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Abstract
Throughout the history of 3-manifolds, the fundamental
group has played a central role. There is a list of rea-
sons for that, and exactly what that role is has evolved
over time, but it has always been a player. The papers
under consideration here all written by G. Peter Scott
(1944–2023) in a period 1972–1978, highlight and reflect
the beginnings of a transitional period for the subject
viewed through the prism of fundamental groups.
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1 SUBGROUP SEPARABILITY

We begin by considering what is historically the last paper of the three, [12] Subgroups of surface
groups are almost geometricwhich appeared in 1978. It was hugely influential both in terms of the
result and the proof, and reflected the burgeoning new emphasis on geometricmethods pioneered
around this time by Thurston.
We begin by recalling a few definitions; most of these can be couched purely in terms of the

group theory or purely geometrically. The fact that this interplay exists is one of the powerful
features of this direction.
A group𝐺 is said to be residually finite, if given anynontrivial g ∈ 𝐺, there is a subgroup𝐺𝐹 ⩽ 𝐺,

where the index [𝐺 ∶ 𝐺𝐹] < ∞ and with the property that g ∉ 𝐺𝐹 . It is an easy exercise that this
is equivalent to the property that given any nontrivial g , there homomorphism 𝜃 ∶ 𝐺⟶ 𝐹 with
the property that 𝐹 is a finite group and 𝜃(g) is nontrivial in 𝐹.
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This can be recast geometrically as follows. Suppose 𝑋 is a connected space with pleasant local
properties (𝑋 a manifold is more than enough) and 𝜋1(𝑋, 𝑝) = 𝐺 for some choice of basepoint
𝑝. Denoting the universal covering of 𝑋 by 𝑋, it is a basic fact that 𝐺 acts freely and it follows 𝑝
and g ⋅ 𝑝 are distinct points in 𝑋. Now with these hypotheses, every covering of 𝑋 has the form
𝑋∕𝐻 for some 𝐻 ⩽ 𝐺 so the statement that 𝐺 is residually finite now translates to the fact that
there should be some finite sheeted covering 𝑋𝐹 of 𝑋 in which 𝑝 and g ⋅ 𝑝 continue to be distinct.
Guided by this observation, one can usefully go further in this direction: the two point set is the
smallest compact subset of 𝑋 which might or might not embed in some other covering and it is
a somewhat less easy exercise (it uses the stronger fact that 𝐺 acts properly discontinuously on
its universal covering) that 𝐺 is residually finite if and only if the following condition holds: for
every compact 𝐶 ⊂ 𝑋, there is a finite sheeted covering 𝑋∕𝐺𝐹 so that the obvious composition
𝐶 ⊂ 𝑋⟶ 𝑋∕𝐺𝐹 embeds 𝐶.
A generalization was proposed by Hall [6], replacing the trivial group by any finitely generated

subgroup of 𝐺: precisely, one says that a subgroup𝐻 ⩽ 𝐺 is separable if given any element g ∉ 𝐻,
there is a subgroup 𝐺𝐹 ⩽ 𝐺 where the index [𝐺 ∶ 𝐺𝐹] < ∞ with the properties that 𝐻 ⩽ 𝐺𝐹 ⩽ 𝐺

and g ∉ 𝐺𝐹 . The geometric incarnation is: given a compact subset 𝐶 ⊂ 𝑋∕𝐻, there is a subgroup
𝐺𝐹 for which 𝐻 ⩽ 𝐺𝐹 ⩽ 𝐺, [𝐺 ∶ 𝐺𝐹] < ∞, and so that the obvious composition 𝐶 ⊂ 𝑋∕𝐻⟶
𝑋∕𝐺𝐹 embeds 𝐶. One says that 𝐺 is subgroup separable if all the finitely generated subgroups of
𝐺 are separable in this sense.
Residual finiteness is a relatively soft condition to impose upon a group and there are fairly

general conditions that guarantee it, for example, it is a classical theorem ofMal’cev that a finitely
generated linear group is residually finite. In contrast to this, subgroup separability is extremely
delicate—nothing of the broad generality of Mal’cev’s theorem is known or seems likely. Hall
proved that finitely generated free groups have this property, but, for example, even as appar-
ently innocuous a group as Free(2) × Free(2) does not. In this setting, the result of [12] came as
something of a surprise: the fundamental group of a closed hyperbolic 2-manifold is subgroup
separable. Even more interesting, and what makes this paper something of a watershed moment
is the method, which uses the geometry of the hyperbolic plane in an essential way. This was a
reflection of the times: Thurston and his geometric viewpoint were emerging as a huge influence
on the subject.
It is possible to sketch some of the ideas of how one proves what appears to be a purely algebraic

