
G G G
G
G
G
G

GGGG
G
G
G
GGG T TT

T
T
TT

TTTTT
T
T
TT

T

Geometry &
Topology

msp

Volume 28 (2024)

Zariski dense surface groups in SL.2k C 1;Z/

D DARREN LONG

MORWEN B THISTLETHWAITE





msp
Geometry & Topology 28:3 (2024) 1153–1166

DOI: 10.2140/gt.2024.28.1153
Published: 10 May 2024

Zariski dense surface groups in SL.2k C 1;Z/

D DARREN LONG

MORWEN B THISTLETHWAITE

We show that for all k, SL.2kC 1;Z/ contains surface groups which are Zariski dense in SL.2kC 1;R/.

22E40; 20C15, 20H10

1 Introduction

Let G be a semisimple Lie group, and � <G a lattice. Following Sarnak [11], a subgroup� of � is called
thin if � has infinite index in � and is Zariski dense. There has been an enormous amount of interest in
the nature of thin subgroups of lattices, motivated in part by work on expanders, and in particular the
so-called “affine sieve” of Bourgain, Gamburd and Sarnak [3].

Since it is quite standard to exhibit Zariski dense subgroups of lattices that are free products, the case of
most interest is when the (finitely generated) thin group � does not decompose as a free product. Despite
their importance and interest, nonfree thin subgroups in higher rank are extremely difficult to exhibit
since the Zariski dense condition makes any given subgroup hard to distinguish from a lattice and freely
indecomposable isomorphism types in the higher-rank situation are poorly understood. Our main theorem
is the following.

Theorem 1.1 For every k � 1, the group SL.2kC 1;Z/ contains a faithful representation of a surface
group which is Zariski dense in SL.2kC 1;R/.

To the authors’ knowledge, this is the first result of this type concerning a freely indecomposable
isomorphism type with Zariski closure SL.n;R/ for infinitely many n.

In fact our argument shows that there are infinitely many nonconjugate such representations. We note that
previous work of the authors (see Long, Reid and Thistlethwaite [7] and Long and Thistlethwaite [8])
using a totally different approach proved this to be true for 2kC 1D 3; 5 (and also in fact for k D 3

2
).

However, that method seems to have no hope of generalizing for infinitely many n.

Here is an outline of our argument, with careful definitions deferred to the sections below. The starting
point is a certain discrete faithful representation of the triangle group �n W�.3; 4; 4/!PSL.n;R/, obtained
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1154 D Darren Long and Morwen B Thistlethwaite

by composing a discrete faithful representation coming from the hyperbolic structure with the irreducible
representation

�n W PSL.2;R/! PSL.n;R/

obtained by the action on homogeneous polynomials of degree n D 2k C 1 in two variables. Such
representations lie on the so-called Hitchin component (see Labourie [6] and its generalization to orbifolds
coming from Alessandrini, Lee and Schaffhauser [1]), with the key fact being that all representations on
the Hitchin component are discrete and faithful [1, Theorem 1.1].

Since n is odd, we can show (Theorem 2.1) that this representation can be conjugated to be integral. Of
course, this representation cannot be Zariski dense since it lies inside an algebraic group isomorphic
to PSL.2;R/. Indeed, standard theory shows that it has image inside SO.J;R/, where J is a certain
quadratic form of signature .kC 1; k/.

It is this representation we seek to ameliorate using the well-known bending construction, however the
triangle group does not lend itself to that, so we pass to a subgroup of index four which is the fundamental
group of the orbifold S2.3; 3; 3; 3/. The bending construction is described in detail in Section 3, but
briefly: One takes an integral element ı 2 PSL.n;R/ which centralizes the image of an essential simple
closed curve  ; this curve splits the surface into two subsurfaces L and R (in the initial case, each is a
disc with two orbifold points) and defines a new representation by conjugating �n by ı on the R surface.
This new representation is obviously still inside SL.2kC 1;Z/ and it continues to be faithful since we
take care to arrange that it lies on the Hitchin component.

If the bent group is not Zariski dense, we conclude that it lies inside SO.J /, and we appeal to a result of
Guichard (see Theorem 3.1 and Guichard [5]) to prove that it must have Zariski closure all of SO.J /.

