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1 Introduction

The profinite completion of a group Γ is the inverse limit of the directed system of finite quotients
of Γ, and we shall denote this profinite group by Γ̂. As is well-known, if Γ is residually finite then
Γ injects into Γ̂. In [19] the following problem was posed by Grothendieck (where it is pointed out
that it is natural to assume the groups are residually finite):

Let u : H → G be a homomorphism of finitely presented residually finite groups for which the
extension û : Ĥ → Ĝ is an isomorphism. Is u an isomorphism?

This problem was solved in the negative by Bridson and Grunewald in [6] who produced many
examples of groups G, and proper subgroups u : H ↪→ G for which û is an isomorphism, but u is
not. The method of proof of [6] was a far reaching generalization of an example of Platonov and
Tavgen [35] that produced finitely generated examples that answered Grothendieck’s problem in the
negative (see also [5]).

Notice that if Ĥ → Ĝ is an isomorphism, then the composite homomorphism H ↪→ Ĥ → Ĝ
is an injection. Hence, H → G must be an injection. Therefore, Grothendieck’s Problem reduces
to the case where H is a subgroup of G, and the homomorphism is inclusion. Henceforth, we will
only consider the situation where u : H → G is the inclusion homomorphism. We will on occasion
suppress u, however as we remark upon later, it is important for us that we do consider the case
where the isomorphism û is induced by inclusion. All abstract groups are assumed infinite and
finitely generated unless otherwise stated.

We introduce the following terminology. Let G be a group and H < G. We shall call (G,H)
a Grothendieck Pair if u : H → G provide negative answers to Grothendieck’s problem; i.e. û
is an isomorphism and u is not. If for all finitely generated subgroups H < G, (G,H) is never a
Grothendieck Pair then we will define G to be Grothendieck Rigid. Thus, if H → G is a counterex-
ample to Grothendieck’s original question, then G is not Grothendieck Rigid.

In [19], Grothendieck explored general conditions on groups H and G that are not Grothendieck
Pairs. This theme was taken up in [29] and [35], and discussed more recently in Bridson’s talk
at Grunewald’s 60th Birthday Conference. For example, in [35] it is shown that if G is a discrete
subgroup of SL(2,Qp) or SL(2,R) then G is Grothendieck Rigid. The proof of this is a simple
consequence of the fact that virtually free groups and Fuchsian groups are LERF (see §2.4 below
for more on this). On the other hand, it still seems to be an open question in general as to
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whether arithmetic lattices in semi-simple Lie groups having the Congruence Subgroup Property
are Grothendieck Rigid, even for SL(3,Z) (see [35]).

The aim of this paper is to explore Grothendieck’s problem for (certain) 3-manifold groups. We
will prove various results about Grothendieck Rigidity of such groups. As we discuss further below,
Grothendieck’s Problem seems naturally related to other problems concerning 3-manifold groups.
Note that by Perelman’s solution to the Geometrization Conjecture and a theorem of Hempel [22],
the fundamental groups of all compact 3-manifolds are residually finite. Our first result generalizes
part of Proposition 3 of [35].

Theorem 1.1 Let M be a closed 3-manifold which admits a geometric structure. Then π1(M) is
Grothendieck Rigid.

We can clearly assume that π1(M) is infinite in our considerations, and the proof of Theorem
1.1 quickly reduces to the case of closed hyperbolic 3-manifolds; ie those that admit a complete
finite volume metric of constant sectional curvature −1 (since manifolds with the other geometric
structures are known to have LERF fundamental groups). It is worth remarking that it is still a
major open problem (although there is some evidence that it is true) as to whether the fundamental
groups of hyperbolic 3-manifolds are LERF. Therefore our methods do not appeal to LERF.

We can also extend our results to cusped hyperbolic 3-manifolds.

Theorem 1.2 Let M be a finite volume, cusped hyperbolic 3-manifold. Then π1(M) is Grothendieck
Rigid.

A corollary of Theorems 1.1 and 1.2 that generalizes the Corollary to Proposition 3 of [35] is (in
contrast with the discussion above regarding arithmetic lattices having the Congruence Subgroup
Property):

Corollary 1.3 Let M be an arithmetic hyperbolic 3-manifold. Then π1(M) is Grothendieck Rigid.

The techniques in the proofs employ a combination of classical 3-manifold topology methods,
as well as Thurston’s hyperbolization theorem for atoroidal Haken manifolds (see [32] and [45]),
applications of the character variety and more recent developments in the field. For example, we
use the solutions to the Tameness Conjecture ([1], [9]), the Ending Lamination Conjecture ([7], [8])
and The Density Conjecture (see [11] for a discussion)

In addition to hyperbolic knots, we can also prove a Grothendieck Rigidity result for other knots
in S3 (see Theorem 5.1).

We finish this Introduction with a discussion of Grothendieck’s Problem in the context of other
problems concerning 3-manifold groups.

Our use of the term “Grothendieck Rigidity” is in part motivated by other rigidity phenomena
about 3-manifolds. In our setting we are trying to distinguish a 3-manifold from its covering spaces
with finitely generated fundamental group by its profinite completion. Classically, one of the basic
problems about compact, irreducible 3-manifolds with infinite fundamental group (see §3 for ter-
minlogy) was “Topological Rigidity”; namely, given M1 and M2 as above, assume that M1 and M2

are homotopy equivalent, are M1 and M2 homeomorphic? This was solved for Haken manifolds by
Waldhausen [47], for Seifert fiber spaces in [40] and for hyperbolic manifolds this was solved in a
series of papers ([14], [15] and [16]).