result from the geometry of the hyperbolic plane𝐇2. We reference [5] for some of the basic facts
about the hyperbolic plane upon which we draw.
We begin by observing that it is not difficult to see that if 𝐴 ⩽ 𝐵 and 𝐵 is subgroup separable,

then so is𝐴, and if𝐴 is subgroup separable and [𝐵 ∶ 𝐴] < ∞, then so is 𝐵. This means that show-
ing some carefully chosen group is subgroup separable will be sufficient to prove the result for
all hyperbolic surface groups simultaneously. Our carefully chosen group here is geometrically
constructed: it is not difficult to show that 𝐇2 contains a regular pentagon all of whose interior
angles are 𝜋∕2. Reflections in the sides of this pentagonal tile generate a discrete group of isome-
tries Γ and a tiling of 𝐇2 by regular right-angled pentagons. Very general considerations show
that Γ contains a torsion-free subgroup of finite index which is therefore a closed surface group of
genus at least two. It follows that to prove the result for all closed hyperbolic surfaces, it suffices
to show that Γ is subgroup separable.
Suppose then, that we have fixed a finitely generated subgroup 𝐻 < Γ; without much loss of

generality 𝐻 is torsion-free. It is now useful to recall a rather general construction in the hyper-
bolic geometry, namely the notion of convex hull of a group of hyperbolic isometries. Each of the
nontrivial elements of 𝐻 has associated with them a hyperbolic axis along which the element
is a hyperbolic translation. The convex hull of 𝐻 is the smallest hyperbolically convex set (𝐻)
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which contains all these axes. This can be usefully thought of as the intersection of all the hyper-
bolic half-spaces which contain all the axes of 𝐻. By construction this is invariant for the action
of 𝐻, so (𝐻)∕𝐻 is a canonical convex subset of 𝐇2∕𝐻 which contains the axes of all the ele-
ments of𝐻. (We note in passing that in higher dimensions this set can be somewhat exotic, but in
dimension two it is rather well behaved.) Now, with a view to showing we can satisfy the geomet-
ric version of subgroup separability, we suppose that we are given a compact subset 𝐶 of 𝐇2∕𝐻.
Now, geometric considerations show that by taking a sufficiently large 𝑅, we can arrange that
the 𝑅-neighborhood of(𝐻)∕𝐻 is a compact convex subset of𝐇2∕𝐻 which contains not only all
the axes of 𝐻 but also the compact subset 𝐶. Denoting this set by 𝑅(𝐻)∕𝐻, we can lift it to a
connected convex𝐻-invariant subset𝑅(𝐻) of𝐇2.
Up to this point, the ambient group Γ has played no role. However, it enters now in the fol-

lowing fashion. Associated with Γ is a countable collection of hyperbolic half-spaces, namely the
half-spaces cut out by the reflection axes of the order two elements of Γ.We can use only these axes
tomake a tiling hull  of the convex set𝑅(𝐻), i.e. take the intersection of all these Γ defined half-
spaces which contain𝑅(𝐻). The convex set  is visibly 𝐻 invariant and is obviously a union of
pentagons, however there is a danger that it is far too big. (The reader might want to contemplate
the following example: tile the Euclidean plane by unit squares in the obvious way, and consider
the tiling hull for the line 𝑥 = 𝑦 using these squares.) However, an argument using the geome-
try of the hyperbolic plane shows that very distant pentagons cannot be involved in  , so that
𝑅(𝐻)∕𝐻 ⊂  ∕𝐻 is a compact convex union of tiles, and reflections in its sides give the required
subgroup of the finite index.
While the methods of [12] were not adequate to address them, the result incentivized questions

concerning subgroup separability in the context of hyperbolic 3-manifolds, which were a magnet
for much research in the area in the years that followed. Briefly, the history is this: The work of
Waldhausen [15] showed that one could answer (almost) any question about a closed irreducible†
3-manifold𝑀 if it was sufficiently large, that is to say, there is a 𝜋1-injective embedding of a closed
orientable surface of genus at least one; Waldhausen called such manifolds Haken. For a while,
an optimism prevailed that if 𝑀 was irreducible and 𝜋1(𝑀) was infinite then it was Haken, a
hope that was dashed with the publication of Thurston’s notes. There it was shown that with
finitely many exceptions, surgeries on the figure eight knot complement admitted a hyperbolic
structure, which in turn implies that they are irreducible and have infinite fundamental group.
However, relatively simple topological considerations imply that these manifolds do not possess
closed embedded incompressible surfaces.
As understanding evolved, however, it became clear that although it was too much to ask for