The strategy now is to perform a suitable second bend. This is much more subtle, for example one
needs at least to be sure that one can find an element for which all the integral centralizing elements do
not lie in SO.J /. However, we can use the extra information that the Zariski closure of the bent group
is all of SO.J / to appeal to the Weisfeiler–Nori version of the strong approximation theorem; see the
discussion of Section 3.2. From this follows that for all but finitely many primes p, if one reduces the
bent group modulo p it surjects �.J;p/, the commutator subgroup of SO.J IZ=p/. (It is classical that
ŒSO.J IZ=p/ W�.J;p/�D 2 for odd p.) Since we can show that group �.J;p/ contains elements whose
characteristic polynomials are of the form .Q� 1/f .Q/ where f .Q/ is irreducible modulo p, it follows
that the original group contains an element � mapping onto such an element, in particular its characteristic
polynomial has the form .Q� 1/F.Q/ where F.Q/ is Z irreducible.

Of course the element � may not be a simple loop, but we show in Section 4 one can ascend a carefully
constructed tower of regular coverings so that � lifts to each step of this tower and ultimately becomes a
(power of an) essential simple loop on some orbifold surface S2.3; 3; : : : ; 3/, which must still surject
�.J;p/.
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Zariski dense surface groups in SL.2kC 1;Z/ 1155

One can then show, using rank considerations, that the characteristic polynomial condition implies that
there is an integral element in the centralizer of � inside SL.2kC1;Z/ which does not power into SO.J /
and from this, it is not hard to see (appealing again to the classification result of Guichard) that bending the
group using that element makes the resulting orbifold group Zariski dense. The resulting representation
is faithful since it continues to be on the Hitchin component.

We note that the methods of this paper can be used to show that in any dimension, if the Hitchin
component contains an integral representation, then it contains an integral Zariski dense representation;
see Zshornack [14]. This is because although the finite group situation for n even is slightly more involved,
there is no real difficulty extending the observations of Section 3.2 to the symplectic case. However,
finding such an integral representation in even dimensions seems to pose significant difficulties.

For the rest of this article, we restrict to the case n� 9. This is not for any truly essential reason, as the
argument present here works if n> 3. However, as mentioned above, the cases nD 3; 5 are already in
the literature and while the case nD 5 can be dealt with by the method described here, the case nD 7

involves a technical detour which is hardly worth the number of words it would take. This case is resolved
explicitly in our computation [9].

Acknowledgements Long was partially supported by the NSF.

2 Integrality of certain representations of the 344–triangle group

This section analyses certain representations of the triangle group

�.3; 4; 4/D ha; b; c j a3
D b4

D c4
D abc D 1i;

which is the group of orientation-preserving symmetries of the tiling of the hyperbolic plane by triangles
with angles

˚
�
3
; �

4
; �

4

	
.

Let �2 W�.3; 4; 4/! PSL.2;R/ be the faithful representation of �.3; 4; 4/ into IsomC.H2/. Hyperbolic
triangle groups are rigid and so �2 is uniquely determined up to conjugacy.

Let �n W PSL.2;R/ ! PSL.n;R/ for n � 3 denote the irreducible representation obtained from the
standard action on homogeneous polynomials in two variables. We denote the composite representation
�n ı�2 W�.3; 4; 4/! PSL.n;R/ by �n.

Remark For odd n (the situation which primarily concerns us here) the representation �n lifts to a
representation of �.3; 4; 4/ into SL.n;R/, but for even n we have to be content with the situation we
already see for n D 2, namely that we have a representation of a certain pullback group U344 into
SL.n;R/, the pullback being that determined by the representation �2 together with the natural projection
SL.n;R/! PSL.n;R/.
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1156 D Darren Long and Morwen B Thistlethwaite

For ease of notation we denote elements of PSL.n;R/ by representative matrices in SL.n;R/; also, given
a subring A of C we say that a representation into PSL.n;R/ can be written over A if the corresponding
lifted representation (of �.3; 4; 4/ or U344) can be so written.

Since �.3; 4; 4/ is the fundamental group of a compact orbifold, specifically S2 with cone points of
orders 3; 3; 4, it follows that �2.�.3; 4; 4// contains no parabolic. Therefore all matrices in �2.�.3; 4; 4//

are diagonalizable, and application of �n to a diagonal matrix shows that if A 2 �2.�.3; 4; 4// has
eigenvalues � and 1=�, then the eigenvalues of �n.A/ are

�n�1; �n�3; : : : ; ��.n�3/; ��.n�1/:

In this section, we prove the following.

Theorem 2.1 For odd n, the representation �n be written over Z.

For even n, the representation �n can be written over ZŒ
p

2 � but not over Z.