A more precise question of particular interest to us can be posed:

Suppose that M1 and M2 are geometric 3-manifolds with infinite fundamental group for which the
profinite completions ̂π1(M1) and ̂π1(M2) are isomorphic. Are M1 and M2 homeomorphic?
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The hypothesis of the above question can be weakened somewhat, however, there are examples
like the fundamental groups of the square knot and granny knot which are isomorphic but the
complements of the knots are non-homeomorphic.

Using a basic, but remarkable, result about profinite completions (see §2 for more on this) this
question has a more concrete reformulation:

Suppose that M is a geometric 3-manifold with infinite fundamental group. Within the class of such
3-manifold groups, is M determined by the set {G : G is a finite quotient of π1(M)}?

This question has arisen, at least implicitly, in a totally different direction, in recent work of Calegari,
Freedman and Walker, [10]. This paper addresses the properties of a “universal pairing” on a
complex vector space that arises from looking at all compact oriented 3-manifolds that a fixed
closed oriented surface bounds. To that end, in [10] a complexity function is defined on a compact
oriented 3-manifold M , and part of of this complexity function involves listing all finite quotients
of π1(M). The question as to whether the finite quotients of the fundamental group of a compact
orientable irreducible 3-manifold M determine M arises naturally here (see Remark 3.7 of [10]).

Acknowledgements: The second author wishes to thank Martin Bridson and Cameron Gordon
for helpful conversations on topics related to this paper. We also thank Richard Kent for helpful
correspondence regarding character varieties of Kleinian groups. Finally we wish to thank the two
referees for their many helpful comments and suggestions that greatly clarified and improved the
paper.

2 Profinite Preliminaries

Here we collect some basics about profinite groups, and discuss some connections of separability to
Grothendieck’s problem. For details about profinite groups see [37].

2.1

Suppose that Γ is a residually finite (abstract) group. We recall a basic but important fact relating
the subgroup structures of Γ and Γ̂ (see [37] Chapter 3.2).

Proposition 2.1 With Γ as above, there is a one-to-one correspondence between the set X of sub-
groups of Γ that are open in the profinite topology on Γ, and the set Y of all open subgroups of Γ̂.
This is given by (where we assume Γ is embedded in Γ̂):

• For H ∈ X , H 7→ H, where H denotes the closure of H in Γ̂.

• For Y ∈ Y, Y 7→ Y ∩ Γ.

Moreover, [Γ : H] = [Γ̂ : H].

Suppose now that Γ1 and Γ2 are finitely generated abstract groups such that Γ̂1 and Γ̂2 are
isomorphic. Note that by “isomorphic” mean “isomorphic as groups”, since every isomorphism
between the profinite completions is continuous (we do not assume that there is a homomorphism
Γ1 → Γ2). It is easy to deduce from Proposition 2.1 that this implies that Γ1 and Γ2 have the
same collection of finite quotient groups. In fact, the discussion on pp 88-89 of [37] gives a stronger
statement that we record for convenience.

3



Theorem 2.2 Suppose that Γ1 and Γ2 are finitely generated abstract groups. For i = 1, 2, let
Ci = {G : G is a finite quotient of Γi}. Then Γ̂1 and Γ̂2 are isomorphic if and only if C1 = C2.

An easy corollary of this that we will appeal to repeatedly is recorded below. We will use the
notation:

b1(Γ) = rank(Γ/[Γ,Γ])⊗Z Q, and if X is a manifold, b1(X) = b1(π1(X)).

Corollary 2.3 Suppose that Γ1 and Γ2 are finitely generated abstract groups for which Γ̂1 and Γ̂2

are isomorphic. Then b1(Γ1) = b2(Γ2).

Proof: If not, then one easily constructs a finite abelian quotient of one that cannot be a finite
quotient of the other, and this contradicts Theorem 2.2. tu

Now suppose that u : Γ1 → Γ2 is a homomorphism of finitely generated (residually finite abstract)
groups. This determines a continuous homomorphism û : Γ̂1 → Γ̂2. Theorem 2.1 can be applied to
show that (see [37] Lemma 3.2.6 for 2., and also [35]):

1. û is surjective if and only if u(Γ1) is dense in the profinite topology on Γ2.

2. Suppose that u is the inclusion homomorphism. Then û is injective if and only if the profinite
topology of Γ2 induces on Γ1 (or u(Γ1)) its profinite topology.

With this discussion, we prove:

Lemma 2.4 Let Γ be a finitely generated (abstract) group, let ∆ < Γ be a subgroup of finite index,
and H < Γ. If (Γ, H) is a Grothendieck Pair, then the inclusion map ∆ ∩ H ↪→ ∆ induces an
isomorphism of profinite completions.

Proof: Let T denote the profinite topology on Γ. As above, we let u : H → Γ denote the inclusion
homomorphism with û : Ĥ ↪→ Γ̂ an isomorphism. Let u′ denote the restriction of u to H ′ = H ∩∆.
Since ∆ has finite index in Γ, ∆ is an open subgroup in T . By 1. above, u(H) is dense in T . It
now follows from elementary point set topology that u′(H ′) is dense in the profinite topology on ∆,
since this is the subspace topology induced from T .

To prove injectivity, note first that by 2. above, the profinite topology on H (or u(H)) coincides
with that induced by T . Since H ′ has finite index in H, and ∆ has finite index in Γ it follows from
the properties of the subspace topology that the profinite topology on u′(H ′) conicides with that
induced by ∆. Now 2. proves that û′ is injective. tu

Remark: In our applications of Lemma 2.4 (see Corollary 4.5), the groups we are working with
will have the property that ∆ ∩ H is not isomorphic to ∆, thereby showing that (∆,∆ ∩ H) is a
Grothendieck Pair.