an embedding, it was in many cases (in particular, in the hyperbolic case) possible to hope that
manifolds always contained a 𝜋1-injective immersion of a closed orientable surface of genus at
least one. The question then arose: if this is true, how could that information be used? This story
has several threads, but most relevant for this paper is the line of argument that asked if, given
a 𝜋1-injective immersion of a surface, could it be lifted to an embedding in some finite sheeted
covering of 𝑀? Such manifolds are said to be virtually Haken and enough methods of a purely
topological nature were available that this class was regarded as largely understood. Subgroup
separability in its geometric incarnation then becomes relevant, since given a 𝜋1-injective immer-
sion 𝑖 ∶ 𝐹 ⟶𝑀, the surface group 𝑖∗𝜋1(𝐹) defines an infinite sheeted covering of𝑀 and classical
3-manifold arguments show that the Scott–Shalen core (see the subsequent section of this paper)
of this coveringmust be topologically 𝐹 × 𝐼, so that it contains an embedding of the closed surface

† That is, every embedded 2-sphere bounds a 3-ball.
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𝐹. Taking this as the compact subset 𝐶 in the geometric description above, one sees that if one
knew that 𝜋1(𝑀) were subgroup separable, then there would be a finite sheeted covering𝑀𝐹 in
which 𝐹 embeds and therefore𝑀𝐹 would be Haken, that is,𝑀 would be virtually Haken.
Thus, there was a huge incentive to prove that the fundamental group of any closed hyperbolic

3-manifold was subgroup separable, or at least that their surface subgroups were separable. This
generated a vast amount of mathematics, toomuch to delve into here (for a wideranging overview
of this and contiguous topics, we refer the untiring reader to [2]), but we can sketch some of the
initial reductions. These involve the three-dimensional hyperbolic geometry in an essential way.
For example, we canmake closed 3-manifolds as themapping torus𝑀(𝜃) of a homeomorphism

𝜃 ∶ 𝐹⟶ 𝐹 of a closed orientable surface 𝐹. Suchmanifolds fiber over the circle 𝐹⟶𝑀(𝜃)⟶

𝑆1 and the long exact sequence of a fibration shows that such surfaces are incompressible. Early
work of Thurston specifies exactlywhen they are hyperbolic in terms of properties of 𝜃. Notice that
such a surface group has an interesting element in its normalizer and it follows from the paper of
Bonahon alluded to below that if one could identify an immersion of a surface which contained
such a normalizing element inside the closed hyperbolic manifold 𝑋, there is a finite sheeted
covering of 𝑋 which fibers over the circle and so the manifold is in particular virtually Haken.
This leads one to reduce to the case that any surface groups one can locate do not have such

normalizing elements; locating such surface groups proved to be enormously challenging, but
there was a breakthrough made by Kahn &Markovic [8] that showed they were plentiful. A good
deal more work remained to be done but the final chapter of the story was provided by Agol [1];
with his work, the surfaces provided by Kahn–Markovic could be embedded in a finite sheeted
covering so that hyperbolic manifolds are virtually Haken.

2 CORES AND FINITE GENERATION

In this section, we turn our attention to the consideration of the two papers Finitely generated
3-manifold groups are finitely presented, [10] and Compact submanifolds of 3-manifolds, [11]; it
makes both good mathematical and historical sense to consider these as somewhat intertwined.
To explain why this should be so, we first discuss the result of [10]. It does exactly what it says on
the tin: suppose 𝐺 is a finitely generated group which in addition is the fundamental group of a
3-manifold, then in fact 𝐺 is finitely presented.
For historical context, I note that I am assured by topologists from the era that this result was

“in the air” in the sense that it was inspired by, and built upon, other results that were available
at the time, in particular due to Jaco [7] and Swarup [14]. It is also historically important to note
that while [10] has become the standard reference, this theorem was simultaneously proved by
Shalen, as indeed [10] is at pains to point out.
Of course finitely generated, non-finitely presentable 4-manifold groups are well known, and

indeed, there are finitely presented groups with finitely generated, non-finitely presentable sub-
groups [13], so this result highlights the fact that the fundamental groups of 3-manifolds have
special properties, a theme which has continued to develop and over time has become central.
A very reasonable question to ask at this stage is why in an area that focuses largely upon

compactmanifolds one should be led to thinking about such a theorem.Here is a very natural way
the question arises: suppose that𝑀 is a closed (i.e., compact with empty boundary) connected 3-
manifold; it is not difficult to see from the vanKampen theorem thatwith these hypotheses,𝜋1(𝑀)
is finitely presented.However, elementary covering space theory shows that given any subgroup𝐻
of 𝜋1(𝑀), there is a covering space 𝑝 ∶ 𝑀̃ ⟶𝑀 with the property that 𝐻 = 𝑝∗(𝜋1(𝑀̃)), so that
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FUNDAMENTAL GROUPS, GEOMETRY AND SOME PAPERS OF SCOTT 5 of 6