We choose the following faithful representation �2 of �.3; 4; 4/ into the group PSL.2;R/ of orientation-
preserving isometries of H2, obtained by placing the isosceles

�
�
3
; �

4
; �

4

�
–triangle symmetrically about

the y–axis in the upper half-plane and then putting the matrix for the generator a in rational canonical
form:

�2.a/D

�
0 �1

1 1

�
; �2.b/D

�
0 �1�

p
2

�1C
p

2
p

2

�
; �2.c/D

�
1�
p

2 �
p

2

�1C
p

2 �1

�
:

Thus the representation �2 of �.3; 4; 4/ can be written over the ring ZŒ
p

2 �, and since application of �n

to a 2� 2 matrix A produces an n� n matrix whose entries are integer polynomial expressions of those
of A, we see that �n for n � 3 can also be written over ZŒ

p
2 �. We shall show that for odd n, �n can

actually be written over Z and for even n this is not possible.

Our next basic ingredient is the fact that the representation �3 can be written over the integers. Here is an
example of an integral representation �0

3
of �.3; 4; 4/, conjugate to �3:

�03.a/D

241 1 �2

0 �1 1

0 �1 0

35 ; �03.b/D

241 0 �1

4 1 �1

2 0 �1

35 ; �03.c/D

24 1 1 0

�2 �1 0

�4 �1 1

35 :
Lemma 2.2 The representation �n of �.3; 4; 4/ has integral character if and only if n is odd. For even n

the character of �n takes values in ZŒ
p

2 �.

Proof Let A be any matrix in �2.�.3; 4; 4//, and let the eigenvalues of A be � and 1=�. Since �3

can be written over the integers, we see that �2C 1C ��2 2 Z, hence also �2C ��2 2 Z. For odd n,
�n�1C��.n�1/ D f .�2C��2/ for a polynomial f 2 ZŒx�, so we deduce inductively that the trace of
�n.A/ is an integer. On the other hand, if n is even, then

�n�1
C�n�3

C � � �C��.n�3/
C��.n�1/

D .�C��1/.�n�2
C�n�6

C � � �C��.n�6/
C��.n�2//:
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Zariski dense surface groups in SL.2kC 1;Z/ 1157

A similar argument shows that the second factor is an integer, whereas the first factor might not be, eg the
trace of �2.a

�1b/ is 2
p

2. We deduce that for even n, the trace of �n.a
�1b/ is not an integer; however,

as �n can be written over ZŒ
p

2 �, its character takes values in that ring.

Lemma 2.3 For odd n, the representation �n of �.3; 4; 4/ can be written over the rational numbers.

Proof We have established that for odd n, �n has integral character and can be written over ZŒ
p

2 �. Thus
�n is realizable over a field of degree 2 over Q. Suppose that �n is not realizable over a field of smaller
degree over Q; then the Schur index of the irreducible representation �n is ŒQ.

p
2/ WQ�D 2. However

the Schur index divides the degree n of the representation [2], contradicting the fact that n is odd.

The conclusion of Theorem 2.1 has already been established for even n; for odd n it follows directly from
Lemmas 2.1 and 2.3 together with the proof of Proposition 2.1 of [7].

3 The bending construction

Our construction is reliant upon an orbifold which has somewhat more geometric flexibility than the
triangle group�.3; 4; 4/. To this end we note that there is a homomorphism�.3; 4; 4/!Z=4 which sends
the two elements of order 4 to 1 and �1. This defines an orbifold covering S2.3; 3; 3; 3/!�.3; 4; 4/.
We may restrict the representation �n to the subgroup defined by the covering to yield a discrete and
faithful representation corresponding to a hyperbolic structure

�n W �1.S
2.3; 3; 3; 3//! PSL.n;Z/:

The orbifold S2.3; 3; 3; 3/ has an obvious flexibility (often called bending in the setting of SO.n; 1/
representations) coming from the following construction: Let d1 : d2 D  be the simple closed curve
on the two-sphere which separates two of the orbifold points from the other two; denote the two sides
by L and R. Each contains two cone points of order three. Let ı be any element of PSL.n;R/ which
centralizes �n. /. Then we may form a bent representation of S2.3; 3; 3; 3/ by matching �n.�1.L//

with ı : �n.�1.R// : ı
�1; these representations agree on �n. / by the choice of ı. We denote this bent

representation by �ı (even though this is a bit of an abuse).

With a view to questions concerning faithfulness, we will invariably use bending elements which are
in the image of the exponential map (for example they will be diagonalizable and with positive real
eigenvalues) that if, for example, ı D exp.v/, then all the elements exp.tv/ centralize �n. /. Then there
is a path of bendings from � to �ı given by �exp.tv/. It follows that if � lies on the Hitchin component,
then so does �ı and in particular, this implies that the latter is a faithful representation.