2.2

Let G be a group and H < G. Then G is called H-separable if given any g ∈ G \H, there is a finite
index subgroup N of G such that H < N but g /∈ N . Equivalently, G is H-separable if H is closed in
the profinite topology on G. The group G is called LERF or subgroup separable if G is H-separable
for every finitely generated subgroup H of G. LERF has attracted considerable interest recently
through its connections with problems in 3-manifold topology (see for example [2], [20] and [28]).
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A weaker property than H-separability is engulfing, which is also related to problems in 3-
manifold topology (see [26]). In the notation above, suppose that H is a proper subgroup of G. We
say that H is engulfed if H < K where K is a proper subgroup of G of finite index.

The following lemma illustrates the connection between the separability properties mentioned
above, and Grothendieck’s problem (see also [35] pp. 90-91). Again, we are implicitly assuming
that if H < Γ, then u : H ↪→ Γ is the natural inclusion map.

Lemma 2.5 Suppose Γ is a finitely generated abstract group and H < Γ. Assume that H is engulfed.
Then (Γ, H) is not a Grothendieck Pair.

Proof: We are assuming that u : H ↪→ Γ induces the isomorphism û. In particular, û is onto, and
so from 1. of §2.1, u(H) is dense in the profinite topology on Γ. On the other hand, if H is engulfed,
H is contained in a proper subgroup of finite index, and so u(H) cannot be dense. Hence we have
a contradiction. tu

An immediate Corollary of Lemma 2.5 is the following statement that was made in the Introduction.

Corollary 2.6 Suppose that Γ is LERF, then Γ is Grothendieck Rigid.

2.3

We conclude this section with a discussion of how character varieties of Grothendieck Pairs are
related. We will restrict attention to SL(2,C) and PSL(2,C) character varieties. For a finitely
generated (abstract) group G, we will denote by R(G) and X(G) the SL(2,C) representation and
character varieties of G. If V is an algebraic set, we will let dim(V ) denote the maximal dimension
of an irreducible component of V .

Suppose that H is a finitely generated subgroup of G. Then the inclusion mapping u induces
maps:

ũ : R(G)→ R(H) u∗ : X(G)→ X(H),

by

ũ(ρ) = ρ|H and u∗(χρ) = χρ|H .

It is easy to check that these maps are algebraic maps.
The following result is a variation of Proposition 4 of [35] in terms of character varieties.

Proposition 2.7 Let (G1, G2) be a Grothendieck Pair. Let Xi (i = 1, 2) denote the collection of
components of X(Gi) each of which contains the character of an irreducible representation. Then u∗

determines a bijection from X1 to X2. Furthermore, u∗ is a birational isomorphism on each X ∈ X1.

Proof: Firstly, we note that u∗ maps X1 to X2. The reason is this. Pick some irreducible repre-
sentation ρ of G1, and suppose its restriction to G2 were reducible. In our setting, this means it is
conjugate to a group of upper triangular matrices and therefore soluble. Such a subgroup is verbal
for the word [[a, b], [c, d]] and therefore separable in ρ(G1) (see [25] for example). In particular, it
can be engulfed in the image, so that G2 is engulfed in G1, a contradiction.

We next claim that u∗ is onto a Zariski dense subset of X2: Let X ∈ X2, and let χρ be the
character of an irreducible representation ρ : G2 → SL(2,C). Since (G1, G2) is Grothendieck Pair,
it follows from [19] (see also [35]), that there exists a representation ρ1 : G1 → SL(2,C) such
that ρ = ρ1 ◦ u; i.e. ρ1 restricted to G2 is ρ. Since X contains the character of an irreducible
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representation, the generic character of X is the character of an irreducible representation (see [13])
and the claim follows.

Finally, we show that u∗ is injective. Suppose that χρ, χφ ∈ X1 are characters of irreducible rep-
resentations ρ and φ (as above the generic character is the character of an irreducible representation)
with u∗(χρ) = u∗(χφ). Let ρ(G1) = G and φ(G1) = G′.

Since u∗(χρ) = u∗(χφ), and the restrictions to G2 determine the same irreducible character, we
can conjugate G and G′ so that they agree on the image, H say, of G2 (see [13] Proposition 1.5.2).
Following the idea in [25], we can construct a homomorphism:

Φ : G1 → G×G′

by setting
Φ(g) = (ρ(g), φ(g)).

By construction Φ(G2) maps to the diagonal subgroup H ×H, whereas Φ(G1) does not map diag-
onally, since the representations ρ and φ are distinct. Since G and G′ are finitely generated linear
groups, they admit many non-trivial finite quotients, and so it follows that G2 can be engulfed. This
contradicts Lemma 2.5. tu

Remark: Proposition 2.7 can be formulated in exactly the same way for the PSL(2,C) character
variety (see [24] for more on this character variety). We will use the notation Y (G) for the PSL(2,C)
character variety.

3 3-Manifold Preliminaries

We include some background from the topology of 3-manifolds that will be useful in the sequel.

3.1

Recall that a compact orientable 3-manifold M is called irreducible if every embedded 2-sphere
bounds a 3-ball. A properly embedded orientable surface S 6= S2, D2 in a compact orientable 3-
manifold M is called incompressible if ker(π1(S) → π1(M)) = 1. The surface S is essential if it
is in addition non-peripheral; that is to say π1(S) is not conjugate into the fundamental group of
a boundary component of M . M is called atoroidal if every π1-injective map of a torus into M is
homotopic into ∂M . A compact, orientable, irreducible 3-manifold M is called Haken if it contains
an incompressible surface.

