroup C' =< ¢ m > of m1(T). Let (= pl_lﬁ and let
71,72 be the 2 components of pJ 'm. Then 7(¢£)~% is covered by 7'(!7)_1 and 7(m)? is covered by
(1 )?7(1m2)%. There are 2 possible choices for each of these covering maps, we will choose all maps
to fix a specified pre-image of the origin. Then 6’ = 7(£)~ 7 (1ny )7 ()2

Finally we form the branched cover p; : F — T”. A fundamental domain for 7" is the rectangle
R =10,1] x [0,2] in R?  and we choose ¥ to be the vertical arc in this rectangle {(0,¢) : 0 <t < 1}
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thus zp = (0,0) and #; = (0,1). We label vy, m2 so that /my is g x [0,1] of R and then m; is
£ % [0,1]. Thus v is disjoint from 77, and meets s once.

Thus pz_lﬁll has two components which we label M;, M| and pz_lﬁlz has one component which
we label M,. Also pz_lg has two components L, L’. It now follows that

0 =7(L)"'r(L)y e (M) (M) r(My).
The curves My, M;, M5, L, L’ on F are shown in Figure 3.
Insert Figure 3.

Let ¢ : FF¥ — F be the branched covering involution associated to the 2-fold branched cover
p2 i F— T’. Since ¥ 1s an isometry of the metric on F' determined by the invariant measures for
6 1t follows that © = 1 o # is also pseudo-Anosov.

Lemma 4.1 The curve My is disjoint from ©(M;) ~ L' - M].

Proof. We will use the above factorisation of @ as a product of Dehn twists. Since M, M}, Mo
are disjoint, Dehn twist about these curves do not move M;. Furthermore L and L’ are disjoint and
therefore Dehn twist about these curves commute. Since M is disjoint from L’ we see that

0C = 7(L)"'M; = L - M;.

Referring to Figure 3, it is easily seen that ¢(L - M) = L' - M{ is disjoint from M;. Thus @M, is
disjoint from M as claimed. We remark that M; may be replaced by M{ in this argument. B

We now wish to calculate the invariant foliations on F. This is done by exhibiting a fundamental
domain P for the universal cover F of F. Now F is a 4-fold branched cover of T, and we can choose
D so that it is mapped injectively onto its image in the universal cover R? of T. A choice for this
image of D is shown in Figure 4A.

Insert Figures 4A & 4B.

It consists of 4 fundamental domains for 7', each of which is a unit square with corners in Z2.
The branch points xg,z; are lattice points and therefore the singularities of the foliations on F
correspond to some of the corners of D.

We now use the construction in Lemma 2.4 to define a surface S(F,C,0). Let C' = M, this curve
in F' has image {(0,¢): 0<t<1} and ©C has image {(1+1¢,2t—2): 0<t <1 }. Take a copy
of F' and cut F" along C' and ©C to obtain F_. Then we cross-join Cy and ©C5 to get S(F,C,0)
and an immersion ¢ : S — M where M is the mapping torus for O.

Notice that the foliation on S is obtained by taking the foliation on F| restricting to F_ and
then glueing using © to get .S. The identification of Cy with ©C corresponds in D to identifying
(0,¢) on C to (1 +1¢,2t —2).

Theorem 4.2 The induced foliations on the surface S(F,C,0) have closed leaves, therefore S is
quasi-Fuchsian.

Proof. The eigenvalues of # are Ay = (3 + 2\/5) and the corresponding eigenvectors are vy =
(1,(1 & v/2)). The foliation with eigenvector vy is shown in Figure 4B. Inspection of this figure
reveals that every flow line starting on ©C4 in D ends in some proper subset of C't. In particular,
this implies that there is a closed leaf on S which meets C'y exactly once. It follows from Theorem
3.22 that immersion S is quasi-Fuchsian.
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This theorem also implies that the other foliation also has a closed leaf; finding this closed leaf
is left as an (easy) exercise for the reader. W

Example 2.