An important ingredient of our approach which gives the requisite control hangs upon the following
theorem of Guichard.

Geometry & Topology, Volume 28 (2024)



1158 D Darren Long and Morwen B Thistlethwaite

Theorem 3.1 (Guichard [5]; see also [1]) Suppose that � W �1.S/! SL.m;R/ is a representation on
the Hitchin component and G is the Zariski closure of �.�1.S//. Then:

� If mD 2n is even , then G is conjugate to one of �m.SL.2;R//, Sp.2m;R/ or SL.m;R/.

� If mD 2nC1¤ 7 is odd , then G is conjugate to one of �m.SL.2;R//, SO.nC1; n/ or SL.m;R/.

� If mD 7, then G is conjugate to one of �m.SL.2;R//, SO.4; 3/, G2 or SL.7;R/.

The relevance of this theorem is that if one can show that a given representation of a surface group leaves
no form invariant, then the image is Zariski dense.1

3.1 The first bend

The first step is to bend �n W �1.S
2.3; 3; 3; 3//! PSL.n;Z/. There is a good deal of flexibility in this

part of our construction.

To this end, fix any simple closed curve  which separates two of the orbifold points from the other two and
we claim (recall that we are assuming that n� 5) that there is an element ı in the PSL.n;Z/–centralizer
of  which does not lie in the image �n.PSL.2;R//. We argue this as follows. As in Lemma 2.2, all the
hyperbolic elements in the image �n.�1.S

2.3; 3; 3; 3// have integral character and with eigenvalues 1

and .n�1/=2 pairs of the form �2j and ��2j . Since �n.A/ is integral, it follows that it can be conjugated
over the rationals into the block form consisting of a single 1 and .n� 1/=2 block matrices

exp.jw/D
�

0 �1

1 K

�j

for 1� j � 1
2
.n� 1/:

This latter matrix has Z–centralizer isomorphic to .˙1/˚Z.n�1/=2.

The following is well known.

Proposition 3.2 Let M 2Mn.Q/ be such that det.M /D˙1 and the characteristic polynomial of M

has integer coefficients. Then some power of M is integral.

Since the conjugation matrix is rational, it follows from this proposition that the centralizer of �n.A/ in
PSL.n;Z/ is Z.n�1/=2. Since n� 5 and the centralizer in �n.PSL.2;R// is Z our claim follows. In fact,
with a view to our argument it is important to note a little more is true, namely that this argument shows
that we may choose these centralizing elements to be in the image of the exponential map, since we may
choose hyperbolic elements with distinct positive eigenvalues.

Accordingly, we may fix some element ı lying in the PSL.n;Z/–centralizer of  which does not lie in
the image �n.PSL.2;R//; in the interests of being specific, we choose ı as the relevant conjugate of a
power of 1˚ Id2˚ Id2˚ � � �˚ exp.w/. Notice that if we write ı D exp.v/, then the entire path exp.tv/
centralizes  .

1Note that G2 < SO.4; 3/.
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Zariski dense surface groups in SL.2kC 1;Z/ 1159

Theorem 3.3 The bent representation �ın (which henceforth we denote by �) is a representation of
�1.S

2.3; 3; 3; 3// into PSL.n;Z/ lying on the Hitchin component. In particular , � is discrete and faithful.

Moreover , the Zariski closure of the image of � is one of

� PSL.n;R/, or

� SO.J / for the form J of signature .kC 1; k/ left invariant by �n.PSL.n;R//.

Proof If ıD exp.v/, then � is the endpoint of the path of representations �exp.tv/
n which has one endpoint

on the Hitchin component. Since this is a path component of Hom.�1.S
2.3; 3; 3; 3//;PSL.n;R//, it

follows that � is on the Hitchin component and is therefore discrete (which was obvious anyway) and
faithful.

The second claim is our first application of Theorem 3.1. The argument is the following. Notice (in
the notation of Section 3) that �1.L/ (and of course �1.R/) is Zariski dense in PSL.2;R/, since this
Lie group has no interesting algebraic subgroups. It follows that the algebraic group �n.PSL.2;R// is
determined by the image �n.�1.L//. Referring to the list of Theorem 3.1, we see that the image of
the bent representation � must be larger than �n.PSL.2;R// unless ı normalizes �n.�1.R// and hence
�n.PSL.2;R//.