Remark: We are assuming that our incompressible surfaces are embedded, which is somewhat
non-standard these days.

3.2

The following theorem of Jaco-Shalen and Johannson provides a canonical decomposition for com-
pact orientable irreducible 3-manifolds.

Theorem 3.1 Let M be a compact, orientable, irreducible 3-manifold. There exists a finite collec-
tion T of disjoint incompressible tori such that each component of M \ T is either a Seifert fibered
space or is atoroidal. A minimal such collection T is unique up to isotopy.

We will be interested only in the case when ∂M is a single incompressible torus and assume
this in the following discussion. In this case, this minimal decomposition of M is called the JSJ
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decomposition of M . The collection T in this case will be called the JSJ tori. It is easy to see that
naturally attached to the JSJ decomposition is a dual graph with edges the JSJ tori and vertices
the connected components of M \ T . We will denote the submanifold determined by the vertex v
by Mv. This in turn leads to a graph of group decomposition of π1(M) that we also refer to as the
JSJ decomposition for π1(M).

By Thurston’s hyperbolization theorem ([32] and [45]) the atoroidal pieces are typically hy-
perbolic (i.e. admit a complete finite volume hyperbolic structure), the only exceptions being
S1 × S1 × [0, 1] and the twisted I-bundle over the Klein bottle (note that S1 ×D2 does not arise in
this situation). We will refer to a S1 × S1 × [0, 1] piece as a collar.

We now recall some of the terminology and results of [18] that are important for us. We will do
this only for manifolds with a single torus boundary component and have no atoroidal piece that is
a twisted I-bundle over the Klein bottle.

Notation: Let M be a compact orientable irreducible 3-manifolds with ∂M a single incompressible
torus. Let T be the collection of JSJ tori.

Σ denotes the characteristic submanifold of M . For convenience we spell out the construction.
Suppose that T ∈ T . If T lies in no Seifert piece add to T a parallel copy of T . If T lies between

two Seifert fibered pieces, remove the interior of a regular neighbourhood of T from M . Split M
along the new T , and let Σ′ denote the Seifert fibered pieces obtained. If the boundary of M does not
lie in a Seifert fibered piece add to Σ′ the closure of a collared neighbourhood of ∂M . The collection
of Seifert fibered pieces so obtained is Σ.

Let βM denote the piece of Σ that contains ∂M .

Let γM denote the geometric piece adjacent to ∂M , together with a collar on ∂M .

Remark: Since M has one boundary component, if the unique piece of the JSJ decomposition that
contains the boundary is hyperbolic then βM is a collar. In this case γM can be identified with Mv

where Mv is the vertex manifold containing the boundary of M .

Let M1 and M2 be compact, orientable, irreducible 3-manifolds with ∂Mi (i = 1, 2) being a single
incompressible torus. An essential map g : M1 →M2 (i.e. g∗ is injective on fundamental groups) is
loose if it is homotopic to a map f : M1 →M2 for which f(M1) ∩ γM2 = ∅. Otherwise g is tight.

A subgroup H of π1(M) is loose if for some component C of M \ γM , there is a conjugate of H
in i∗(π1(C)), where i : C →M is the inclusion map. Otherwise H is called tight.

The two notions of tight just described are consistent, since it is shown in [18] Proposition 6.5
that if M1 and M2 are as above and f : M1 → M2 is an essential map, then f is tight if and only
f∗(π1(M1)) is a tight subgroup in π1(M2).

We record the following proposition (which is a corollary of results in [18]).

Proposition 3.2 Let M1 and M2 be Haken manifolds whose boundaries both consist of a single
incompressible torus, and assume that βM2 is a collar. Assume that f : M1 → M2 is a tight
essential map. Then βM1 is a collar and f |βM1 : βM1 → βM2 is a covering map.

Proof: Since f is a tight essential map, we can homotope f so that it satisfies the conclusions of
Theorem 6.1 of [18]. Consider f(βM1). By properties of tight essential maps, this is a component Q
of the JSJ decomposition of M2 (see the Deformation Theorem 1.2 and Theorem 6.1 of [18]). Indeed,
tightness shows that Q must coincide with that piece of the JSJ decomposition of M2 containing
∂M2, and this is a collar by assumption. It now follows that βM is a collar, and the map f is a
covering map. tu
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3.3

We will be particularly interested in the discussion of the previous section when the manifold M2

is the exterior of a knot K ⊂ S3; that is the closure of the complement of a small open tubular
neighbourhood of K. We will denote the exterior of a knot K by E(K). Recall that a knot K is
prime if it is not the connect sum of non-trivial knots.

The JSJ graph associated to E(K) is a rooted tree, where the root vertex v0 corresponds to the
unique vertex manifold containing ∂E(K). In the notation §3.2, this is simply the manifold γM .

The Seifert fibered pieces that can arise in the JSJ decomposition of E(K) are also well-
understood (see [23] Lemma VI 3.4). These are the following:

torus knot exterior;

a cable space: ie a manifold obtained from D2 × S1 by removing an open regular neighbourhood in
Int(D2)× S1 of an essential simple closed curve c which lies in a torus J × S1, where J is a simple
closed curve in Int(D2)× S1 and c is non-contractible in J × S1.

an (n-fold) composing space: i.e. a compact 3-manifold homeomorphic to W × S1, where W is an
n-times punctured disc.

In addition, since a Klein bottle does not embed in S3, the only exceptional atoroidal piece is
S1×S1× [0, 1]. If γM is a cable space, then K is a cable knot, and when γM is a composing space,
K is a composite knot; that is a non-prime knot (see [23]).

A corollary of this discussion and that contained in §3.1 that will be useful to record is the
following.