One question raised by our results is the question of when an embedded quasi-Fuchsian surface
can be isotoped so as to be transverse to the flow £. This seems to be unresolved in general,
although some partial results are presented by Mosher in [11]. In particular his Weak transverse
surface theorem gives a sufficient condition for when a 2 dimensional homology class contains such
a representative. Here we give a simple construction for embedded quasi-Fuchsian surfaces which
are tranverse to the flow associated to the suspension of a pseudo-Anosov map. An example of a
quasi-Fuchsian surface which is transverse to a flow on a compact manifold is given in [12], but the
flow in this case is not the suspension flow of a pseudo-Anosov map.

Of course such an example cannot exist without some restrictions, for we have the following well
known observation from the theory of dynamical systems:

Lemma 4.3 Suppose that S is an embedded surface transverse to the foliation £ and that S meets
every flowline at least once. Then S is a fiber of a fibration of M.

Proof. For the purposes of this proof it is convenient to think of the foliation £ as the orbits of a
flow {¢;} on the manifold M. The main claim is that every point flows forward onto S; once this
has been established it will follow that M can be reconstructed as the mapping cylinder of the first
return map S — S and thus that S is a fiber in a fibration of M.

To this end, given any point p € M define W(p) to be the set of all possible accumulation
points of the set { ¢ (p) | tn — oo }. Since M is compact, this set is nonempty. Then the
set W(p) is actually invariant under the flow, since if ¢ € W(p) and any K is given, ¢x(q) =
limp_ oot (d:, () = limy_ o @K 1e, (p) and the righthandside lies in W(p) by definition. Thus
W (p) is a union of flowlines.

Suppose that we were able to choose some p so that the forward orbit did not meet S. Since S
meets the flow transversely, it follows that the set W(p) does not meet some neighbourhood of S,
and we deduce that there is a flowline which does not meet S, a contradiction. W

Thus an embedded surface which is transverse to £ meets every flowline if and only if it is geomet-
rically infinite. In fact it follows from results of Fried [6] that any embedded surface transverse to
the suspension flow of a pseudo-Anosov map associated to fibration ' — M — S! must lie in the
closure of the face of the Thurston norm containing [F].

The reason is that Fried proves that one can characterise the representatives of such a face
as those embedded surfaces with positive intersection numbers with a finite number of (carefully
chosen) closed flowlines. Therefore if S is any embedded surface transverse to £ |, then for any
positive integer n, the class [nS + F] meets every flowline and in particular all the closed orbits, so
must lie in the interior of the face containing [F]. From this it follows that [S] lies in the closure of
the face.

We now show how to construct examples of embedded surfaces which are transverse to the
suspension flow of a pseudo-Anosov, but are quasi-Fuchsian. The above remarks show that such a
surface is in the boundary of the face of the Thurston norm containing the fibration.

We need the following construction: Suppose that 8 : S — S is a pseudo-Anosov map which
has the property that one can find a nonseparating oriented simple closed curve C' with (a) C is
disjoint from 6(C') and (b) With the given orientations C' and 6(C') represent the same nonzero class
in Hl(S)

Under these circumstances, we may form an embedded surface S which is transverse to the flow
in the following way: Let Sy be one of the subsurfaces of F' whose boundary components are C
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and 6(C'). Regard this as a subsurface Sy x {0} C F' x {0} C F x I and adjoin an annulus C' x I.
This surface then closes up to be an orientable surface in M, which one sees easily can be made
transverse to the flow.

We claim that this surface is actually incompressible; in fact we show the stronger fact that it
is a Thurston norm minimising representative of the homology class. The reason is that if we do
double curve sums with F, then we obtain a new surface transverse to the flow - so that although
this new surface may be disconnected, it cannot involve any 2—sphere components. Therefore the
Fuler characteristic of S+ nF is x(S) +nx(F). If we sum with enough copies of F we obtain a class
lying in the fiber face, which is thus an integral multiple of a class represented by a fiber. It follows
that for very large n, S+ nF' is a Thurston norm minimising surface. However, if the surface .S were
not norm minimising, we could replace it by a representative with smaller Euler characteristic and
double curve sum with the same number of copies of F' to lower the Euler characteristic of S+ nF,
a contradiction.

