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ON PSEUDO-ANOSOV MAPS WHICH EXTEND OVER TWO
HANDLEBODIES

by D. D. LONG*

(Received 18th October 1988)

We show that there is a pair of handlebodies H, and H2 with common boundary F with the properties:
(a) There is no essential simple closed curve in F bounding a disc in both H, and H2-
(b) Given any positive number, there are essential simple curves C; i = l , 2 on F, bounding discs in H, whose
distance apart in the Hausdorff topology on F is less than this positive number.

Such an example has consequences for Heegaard splittings and recognising the 3-sphere.

1980 Mathematics subject classification (1985 Revision): 57.

0. Introduction

Let 6:F->F be an orientation preserving homeomorphism of a closed orientable
surface of genus at least two. We say that the map 6 extends over the 3-manifold M if
there is an identification <f>:F->dM, and a homeomorphism ®:M-*M so that 0 =
(j)~l&\dM<l). A case of particular interest is when M is a cube-with-handles or
"handlebody". A question, attributed to Andrew Casson, which has been around for
some time is the following:

Suppose that 9 is a pseudo-Anosov map which extends over handlebodies Mt and
M2, that is to say, there are handlebodies M, and M2, identifications $,:F-»3M,- and
homeomorphisms

0,:M,->M, so that f? = </>r1 0,|5M^,- i=l ,2.

Must there be an essential simple closed curve C on F which bounds a disc in both
M, and M2?

We shall indicate some reasons why this is of interest below. The purpose of this note
is to show that the answer to this question is negative. It is of course necessary to
restrict the curve C to be simple; since nontrivial normal subgroups in a surface group
always intersect, so that there is always a (possibly non-simple) loop which is null
homotopic in both handlebodies.

One reason for searching for such an example was that it obstructed a possible
approach to deciding the question of when a Heegaard splitting is reducible; this was
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182 D. D. LONG

the hope that if for every e, there were embedded discs Dx in Mt and D2 in M2 whose
boundaries were e close, then there would be a simple curve C on F bounding a disc in
both M, and M2. More precisely, we have the following. Fix a hyperbolic metric on F,
and use this to define the Hausdorff metric, / ( . , . ) , on the closed subsets of F. (See [2].)
Combining some knowledge of the action of pseudo-Anosov maps with a result of [9],
we deduce:

Corollary 1.4. It is possible to find a pair of handlebodies M t and M2 with
dM{ =dM2 which have the following properties.

(a) There is no simple closed curve bounding a disc in M, and M2.

(b) Given any e>0, there is a pair of essential simple closed curves Cx and C2 in F, with
Ci bounding a disc in M, and / (C 1 ,C 2 )<£ .

One of the reasons that such an example is hard to find is that it is by no means easy
to give examples of pseudo-Anosov maps which extend a handlebody in essentially
different ways. There are two trivial constructions: one involving periodic maps which
commute with the pseudo-Anosov, and the other by using pairs of curves which fill the
surface and bound discs in more than one handlebody. The second of these is doomed
to failure, and the first always seems to fail. Moreover, in general the checking of any
potential counterexample is impeded by the fact that there appears to be no algorithm
known to determine if a pair of handlebodies share a simple closed curve bounding a
disc in each.

We say that £, exchanges two handlebodies, if there are handlebodies Mt and M2 so
that £ does not extend over either handlebody, but £2 extends over both. Then we can
also answer the following questions, raised in [10]. Suppose that £, is a pseudo-Anosov
which exchanges a pair of handlebodies. Is there a periodic map commuting with i,
which exchanges them? Part of our construction produces a pseudo-Anosov £ which
exchanges Mt and M2. However, a calculation shows:

Corollary 1.5. There is no periodic map commuting with £ which exchanges Mt and
M2.

Thus the answer to this question is also negative. Our example has genus(F) = 4, and
arises from a somewhat complicated extension which arises in nature as a result of a
certain knot being ribbon. The proof that our example works relies heavily on two
pieces of luck.