Corollary 3.3 Suppose that K is a prime satellite knot that is not a cable knot. Then βE(K) is a
collar and γE(K) is the piece of the JSJ graph containing the root vertex.

Proof: Only the statement about βE(K) needs any comment. Since K is a satellite knot it is not
a torus knot. In addition, since K is a prime knot that is not a cable knot, it follows from above
that γE(K) is hyperbolic. The statement about βE(K) now follows. tu

3.4

A standard property about compact 3-manifolds with non-empty boundary is the so-called “half-
lives, half-dies” which is a consequence of Poincare-Lefschetz duality.

Theorem 3.4 Let M be a compact orientable 3-manifold with non-empty boundary. Then the rank
of

ker(H1(∂M ; Z)→ H1(M ; Z))

is b1(∂M)/2.

A corollary of this that will be useful for us is the following.

Corollary 3.5 Let M be a compact orientable irreducible 3-manifold with a single torus boundary
component, H < π1(M) a finitely generated non-abelian subgroup and let XH denote the cover of
M corresponding to H. Assume that H1(XH ; Q) ∼= Q. Then XH is homotopy equivalent to Σ \K,
a knot complement in a closed orientable 3-manifold Σ.
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Proof: Since H is finitely generated, [38] guarantees the existence of a compact core CH for XH ; that
is a compact co-dimension zero submanifold CH of XH such that the inclusion mapping CH ↪→ XH

induces a homotopy equivalence. In particular, π1(CH) ∼= H.
In addition since M is irreducible, CH is irreducible and so we may assume that there are no

2-sphere boundary components in ∂CH . We are assuming that b1(XH) = 1, and so CH is a compact
manifold with non-empty boundary and b1(CH) = 1. It follows from Theorem 3.4 that ∂CH is
therefore a torus.

Since H is non-abelian, CH is not a solid torus, and by irreducibility ∂CH must be incompressible.
Thus CH is a compact, orientable, 3-manifold with incompressible torus boundary. This proves the
corollary. tu

4 Proofs

Before commencing with the proofs of Theorems 1.1 and 1.2, we make some preliminary comments
and prove a proposition and a lemma which require some additional notation.

4.1

Let W be a compact orientable 3-manifold that is hyperbolizable—so that the interior of W admits
at least one complete hyperbolic structure. If this is of finite volume, then this is the unique
hyperbolic structure.

We will let Y (W ) denote the character variety Y (π1(W )). If ∂W is empty or consists of a disjoint
union of nT incompressible tori, then Thurston proved [44] (see also [33]) that Y (W ) contains a
so-called canonical component (denoted by X0) that contains the character of the faithful discrete
representation. In the former case, a well-known consequence of Mostow-Weil Rigidity is that X0 is
a single point. In the latter case, Thurston [44] proved that X0 has complex dimension nT .

In the following discussion, we will assume that ∂W contains a non-toroidal component. In
which case the interior of W admits many hyperbolic structures. Denote by AH(W ) the subset
of Y (W ) consisting of all the characters of discrete faithful representations. In addition, AHT (W )
will denote the subset of characters of minimally parabolic representations, ie those χρ ∈ AHT (W )
satisfying the condition that for g ∈ π1(W ), ρ(g) is parabolic if and only if g lies in a rank 2 abelian
subgroup. We will also call the group ρ(π1(W )) minimally parabolic.

It will be convenient for our purposes to record some facts about AH(W ). A convenient reference
for the first result stated below is [24] Theorem 8.44. Recall that a Kleinian group Γ (or the quo-
tient H3/Γ) is called geometrically finite if Γ admits a finite sided convex fundamental polyhedron.
Otherwise, Γ (or H3/Γ) is called geometrically infinite.

Theorem 4.1 Let W be as above and χρ a minimally parabolic geometrically finite representation.
Then χρ is a smooth point of Y (W ) and the complex dimension of a component of Y (W ) con-

taining χρ is −3χ(∂W )/2 + nT = −3χ(W ) + nT .

Understanding the detailed structure of AH(W ) (resp. AHT (W )) has been one of the main
goals in the deformation theory of Kleinian groups. For example, combining work of Marden [31]
and Sullivan [42] shows that the subset GAHT ⊂ AHT (W ) consisting of characters of geometrically
finite representations is the interior of AH(W ). The Density Conjecture asserts that AH(W ) is
the closure of GAHT (W ). This has been recently established as a consequence of the solutions
to the Tameness and Ending Lamination Conjectures ([1], [9], [7] and [8]), as well as many other
develpoments (see the survey papers [11] and [12] for more on this).

Theorem 4.2 (Density Theorem) With W as above, then AH(W ) is the closure of its interior.
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The topology of AHT (W ) has also been investigated in some detail. It is known that AHT (W )
can be highly disconnected ([3], [4]) and it remains an open problem to determine if these components
can be contained in more than one irreducible component of Y (W ) (see [11] §10). However, for our
purposes all we require is the following.

Proposition 4.3 Let W be as above. Let V be an irreducible component of Y (W ) such that V ∩
AH(W ) 6= ∅. Then dim(V ) = −3χ(∂W )/2 + nT = −3χ(W ) + nT .

Proof: By Theorem 4.2 (The Density Theorem), and the discussion preceding it, every component
of AH(W ) contains a component of GAHT (W ). Thus if V is a component of Y (W ) such that
V ∩ AH(W ) 6= ∅, we can assume that V contains a component U ⊂ GAHT (W ). By Theorem 4.1,
GAHT (W ) is contained in the set of smooth points of Y (W ). Thus the dimension of V is now given
by Theorem 4.1. tu

Two special cases that are worth pointing out are the cases when W = S × I where S is either
a closed orientable surface of genus ≥ 2 or an orientable punctured surface 6= disc or annulus. In
the former case Goldman [17] established that Y (W ) has two irreducible components of dimension
6g−6, and the latter case is that of a free group, and in this case, Y (W ) is affine space of dimension
3r − 3 where r is the rank of the free group.