We shall now give a construction for examples of the type promised above. Suppose that F' is
a hyperbolic orbifold with underlying topological space a torus, and that  : /' — F' is a pseudo-
Anosov map with the properties described above as well as the property that it fixes at least one of
the cone points. (We shall show below that such examples may be constructed rather easily.) The
surface Sy of the paragraph above must be a topological annulus with some number of cone points.
This number cannot be zero or all, else (looking to the other homology cobordism in I if necessary)
we find a free homotopy between C' and #(C') which is impossible for a pseudo-Anosov map.

Form the orbifold M containing the surface S as above, choosing as Sy the side of the homology
cobordism which does not contain a fixed cone point. Note that this guarantees that the closed
flowline through this cone point misses the surface S. By passing to a torsion free subgroup of finite
index, we find a surface with all the promised properties, which misses the full preimage of this
flowline and therefore 1s quasi-Fuchsian.

It remains to verify the existence of such maps. One example which one can compute explicitly
comes from using the monodromy of the Borromean rings. One finds in this case that there is a
curve which is moved disjoint from its image, so that by doing appropriately large (0, k) surgeries,
all the above hypotheses can be arranged.

More generally, such examples may be constructed as follows. We refer to Figure 5A: This
depicts a surface F' which is a torus with a single boundary component glued to a sphere with at
least four boundary components.

Insert Figures 5A & 5B.

Choose a pseudo-Anosov map of the braid group of the disc and denote it by £&. We also have a
map of F' to itself which we shall denote by p,; it is an element of the braid group of ¥ which is
constructed by moving the first puncture around F' and back to its starting position along a path
such as that indicated by a in Figure 5A. With the choice of path shown it is clear that the image
of the curve C' under the composition p.é is the curve denoted in Figure 5B by #(C). In order
to arrange that the other curve on the torus is moved into the disc part we should choose some
other path § using the second puncture. It is clear our choices can be made so that 6 = psp,¢
is pseudo-Anosov and carries the curve C' to the curve §(C') as shown in Figure 5B. Filling in the
punctures on F' will now give the orbifold example which was promised.

5 Appendix : The Cannon-Thurston map.
For the convenience of the reader, we will review part of the work of Cannon and Thurston on

geometrically infinite surfaces [2]. Let M be a closed hyperbolic 3-manifold which fibers over the
circle with fiber F' and pseudo-Anosov monodromy 6 : F' —— F. Let A > 1 be the stretch factor for
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¢ and (F*,ut) and (F~, ™) the stable and unstable projectively invariant measured foliations for
f respectively. If « is an arc transverse to these foliations then

i (0a) = A ().

This means that 8 contracts segments of stable leaves and expands segments of unstable leaves.
Both these foliations have the same singular points & which are finite in number, and we denote the
punctured surface obtained by removing the singularities by F* = F' — §. The measured foliations
define a Euclidean metric dt on F* as follows. We adopt the convention that (z,y) are local
coordinates on F* where:

e 1z is constant along a leaf of F~

e 1y is constant along a leaf of F+.

Thus pT is locally dz and u~ is locally dy. Using these local coordinates  expands the z direction
and contracts the y direction and is given locally by the matrix

Ao

0 A
relative to local zy coordinates around w € F* and fw. The metric completion of F* is a singular
Euclidean metric on F. A neighborhood of a singular point in F' corresponding to a k-prong singular-
ity of both F* and F~ is isometric to the metric space obtained by taking a k-fold branched cover

of the Euclidean plane branched around the origin and then quotienting by the isometry ¢ — —z.
Now put a Riemannian metric ds on F* x [0, 1] given by the formula

ds? = X™%de? + AP dy? + d2?
where z is the coordinate on [0, 1]. This is a Solv metric, see [13] and is chosen so that the map
F*x1l—F*x0 (w1)— (0w,0)

is an isometry. This induces a Solv metric on F* x I/(w,1) = (fw,0) and the metric completion of
this 1s a Solv metric with singularities on M.
Since M is compact, the metric ds on M and the hyperbolic metric dh on M are Lipschitz related
thus there is K > 1 with
K=Ydh < ds < Kdh.

Lifting these metrics to the universal cover
T M — M

the same comparison applies to the lifted metrics.

Let ¢ be a regular leaf of F* in the universal cover F of F. Given a point w in F' there is a
unique dt geodesic v in F which contains w and is orthogonal to £. This is because d¢ has non-positive
curvature. Let w(w) be the point of intersection of v and ¢ then the map

p:ﬁ—>£

is called orthogonal projection onto ¢ and does not increase dt distance. We identify F x R with
M and extend the above map to

p:FxR—(xR plw,t) = (pw,t).