1. The example

In this section we describe our example; some of the details involved in the
computation are deferred until Section 2. The construction involves the monodromy of
the (3.5) Turk's head knot, the knot 10* of Conway's tables; displayed as the boundary
of its Seifert surface in Fig. 1. This knot is hyperbolic, so that the monodromy 9':F'-*F'
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ON PSEUDO-ANOSOV MAPS 183

FIGURE 1

of the Seifert surface is pseudo-Anosov. Since we are interested in a map of a closed
surface to itself, we cap off F' and extend 9' across this disc, to obtain an automorphism
Q:F-*F. We shall prove in Section 2 that this extended map continues to be pseudo-
Anosov. Observe that the genus of F is four.

We need to describe our generators for the fundamental group of nx(F')\ this is also
done in Fig. 1. The basepoint is considered to be on the central disc and the loops are
all of the type shown, with the convention shown in the bottom figure for their
numbering.

In the notation of Fig. 1, it is convenient to write:
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184 D. D. LONG

Here R is the relation which comes from capping off the knot; one verifies from Fig. 1
that this is the relation:

Lemma 1.1. Use the symbol <•>„ to denote normal closure in ni(F).
Set

Then there are handlebodies Mt and M2, whose boundary is F and for which

' =1 ,2 .

Proof. One checks that in both cases the four words given describe disjoint simple
closed curves on the surface F. Then the handlebodies are formed by by sewing in 2-
handles along thin neighbourhoods of these curves and capping off the resulting 2-
sphere boundary component with a 3-handle. •

Lemma 1.2. The map 9 extends over both Mv and M2.

Proof. It is shown in [3], that this is equivalent to the map 6* preserving the
subgroups Nl and N2. (The subgroups are normal, so that the choice of basepoint is
irrelevant here.) Using the calculations of Section 2, this can be verified.

Remark. We shall indicate where this pair of handlebodies came from and why they
satisfy 1.1 and 1.2 in Section 2.

Our example is completed by the following:

Theorem 1.3. There is no simple closed curve representing an element of the subgroup
/V,niV2.

Proof. Form a 3-manifold X by glueing together M, and M2 along F. By the
Seifert-Van Kampen theorem, we obtain a presentation of nl(X) = G, which after
eliminating the _y,'s has the shape:

Generators. x o , x 1 , . . . , x 4
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ON PSEUDO-ANOSOV MAPS 185

Relations.

XQ • XX ... . ' X 4 = 1

R

*3 (1)

XAX2 = -*3*0:*l (2)

XQ X4 X2 XjX2=X2X3 (3)

x2-2xr1x2=xox4x3-1 (4)

It follows directly from (1) that we have an equivalent relation:

xo = x3xo1x3-1 (1)'

From (2), (1) we deduce:

X4X0 ^X3XoXjX2X3Xo X3 = X 3 (X( )XiX 2 X 3 )XQ X3 = X 3 X 4 XQ X3 .

Now using (1)', we deduce that (2) is equivalent to:

x4 = x3X41x3"1. (2)'

Now from (4), we may write x 1 =x 2 x 3 x 4 " 1 Xo 'x^ 2 and use this to substitute into (3),
yielding:

XQ X4 X2 X~2 "^3 "^4 *̂ 0 "^2 - ^ 2 ^ ^ 2 ' ^ 3 "

Using (1)' and (2)' and (3)' we deduce from this relation, the new relation:

xsl. (3)'

Finally, we remove x^ from the relations (1) , . . . , (4) altogether by using x o ' x , . . . x 4 = l
in (4), which becomes:

•X3X2-*4-*0*2*4*0= 1- vV

This gives an equivalent presentation for G:

Generators. x o ,x 2 ,x 4 ,x 3
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186 D. D. LONG

Relations.
R
X3

= X 3 X 2 X3

X4 ^ "^3-^4 ^3

We now may rewrite the knot relation, by substituting for the yt's and xt. A routine
calculation reveals that R is equivalent to:

3 ^4 0 2 4 0 2 3 ^ •

Observe that x\ is central in G; so that the knot relation is equivalent to the last
relation in the above list. This was bound to happen; the fundamental group of X does
not notice in this construction whether we use F or f since they differ only in
3-handles.

We may now prove Theorem 1.3. First observe that H1(X) = Z2®Z2@Z2®Z2. It
follows that the minimal number of generators of G is four. Further, any embedded S2

in X is separating, since H^X) is finite. Recalling that the genus of F is four, we see
that if there were a simple closed curve bounding a disc in Mt and M2 the induced
reduction of X = Xt#X2 could not have either piece simply connected, else the
induced Heegaard splitting on the non simply-connected piece would exhibit G as a ̂ 3
generator group.