Before commencing with the proofs, we prove a general lemma that will be useful in the setting
of hyperbolic 3-manifolds.

Lemma 4.4 Let M = H3/Γ be a finite volume orientable hyperbolic 3-manifold, and H < Γ a
finitely generated subgroup such that (Γ, H) is a Grothendieck Pair. Then H must be geometrically
finite.

Proof: Let χ0 denote the character of the faithful discrete representaion of Γ. From the discussion
above, if M is closed, the canonical component X0 ⊂ Y (Γ) consist only of {χ0}, and if M has
m cusps then X0 has dimension m. Proposition 2.7 implies that u∗(X0) is a component of Y (H).
Furthermore, this component contains the character u∗(χ0) (the character of identity representation
of H).

Suppose that H were geometrically infinite. It follows from the solution to the Tameness Con-
jecture ([1], [9]) and work of Canary (see [12]) that H is isomorphic to the fundamental group of
either a closed surface or a punctured surface. Indeed, in either case, the surface in question is the
fibre in a fibration over the circle (or a bundle over a mirrored interval in the non-orientable case) of
some finite cover of M . However, in both cases the surface group is separable and so we can apply
Lemma 2.5.

This completes the proof that H is geometrically finite. tu

4.2 Proof of Theorem 1.1

Since π1(M) can be assumed to be infinite, M admits a geometric structured modelled on H3,
SOLV, E3, S2 × R, H2 × R, P̃SL2, or NIL (see [46]). The last five of these are Seifert fibered
geometries and so [39] implies that Γ is LERF. Hence Corollary 2.6 applies. Manifolds in SOLV have
virtually solvable fundamental groups, and these are also known to be LERF; since for example the
fundamental group of any torus bundle with SOLV geometry is a subgroup of SL(3,Z) and Theorem
2 of [48] applies. Thus it remains to deal with the case of hyperbolic 3-manifolds.

It will be convenient to state the following corollary of Lemma 2.4 in the hyperbolic setting that
we will make use of on several occasions below. Recall that a group is called cohopfian if it does not
inject as a proper subgroup of itself.
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Corollary 4.5 Let M = H3/Γ be a finite volume hyperbolic 3-manifold, ∆ < Γ a subgroup of finite
index and H < Γ. If (Γ, H) is a Grothendieck Pair, then (∆,∆ ∩H) is a Grothendieck Pair.

Proof: From Lemma 2.4 and the Remark that follows it, we simply need to note that it is known
that the fundamental group of a finite volume hyperbolic 3-manifold is cohopfian (see for example
[36]). tu

Returning to the proof of Theorem 1.1, let M = H3/Γ and u : H ↪→ Γ determine a Grothendieck
Pair. Note that by Corollary 4.5, it suffices to deal with the case that M is orientable, and we
assume this henceforth.

Let XH (resp. CH) denote the cover of M corresponding to H (resp. denote a compact core CH
for XH). Thus CH is a compact manifold with non-empty boundary (H must have infinite index in
Γ). This boundary may or may not be incompressible.

By Lemma 4.4, H is geometrically finite, and since M is closed, Γ has no parabolic elements.
Hence H is minimally parabolic. Proposition 2.7 implies that u∗(X0) is a component of Y (H).
Furthermore, this component contains the character u∗(χ0) which by definition is the character of
a minimally parabolic representation onto H. Since the core corresponding to H has non-empty
boundary, Proposition 4.3 applies to give a contradiction. tu

When M is not geometric, one can still prove some results.

Theorem 4.6 Suppose that M is a closed 3-manifold that is an irreducible rational homology 3-
sphere. Then π1(M) is Grothendieck Rigid.

Proof: Since M is a rational homology 3-sphere it is orientable. The theorem easily follows from
Theorem 3.4 and the observation that any finitely generated infinite index subgroup H of π1(M)
has infinite abelianization since after capping off any 2-spheres, a compact core CH of H must have
non-empty boundary. tu

4.3 Proof of Theorem 1.2:

As above, we will assume that M is orientable, and also as above, we let Γ = π1(M), with H < Γ
for which (Γ, H) is a Grothendieck Pair.

To illustrate some of the ideas in the proof, we first give the proof in a special case, that of a
1-cusped manifold.

M is 1-cusped.

The case of b1(M) = 1 can be handled without resort to the character variety and we give this
argument first. As in the proof of Theorem 1.1, we consider the compact core CH . Note that by
Corollary 2.3, the assumption that Ĥ ∼= Γ̂, implies that b1(CH) = 1. Hence we deduce from Corollary
3.5 that CH is homotopy equivalent to a compact 3-manifold with non-empty incompressible torus
boundary. Furthermore CH is irreducible since XH is a quotient of H3. Hence CH is Haken.

Since H < Γ, it follows that CH satisfies the criteria required for Thurston’s hyperbolization
theorem for Haken manifolds (see [32] and [45]). That is to say, CH ⊂ H3/H with H3/H having
finite volume. This is a contradiction, since XH is then a finite cover of M .

We now deal with the general 1-cusped case. Note that in this case X0 has dimension 1. With
notation as above, some component of ∂CH is not an incompressible torus, for otherwise, as in the
previous paragraph, H3/H has finite volume which is a contradiction.