We claim that this is impossible. For if conjugacy by ı preserved �n.PSL.2;R// it would act as an
automorphism which commuted with the action by conjugacy of the hyperbolic element  . However
it is well known that Aut.PSL.2;R///Š GL.2;R/ and we deduce that there would be some nontrivial
word ıa b which centralized the absolutely irreducible representation �n.PSL.2;R// and would therefore
be trivial, which is impossible by the choice of ı.

Thus we have proved that the Zariski closure of �.�1.S
2.3; 3; 3; 3// is strictly larger than �n.PSL.2;R//.

One now consults the list provided by Theorem 3.1 and we see that (since in particular n> 7) either we
are done or the Zariski closure of �.S2.3; 3; 3; 3// is SO of some form of signature .kC 1; k/. We claim
that this form is necessarily SO.J /, where J is the form mentioned in the introduction. The reason is
that on �1.L/, the representation �n and � agree and are absolutely irreducible. We now appeal to:

Lemma 3.4 Suppose that � WG! SO.J /� SL.n;R/ is an absolutely irreducible representation. Then
J is unique up to a real scaling.

Proof If J1 and J2 are two such forms, then the equations AT :Ji :AD Ji for i D 1; 2 and any A in the
image of � imply that J�1

2
:J1 centralizes the image of �, whence by Schur’s lemma is a scalar matrix.

Returning to the proof of Theorem 3.3, since the group �n.�1.L// < SO.J /, the lemma implies that the
Zariski closure of �.S2.3; 3; 3; 3// must be SO.J /, as required.

Remark In fact, it’s useful to note that if � is a Hitchin representation, one can weaken the hypothesis
in Lemma 3.4 to ask only that � be real irreducible. The point is that for a Hitchin representation, the
infinite-order elements have the property that they have distinct real eigenvalues. Fix such an element and
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1160 D Darren Long and Morwen B Thistlethwaite

suppose that we have diagonalized it over the reals. Then in the proof above, J�1
2
:J1 is real and commutes

with a diagonal matrix with distinct real eigenvalues and is therefore diagonal with real eigenvalues. The
usual Schur argument using real irreducibility now implies that J�1

2
:J1 D r : Id for some real r .

Remark Questions concerning integral centralizers can be quite delicate because of the rational conju-
gacy; the need to appeal to Proposition 3.2 results in the loss of any real control.

3.2 The second bend: finding �

To perform the second bend requires a more careful choice of bending curve and this necessitates a
discussion of some notation and results from the theory of finite simple groups, in particular from the
theory of (special) finite orthogonal groups. This has two steps. We will appeal to a theorem that follows
from work of Weisfeiler [13] or Nori [10] to construct an essential curve � on S2.3; 3; 3; 3/ for which we
can use purely algebraic considerations to show that �.�/ has a large centralizer in PSL.n;Z/. We cannot
use � directly to bend, since it may not be simple on S2.3; 3; 3; 3/, however in Section 4 we show how to
improve this situation.

Here is a summary of the algebraic facts that we require. Let J be an m–dimensional quadratic form over
the finite field GF.pn/ of cardinality q D pn. It simplifies the discussion (and this is no loss of generality
for us) to assume p is odd. We are interested only in the case that m is also odd; we assume this in the
following without further comment. (The situation is slightly more complicated for m even.)

In this case, there is a unique orthogonal group up to isomorphism O.J; q/ D O.2k C 1; q/ which is
independent of J ; see [12, page 377, Theorem 5.8]. Let SO.m; q/ denote the special orthogonal group
and set �.m; q/D ŒO.m; q/;O.m; q/�, where ŒG;G� denotes the commutator subgroup of a group G. We
summarize the important fact for us in the following theorem; see [12, pages 383–384] for a discussion.

Theorem 3.5 When m is odd , �.J; q/ is a simple subgroup of O.J; q/ of index 4.

Recall the first bending provided a representation � D �ın W �1.S
2.3; 3; 3; 3//! SL.n;Z/ lying on the

Hitchin component and whose image is Zariski dense in SO.J;R/. Given a rational prime p, we may
compose with the obvious reduction map modulo p, SL.n;Z/! SL.n;Z=p/. The following comes from
the strong approximation theorem; cf [10; 13].

Theorem 3.6 In the notation above , when m is odd , for all but a finite number of rational primes p, we
have �.J;p/D �p.�.S

2.3; 3; 3; 3//.