in particular, 𝐻 is the fundamental group of a 3-manifold. Moreover, when the index [𝜋1(𝑀) ∶
𝑝∗(𝜋1(𝑀̃))] is infinite, the manifold 𝑀̃ is noncompact. In the case of most interest here, namely
when𝐻 is finitely generated, we have exhibited a noncompact 3-manifold with finitely generated
fundamental group. Absent any theorem, that is all one would know, but the magic here is that it
follows from the Scott–Shalen theorem that𝐻 is in fact finitely presented.
In this way then, we are led naturally to the considerations addressed in [11]: one is given 𝑀,

a 3-manifold whose fundamental group is finitely generated and one asks the question: is there
a compact submanifold 𝑁 of𝑀 so that the inclusion map 𝑖 ∶ 𝑁⟶𝑀 induces an isomorphism
𝑖∗ ∶ 𝜋1(𝑁)⟶ 𝜋1(𝑀). Such a submanifold is often called a core (perhaps even a Scott–Shalen
core) for𝑀 and aswehave already observed,𝜋1(𝑁)must be finitely presented, so the isomorphism
shows that the fundamental group of the covering space𝑀 is finitely presented. The result of [11]
(also proved independently by Shalen) is that such cores always exist.
The proofs of both these theorems involve an interplay of group theory and classical topolog-

ical methods which are not easily summarized, although it is worth saying that as in so much
3-manifold theory of the time, a crucial role is played by the loop theorem of Papakyriakopoulos
[9].
As evidenced, for example, by the number of citations, both of these theorems have been enor-

mously influential and while they are largely topological in spirit, this influence has carried on
into the geometric era of topology. To briefly describe one such geometric example which makes
essential use of the core, we mention a wonderful paper of Bonahon [3], which solves or partially
solves some important results in the theory of hyperbolic 3-manifolds. It is too technical to say
anything with real content about this paper, but here is the spirit of it and how the core theorem
is relevant.
In his celebrated Princeton notes, Thurston considered geometric properties of the ends of a

noncompact hyperbolic manifold 𝑁 and in particular introduced the notion of what it means
for an end of 𝑁 to be geometrically tame. Rather than formally define this, it is somewhat eas-
ier to speaking roughly about topologically tame manifolds: a manifold is topologically tame if
it is homeomorphic to the interior of a compact manifold with a closed subset of the bound-
ary removed. Marden had conjectured in the seventies that every hyperbolic 3-manifold𝑀 with
finitely generated fundamental group was homeomorphic to the interior of a compact manifold
and so was tame in this sense. Thurston had shown in his notes that a certain conjecture about
geometric tameness implied that Marden’s conjecture was true, at least in the case that 𝜋1(𝑀)
was indecomposable as a free product. A key case to understand is when the fundamental group
of the noncompact hyperbolic manifold 𝑁 is that of a closed surface, and Thurston conjectured
that in this case the ends are geometrically tame, in particular that topologically the noncompact
manifold is 𝐹 × 𝐑 for a compact surface 𝐹.
Of course, the hypothesis of finite generation is where the core theorem is relevant, so that one

has a compact core𝑀𝐶 , for which the inclusion𝑀𝐶 ⟶𝑀 is a homotopy equivalence. The key
is that the algebraic condition that 𝜋1(𝑀) is freely indecomposable has topological implications
for the way any core sits inside𝑀. For example, it implies that if 𝑆 is a component of 𝜕𝑀𝐶 , then
the inclusion of 𝑆 into the relevant component of𝑀 ⧵𝑀𝐶 is a homotopy equivalence; indeed the
inclusion of 𝜋1(𝑆) is an injection into 𝜋1(𝑀). In this way, one sees that one can reduce Marden’s
theorem in the case that the fundamental group is freely indecomposable to the case of the non-
compact hyperbolic manifold with fundamental group a closed surface group. This topological
picture is the starting point for Bonahon’s proof and his intricate geometric arguments take over,
but at the outset an absolutely essential role is played by the core theorem.
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Wemention that subsequent work of Gabai–Calegari [4] (and independently Agol) proved that
all hyperbolic 3-manifolds with finitely generated fundamental group are topologically tame, but
while those arguments came from a totally different direction, the impetus provided by Bonahon’s
result which in turn rested upon the Scott–Shalen core theorem cannot be understated.
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