Thus, there is some component S of ∂CH of genus at least two. As in the closed case, Propo-
sition 2.7 implies that u∗(X0) is a component of Y (H). Furthermore, this component contains the
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character u∗(χ0) which by definition is the character of the discrete faithful representation of H.
Now by Lemma 4.4, H is geometrically finite, and if it is also minimally parabolic then we can
argue as in the closed case and apply Proposition 4.3. If H is not minimally parabolic, we simply
note that nearby to H in the component containing u∗(χ0), there are geometrically finite minimally
parabolic representations and the dimension argument can still therefore be made. tu

M has m ≥ 2 cusps.

As above, we let H < Γ with (Γ, H) a Grothendieck Pair. Again, as before, the compact core CH
is a compact manifold with non-empty boundary. As in the 1-cusped case, H is geometrically finite
by Lemma 4.4.

Notice that any torus in ∂CH must be incompressible, for if it is not, then the Loop Theorem
gives a compression and hence an embedded 2-sphere. By irreducibility, this sphere bounds a ball
in the manifold H3/H and this ball cannot contain the non-compact end which abuts the torus in
question. It follows that ∂CH is a solid torus, which is impossible.

It follows that if ∂CH consists of m tori, then these are all incompressible and we can then argue
exactly as in the case of one cusp.

Thus we can assume that some component of ∂CH has genus at least two, and so χ(CH) < 0. We
will assume that CH has nT < m (possibly zero) torus cusps. As in the argument for the Theorem
1.1 and the case of one cusp given above, the character χ0 of the faithful discrete representation of
π1(M) determines a character u∗(χ0) of H, and furthermore u∗(X0) = V , a component of Y (CH)
with dim(X0) = m = dim(V ). Note that, as in the argument for the 1-cusped case if H is not
minimally parabolic, nearby to u∗(χ0) in V , there are geometrically finite minimally parabolic
representations and the dimension argument can still therefore be made. We therefore deduce from
Proposition 4.3 that dim(V ) = −3χ(CH) + nT , and so m = −3χ(CH) + nT .

The idea now is to exhibt a finite index subgroup ∆ < Γ such that the dimension of the canonical
component of the manifold H3/∆ is strictly less than the dimension of the component containing the
character associated to the faithul discrete representation given by H ∩∆. In particular, (∆, H ∩∆)
is not a Grothendieck Pair which contradicts Corollary 4.5. This will complete the proof.

To that end, [27] provides an infinite collection of rational primes p > 3 so that reduction
homomorphisms surject both Γ and H onto the finite simple groups PSL(2, p). Let Np denote the
kernel of the reduction epimorphism Γ → PSL(2, p), and Mp the finite cover of M determined by
Np. We let Cp denote the cover of the compact core CH determined by H ∩NP .

Now we can, by discarding a further finite number of p, assume that for each of the primes p,
the image under these reduction homomorphisms of any of the m peripheral subgroups of Γ, and
any of the nT toroidal peripheral subgroups of H is non-trivial. In particular, using the structure
of subgroups of PSL(2, p) generated by unipotent elements (see [43] Chapter 3, §6 for example), it
follows that any of the aforementioned peripheral subgroups is mapped to a cyclic group of order p.
The order of PSL(2, p) is p(p2 − 1)/2, and so we deduce that Mp has m(p2 − 1)/2 cusps.

In addition, H surjects onto PSL(2, p), and so by multiplicativity of Euler characteristic, we
deduce that the Euler characteristic of Cp is χ(CH)p(p2− 1)/2. Furthermore, we also arranged that
Cp has nT (p2−1)/2 torus cusps. We now compare the dimensions of the canonical component of Mp

with the dimension of the component Vp of X(Cp) containing the character associated to H ∩Np.
From above, Mp has m(p2−1)/2 cusps, and therefore the dimension of X0(Mp) is m(p2−1)/2. By

Proposition 4.3 the dimension of Vp is −3χ(Cp) +nT (p2− 1)/2. Now, using the earlier computation
for dim(V ) we have:

−3χ(Cp) = −3χ(CH)p(p2 − 1)/2 = p(p2 − 1)(m− nT )/2.

Since (Np, H ∩Np) is a Grothedieck Pair, Proposition 2.7 allows us to equate the dimensions of
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X0(Mp) and Vp. This gives:

m(p2 − 1)/2 = p(p2 − 1)(m− nT )/2 + nT (p2 − 1)/2.

This is easily rearranged to show that m = nT which is a contradiction. tu

Remarks:(1) We are very grateful to a referee who suggested the argument above in the proof of
the case when M has at least 2 cusps.

(2) We are grateful to a second referee who made the following observation in the context of trying
to prove Theorems 1.1 and 1.2 using only pro-p completions.

If two groups have isomorphic profinite completions, then they have isomorphic pro-p completions
for any prime p. However, having isomorphic pro-p completions is not enough to prove the main
results of the paper.

For example, let L ⊂ S3 be a boundary link (ie the components of L bound disjoint Seifert
surfaces) and let G = π1(S3 \ L). There is a map from S3 \ L to a wedge of circles which induces
a surjective homomorphism from G to a non-abelian free group F . This has a section F → G. By
Stallings’ theorem (see [41]), any homomorphism between groups G and K that induces an isomor-
phism on H1(−; Fp) and a surjection on H2(−; Fp) induces an isomorphism of pro-p completions.
Applying this to G and F we see that the homomorphism G→ F induces an isomorphism of pro-p
completions. Hence, the inclusion F ↪→ G induces an isomorphism of pro-p completions.

5 Knots in S3

In this section we prove the following result. As in §3.3, E(K) will denote the exterior of K.