Proof It follows from strong approximation (cf [10; 13]) that except for finitely many primes we have

�.J;p/� �p

�
�.S2.3; 3; 3; 3//

�
� SO.J Ip/:

However, Theorem 3.5, together with the fact that �1.S
2.3; 3; 3; 3// has no subgroup of index 2 implies

the result.

To apply this, we also require the following fact:

Geometry & Topology, Volume 28 (2024)



Zariski dense surface groups in SL.2kC 1;Z/ 1161

Theorem 3.7 There is an element � 2 S2.3; 3; 3; 3/ with the property that the integer matrix �.�/ has
characteristic polynomial of the form .Q� 1/F.Q/, where F.Q/ is irreducible over Z.

The main ingredient in the proof is the following:

Proposition 3.8 For every prime p, there is a matrix in �.J;p/ with the property that its characteristic
polynomial has the form .Q� 1/f .Q/, where f .Q/ is irreducible modulo p.

This proposition now implies Theorem 3.7. For, by strong approximation, we may choose a prime p

so that �p� maps S2.3; 3; 3; 3/ onto �.J;p/. Pick an element A.p/ 2 �.J;p/ whose characteristic
polynomial has the form .Q � 1/f .Q/, where f .Q/ is irreducible modulo p, and choose � so that
�p�.�/D A.p/. Then the characteristic polynomial of �.�/ has the form .Q� 1/F.Q/, and F.Q/ is
necessarily Z irreducible, since it is irreducible modulo p.

Proof of Proposition 3.8 We have a fixed nD 2kC1 and a prime p. We claim that there is an element �
in the algebraic closure of Z=p which has degree n�1D 2k over Z=p with the property that its minimal
polynomial over Z=p, which we denote by a.Q/, is symmetric. Further, �2 also has degree n� 1 with
(therefore irreducible) symmetric minimal polynomial, which we denote by a2.Q/.

Deferring this claim temporarily, we proceed as follows. Let g be any Z=p matrix whose characteristic
polynomial is .Q�1/a.Q/; for example, use the rational canonical form. Let K be a splitting field for a.Q/

over Z=p, so that there is a K–matrix m for which m :g :m�1 is diagonal, with the eigenvalues arranged
1; �1; �

�1
1
; : : : ; �n; �

�1
n . This matrix is an isometry of the form †, whose .1; 1/ entry is any element of K

and then has .n�1/=2 blocks which are K multiples of
�

0
1

1
0

�
. This gives a .nC 1/=2–dimensional family

of solutions and using the obvious ordered basis, the determinant of such a form † is˙a0 �a1 � � � a.n�1/=2

and is therefore nondegenerate as long as no aj is zero. Therefore the original matrix g has a K–family of
nondegenerate solutions, namely mT :† :m. Now, when we regard the entries of a symmetric matrix � as
indeterminates, the question of whether a form � satisfies gT : � :gD � is a family of homogeneous linear
equations with Z=p coefficients, and we have just shown that there are nondegenerate solutions over K.
It follows that there are nondegenerate Z=p solutions and such a solution � gives g 2 SO.�;p/ with
characteristic polynomial .Q� 1/a.Q/. As noted above, since n is odd there is only one such orthogonal
group up to change of basis, so this characteristic polynomial also occurs in SO.J;p/. After squaring if
necessary, one finds the promised element in �.J;p/.

It remains to find the polynomials promised in the first paragraph; we sketch an argument. Denote the
finite field of degree r over Z=p by GF.pr /; it’s known there is exactly one such field up to isomorphism
for every r . Take an element x 2GF.pk/ with the property that the polynomial T 2�x �TC1 is irreducible
over GF.pk/. Let � be a root of this polynomial so that GF.pk/.�/D GF.p2k/. By construction, the
polynomial for � over Z=p has degree 2kDn�1 and is symmetric and irreducible. Moreover, considering
the equation �2�x � � C 1D 0, we see that �2 cannot lie in GF.pk/. Therefore the polynomial for �2

over Z=p also has the required properties.
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4 Improving �

At this stage we have a representation � W S2.3; 3; 3; 3/! PSL.2k C 1;Z/ so that with finitely many
exceptions, the reduction modulo p yields a surjection

�p W �.S
2.3; 3; 3; 3//!�.J;p/:

This was used to find an element � with the property that the characteristic polynomial of �.�/ is of the
form .Q� 1/F.Q/, where it follows from the construction that F.Q/ is irreducible over Z. This section
is devoted to a proof of the following:

Theorem 4.1 Denote the orbifold surface which is an S2 with k–cone points all of order 3 by F.k/,
where k � 4. Then given � as above , there is a tower of 3–fold regular coverings

F.4/ F.u1/ F.u2/ � � �  F.uk/

with the property that � lifts to each covering and in the covering F.uk/, � is (a power of ) a simple loop
which encloses at least two cone points on each side.