The formula for the Solv metric on M shows that this map also does not increase ds distance. It
follows that the shortest path in F' x R between two points in £ x R lies in £ x R. Thus £ x R separates
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F x I into two components with closure 4 and B with the property that they are ds convex in
the following sense. Given two points in A a shortest path between them lies entirely in A. We call
A and B the half-spaces associated to £.

Fix a hyperbolic metric on F' then use this to identify F with H2. Now identify H? with the
interior of the closed unit disc B? and identify H? with the interior of the closed unit ball B2 in the
usual way. We will use de for the Euclidean metric on both B? and B3. A continuous map

f.F — WP

has a continuous extension to
f:B*— B3

if and only if f is uniformly continuous with respect to the Euclidean metric de. We will apply this
to the map f which covers the inclusion of F' into M.

Let ¢ be the center of B2 and let ¢ be a leaf of F* in F which does not contain ¢. Let A be the
half-space associated to £ that does not contain c¢. Suppose that the ds distance between ¢ and A
is D. If  and y are two points in A and 7 is a ds-shortest path between them, then ~ is contained
in A and so fy is contained in f(A). Now f~ lies within some distance L of the unique hyperbolic
geodesic § between fz and fy. Since 74 1s a ds shortest path and f i1s a K quasi-isometry 1t follows
that fv 1s a K-quasi-geodesic and so L depends only on K. Thus the distance of fe from 6 is at
least D/K — L. For D sufficiently large it follows that fA is contained in a set of small de-size. This
implies the f is de-uniformly continuous.

Thus the inclusion  — M has a continuous extension to the circle at infinity. Since @ (F) is
normal in 71 (M) they have the same limit set, thus Séo(ﬁ) maps onto Sgo(M) We claim that two
points in Séo(ﬁ) have the same image if and only if they are limit points of the same F*-leaf. Let
£ be a leafl of FT, the formula for the singular Solv metric restricted to £ x R is

ds? = A\ dze? + d2°.

Suppose that |zo — 21| is large then the ds distance between two points (1,0) and (z2,0) on £x 0 is
approximately 2log, |22 — 1]. An approximation to a ds-shortest path v between them consists of
two vertical intervals ; x [0,logy|z2 — x1|] together with the horizontal segment of £ x log, |z2 — 21|
between z1 X log, |as — 21| and 25 x log, |#s — @1|. If 21 and x5 are a large ds distance from ¢ then
v is also a large distance from c. It follows that fv is a large dh-distance from fe and since fe is
almost a K-quasi-goedesic it has small de diameter in B3. This proves the if part of the claim. Next
we prove the only if part of the claim.

Let AT, A~ be regular leaves of 1, F~ respectively which intersect in a point z. The intersection
of a half space associated with AT with one for A~ is called a quarter space and the line { = z x R
is called the axis of the quarter space. There are 4 quarter spaces associated to AT, A~ and two of
these which intersect only in £ are called opposite quarter spaces.

Lemma 5.1 Suppose that A, B’ are two opposite quarter spaces which contain quarter spaces A, B
respectively in their interiors. Then A and B have disjoint closures in the sphere at infinity.

Proof. The proof involves showing there is a compact subset K of M such that every dh-geodesic
segment with endpoints in A and B meets K. B

Assuming this consider two points a,b on Séo(ﬁ) which are not limit points of the same leaf. There
are quarter spaces A, B as in the lemma such that @ € ¢l(A4) and b € ¢l(B) and this proves the
claim.

Let AT be a regular leaf of Ft then the ds-metric restricted to AT x IR is the hyperbolic metric
and the lines At x ¢ are horocycles which curve upwards. A vertical line x x R is a ds geodesic which
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is orthogonal to these horocycles and therefore converges in the upwards direction to the point at
infinity where these horocycles limit.

This shows that the map which flows a point on Fx0 upwards to the sphere at infinity is the
map which sends a point z € F to the point on the sphere at infinity to which the Cannon-Thurston
map sends the leaf AT containing z.
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