Theorem 5.1 Let K ⊂ S3 be a knot in S3 which is either a torus knot or for which βE(K) is a
collar. Then π1(S3 \K) is Grothendieck Rigid.

It is a consequence of Thurston’s hyperbolization theorem for Haken manifolds (see [32] and
[45]), that a knot K is either hyperbolic (so that S3 \K is hyperbolic), is a torus knot (in which case
S3 \K is a Seifert fibered space) or is a satellite knot (in which case S3 \K contains an embedded
incompressible torus that is not boundary parallel). It is known by [39] that the fundamental groups
of Seifert fibered spaces are LERF, which proves Grothendieck Rigidity for torus knot groups. Thus,
given Theorem 1.2, the main part of the proof of Theorem 5.1 deals with the case that βE(K) is a
collar.

Proof: Following the discussion above, we will assume that βE(K) is a collar. In particular, the
discussion in §3.3 (see Corollary 3.3) shows that γE(K) is hyperbolic.

Let H be a finitely generated subgroup of Γ such that the inclusion of H into Γ induces an
isomorphism of profinite completions. Let XH (resp. CH) denote the cover of E(K) corresponding
to H (resp. denote a compact core CH for XH). Corollary 3.5 shows that CH is homotopy equivalent
to a compact 3-manifold with non-empty incompressible torus boundary.

Note that the assumption that Ĥ ∼= Γ̂ implies that H has infinite index in Γ by Lemma 2.5.
In addition, H is not infinite cyclic since Γ is a non-abelian group. Also note that π1(∂CH) is not
peripheral; ie it is not conjugate into π1(∂E(K)). For if this were the case, CH would be a finite
sheeted covering of E(K) and so H would be a finite index subgroup of Γ which is a contradiction.

The proof will be completed by the following two lemmas and Lemma 2.5 (recall the terminology
from §3.2).

Lemma 5.2 In the notation above, H is a loose subgroup of Γ.
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Proof: Suppose that H is not loose, and so by definition H is a tight subgroup of Γ. From §3.2,
we can suppose that there is a tight essential map f : CH → E(K) realizing H = f∗(π1(CH)).
Now Proposition 3.2 shows that βCH is a collar, and f can be deformed to a covering map of
collars. In particular, this covering map has finite degree. Hence H has finite index in Γ which is a
contradiction. tu

Lemma 5.3 A loose subgroup of Γ can be engulfed in Γ.

Proof: Suppose that H is a loose subgroup of Γ = π1(S3 \K), so we can assume that H < π1(C)
where C is a component of E(K) \ γE(K).

By definition, C does not contain ∂E(K). This affords the following decomposition of the JSJ
graph of E(K); namely it has the form of a rooted tree T = TC ∪ {v0} ∪ TD where TC and TD are
subtrees of the JSJ graph of E(K), and meet precisely in {v0}. This yields the free product with
amalgamation decomposition Γ = GC ∗π1(P ) GD where P is some JSJ torus lying in the boundary
of γM , and GC and GD the fundamental groups of the connected submanifolds associated to TC
and TD, with H < GC . Note that GD 6= π1(P ), so that this is a non-trivial amalgamated product
decomposition.

Now π1(P ) is Abelian, so it is separable in π1(E(K)) (see [21] and [25]). A standard consequence
of the separability of π1(P ) is that we can arrange finite groups A, B and C and an epimorphism
φ : GC ∗π1(P )GD → A ∗QB with φ(GC) = A, φ(GD) = B and φ(π1(P )) = Q (see for example [30]).
In particular, A ∗Q B is a non-trivial free product with amlagamation of finite groups, and as such,
is itself LERF ([39]). Thus if g ∈ B \Q, we can find a finite index subgroup of A ∗QB that contains
A but not g. Since A contains φ(H), it follows that φ(H) is contained in a proper subgroup of finite
index in A ∗Q B. That is to say, φ(H) is engulfed, and so H is engulfed. tu

Remarks: (1) Even when K is a cable knot or composite knot, Lemma 5.3 still holds. Thus to prove
Theorem 5.1 for cable knots and composite knots, one needs to rule out the case of a Grothendieck
Pair (π1(S3 \K), H) where H is a tight subgroup of π1(S3 \K).

(2) If (π1(S3 \K), H) is a Grothendieck Pair, then as in the proof of Theorem 5.1, XH is homotopy
equivalent to a knot complement in some closed manifold. Furthermore, the Grothendieck Pair
assumption implies that H1(XH ; Z) ∼= Z. It follows that XH is homotopy equivalent to a knot
complement in integral homology 3-sphere (see Lemma 3.0 of [18] for example). At present we do
not know that XH is homotopy equivalent to a knot complement in S3.

(3) There are satellite knot groups that are known not to be LERF [34], for example connect sums
of torus knots.

(4) Lemma 5.3 is in the spirit of a result of Wilton and Zalesskii [49], where it is proved that
fundamental groups of the vertex manifolds in the JSJ decomposition are separable.

(5) Note that if a group is not cohopfian, it will contain a proper subgroup with isomorphic profinite
completion. The point here is that the isomorphism is not induced by the canonical inclusion map.
Now much is known about which 3-manifold groups are cohopfian (see [18] and [36] for example),
and indeed it is shown in [18] that a non-trivial knot group is cohopfian if and only K is not a
torus knot, a cable knot or a non-trivial connect sum. In this latter case, the knot group injects
in itself as a subgroup of infinite index. The proof of Theorem 5.1 relied on the techniques of [18],
and the hypothesis of Theorem 5.1 in part indicates the fact that these are the knot groups that
are not cohopfian. In particular, this discussion also illustrates why using û, with u the inclusion
homomorphism is crucial in our discussions.
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