Proof The construction here is based upon the following simple observation. Fix some surface F.k/

and fix two of the cone points, c1 and c2, enclosing them with a simple closed curve C . Then C splits the
surface into two pieces, one of which is a disc with two cone points of order 3. There is a 3–fold covering
of F.k/ given by the homomorphism c1! 1, c2!�1, and all other cone points mapping to zero. It’s
easy to see that the resulting covering is planar: the disc with two cone points becomes an S2 with three
discs removed, each of which corresponds to a lift of C . The other side of C lifts to three copies, each a
trivial covering which is attached to one of these C –lifts. Notice that the number of cone points in the
covering strictly increases since it has 3.k � 2/ cone points and this is strictly larger than k for k � 4.

The coverings being used are all abelian, and we indicate homology class by Œ��. We begin by observing that
it is easy to make coverings where � lifts: for F.4/, for example, if Œ�� is not zero, it represents a generator
of H1.F.4//Š .Z=3/

3, we can choose two other cone points x and y so that H1.F.4//D h�;x;yi and
we form a covering as above with c1 D x and c2 D y. Clearly � lifts to this covering. If Œ�� is zero in
H1.F.4//, we may choose any pair of the cone points. Since the number of cone points only goes up,
this procedure can be iterated (increasing the number of supplementary generators if need be).

The proof of Theorem 4.1 is accomplished by showing one can find a tower of coverings where � lifts
and has a strictly decreasing number of self-intersections up to the point that we obtain the conclusion of
the theorem. For future reference we note that the shape of the characteristic polynomial implies that �
has infinite order in the fundamental group of the orbifold so that it cannot encircle just one cone point
on either side. In particular, it is a hyperbolic element on the hyperbolic orbifolds in question, so we may
make � geodesic.
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We construct a planar subsurface X of F.k/ as follows. Take a thin regular neighborhood of � and attach
discs to all the boundary components which bound discs in the complement of �. By construction, the
boundary of the subsurface X consists of simple closed curves all of which are essential, and therefore
bound discs which have on them at least one cone point.

Suppose that X has at least three boundary components. Then at least two of these boundary components,
@1X and @2X , say, contain cone points c1 and c2, respectively, with the property that

hc1; c2; �i Š .Z=3/
3 <H1.F.k//:

Define a covering of F.k/ as above, mapping c1! 1, c2!�1 and �! 0, and extend to H1.F.k//.
This arranges @1X ! 1, @2X ! �1 and Œ��! 0. The preimage of X in this covering is connected,
so that the three preimages z�i for 1 � i � 3 of � form a connected graph. A point where z�1 meets z�2

corresponds to a self-intersection of � in F.k/ which has now disappeared from z�1. Thus the number of
self-intersections of z�1 is strictly less than the number of self-intersections of �.

We can repeat this process as long as the planar neighborhood X is not an annulus. However in this case,
� must be a power of a simple loop, namely the core of the annulus.

Remark In the latter case, the annulus cannot contain just one cone point on either side, since in this
case the loop � would have order dividing 3.

5 Proof of Theorem 1.1

We may now complete the argument of Theorem 1.1.

At the top of the tower provided by Theorem 4.1, either we have a simple loop corresponding to �
on a planar surface for which the characteristic polynomial of �.�/ is .Q� 1/F.Q/, where F.Q/ is
Z–irreducible, or we have that �D .�0/r , where �0 is a simple loop. In this latter case, the characteristic
polynomial of �.�0/ is also of the form .Q� 1/G.Q/, where G.Q/ is Z–irreducible, since the r th power
of the roots of G.Q/ give the roots of F.Q/, and these all have maximal degree over the rationals. We
economize on notation by replacing �0 by � and G.Q/ by F.Q/.

Notice that since � was on the Hitchin component for S2.3; 3; 3; 3/, F.Q/ is totally real [6, Theorem 1.5].
The simple curve � cannot encircle just one cone point, else it would have order 3 so � splits the surface
into two pieces each of which must have at least two cone points in it. By applying the construction of
Theorem 4.1 if necessary, we may assume that we have constructed a planar orbifold surface (denote it
by †) in which � is simple and each of the two sides of � contains a large number of cone points.

We have already observed that the initial representation � lies on the Hitchin component for S2.3; 3; 3; 3/

and it follows that � restricted to �1.†/ lies on the Hitchin component for †; for example, one can
use the bending used to construct � restricted to the corresponding subgroup of finite index. Moreover,
each side of � is a hyperbolic orbifold with totally geodesic boundary, so that the restriction of the given
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representation to either side gives an element of the Hitchin component of that side in the sense of
[1, Theorem 2.28]. In particular, each side is represented irreducibly into SO.J IR/ < SL.n;R/.

The main claim now is that there is a path of elements ıt D exp.tv/ all centralizing � and with ı D ı1 in
the centralizer of � in SL.n;Z/. Moreover, the element ı does not preserve J (even up to scaling).

Once this is established, Theorem 1.1 is proved with mild variations of the arguments we have already
used in the first bending: by choice, we have a 1–parameter family of bendings �exp.tv/ connecting �ı to �.
The latter representation lies on the Hitchin component and therefore �ı lies in the Hitchin component. It
is therefore faithful.

Moreover, after the ı–bending, one side of the orbifold surface † represents into SO.J IR/ and the other
in SO.ıT J ıIR/; by absolute irreducibility and the property of ı we claimed above, it follows that there
is no form left invariant by the whole orbifold surface group.

The proof of Theorem 1.1 is now completed by the following theorem applied to � D �ı.

Theorem 5.1 Suppose that � is any representation on the Hitchin component of a hyperbolic orbifold
group � which leaves no form invariant. Then � restricted to any surface subgroup of finite index in � is
Zariski dense in SL.n;R/.

Proof It is shown in [6, Theorem 1.5] that for any representation on the Hitchin component, the
nonidentity elements are loxodromic, that is to say that their eigenvalues are distinct real numbers and
moreover, since n is odd, these eigenvalues are all positive. In particular, it follows from [4, Theorem 2]
that all the infinite-order elements of �.�/ are in a unique one-parameter subgroup of the exponential
map exp W sl.n;R/! SL.n;R/.

Suppose then that some surface subgroup H of finite index in � lies inside a proper algebraic subgroup of
SL.n;R/; by Guichard’s result (Theorem 3.1), it must be contained in SO.J / for some form J of signature
.kC 1; k/. Take any loxodromic element exp.v/D  2 �.�/ and choose r so that exp.rv/D  r 2H .
The condition that  r 2 SO.J / is equivalent to JvJ�1 D�vtr , so the entire one-parameter subgroup
exp.tv/ lies in SO.J / and in particular, therefore,  2 SO.J /. However, it is clear that � is generated by
its loxodromic elements and we would deduce that � < SO.J /, a contradiction. It follows that H must
have Zariski closure SL.n;R/.

In particular, since any subgroup of finite index in �.�/ contains a surface group, it shows that the Zariski
closure of any subgroup of finite index (in particular, index D 1) is all of SL.n;R/.

5.1 The existence of ı

Recall that the characteristic polynomial of the integer matrix �.�/ is .Q� 1/F.Q/, where F.Q/ is
symmetric Z–irreducible and with (distinct) real roots, since � is on the Hitchin component. One can
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see (for example by diagonalizing the element �.�/ and considering the possible forms it could leave
invariant) that the centralizer of �.�/ in SO.J IR/ has rank .n� 1/=2. On the other hand, the totally real
number field K defined by a root of f .Q/ D 0 has degree n� 1, so that the unit group of its ring of
integers has rank n� 2, which is > .n� 1/=2 for n� 5.

Make a rational change of basis so that M�1�.�/ :M D .1/˚A, where A is an integer matrix in rational
canonical form. The ring ZŒA� is a matrix representation of the ring of integers OK , which therefore
contains a multiplicative subring of units of rank n� 2, ie matrices which have determinant ˙1. Since
all elements of the form M :

�
.1/˚

P
rj Aj

�
:M�1 clearly commute with �.�/, it follows from the rank

considerations described above that we may find a rational matrix with determinant D 1 and integer
characteristic polynomial in the SL.n;R/–centralizer of �.�/ which does not power into SO.J IR/. By
Proposition 3.2 there is some power of this matrix which is integral; this is a choice for ı with the
required properties. As observed above, ı commutes with an element which has distinct positive real
eigenvalues, so that it is diagonalizable, and by squaring if need be, we arrange that ı has positive
eigenvalues. Therefore, it is in the image of the exponential map, so that exp.v/D ı. From this it follows
that the entire path exp.tv/ centralizes �.�/, so that the bent representation lies on the Hitchin component.
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