It follows that if such a curve existed, we could write G as a nontrivial free product
G1*G2. However, as we have already observed, the element x\ is central in G; this
cannot happen in a nontrivial free product unless x3 = 1.

To rule out this possibility, observe that the group G surjects onto the quaternion
group Q8 which has presentation:

< - 1, i, j , k I i2 = j2 = k2=-\,ij= -ji, ik = - Id, jk = - kj}

where we map

x3-+i xo->l x2-*k x4->/

In this group x3 has order 4, completing the proof. •

We can identify the manifold X with little difficulty. The presence of centre shows
that it is likely to be a Seifert fibred space. We can exhibit the fundamental group in the
form given in Hempel's book [7] as follows:

Set x2x3 = c2,x4x3 = c4, XQ 1 X 3 = C0, X3 = C3, C = CACOC2C3 and t = x\.
Then G has presentation with generators co,c2,c4,c3,c,t with relations:
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(a) t is central.

(b)cf = t a n d c 2 = t~l

(C)

Thus X is Seifert fibred over a two sphere with 5 exceptional fibres—as an orbifold
these are cone points with angle n, so that the orbifold Euler characteristic is —1/2.

Proof of 1.4. The result of [4] implies that there is an essential curve bounding a
disc in Mj which is the union of an arc a + u a _ where a ± are arcs in the invariant
laminations for 8. Similarly, such a curve exists for M2. Moreover, one can check that
these arcs can be chosen so that they do not cut across the principal regions for the
laminations, that is, they are not subarcs of isolated leaves. (The existence of such curves
can also be deduced from [9].) Denoting these two curves by At and A2 we now have
from [2], Theorem 4.1, that #*/!,->L+ for i = l , 2 , where L+ is the unique perfect stable
lamination left invariant by 0, and the convergence is in the Hausdorff topology. The
corollary now follows. Q

Proof of 1.5. Suppose that such a map existed; call it co say. Since co commutes with
0, it must fix the invariant foliations of 0; moreover, it must also preserve the measure
on these foliations. The latter is because if \i is the invariant measure on the stable
foliation say, we can form an co-invariant measure by M = n + co*(i + --+(co*)''~l(i.
Since this is an invariant measure on the stable foliation, unique ergodicity gives
M = kfi. Thus co is an isometry of the affine structure defined by the union of the stable
and unstable measure foliations. In particular, the curve A^ constructed above must be
carried to a curve which bounds a disc in M2 and is the union of two straight lines of
the same length. One can check explicitly that no such curve exists. •

2. Some computations

In this section we show how one can perform the computations alluded to in the
previous sections.

The knot K which we consider is the (3.5) Turk's Head knot of Fig. 1. It is
alternatively described as the braid closure of (o-jffj1)5- This is a homogeneous braid in
the sense of [11], so that K is fibred, with fibre surface F', visible in Fig. 1. The knot of
Fig. 1 clearly has a 5-fold symmetry coming from rotation about a vertical axis; this
symmetry induces a map co:F'-*F' which has three fixed points and carries the
boundary circle to itself, so that co extends as a map of the closed surface F to itself.
Clearly co and the monodromy of K commute.

We now prove that the monodromy is pseudo-Anosov in the following way. There is
a branched covering p:F-+F/co; where there are four branch points, each of order 5. The
surface F/co is easily seen to be topologically a 2-sphere and can be considered
metrically as an orbifold with 4 cone points, each of angle n. This orbifold is flat; in fact
denoting the flat torus by T, this has a central involution T, and we have a metric
covering T->T/x = F/co. This gives a correspondence between maps of the torus to itself
and orbifold maps of F/co.
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188 D. D. LONG

The methods of Goldsmith [6] apply to this situation (indeed, she works out this
example, though not in quite this notation) and we deduce that the monodromy 6:F-*F
comes from lifting the linear map:

0 = , :F/a>->F/fl>.

Since this map is a hyperbolic map of the torus, the lifted map 6 is pseudo-Anosov; it
has the same local properties. (See [5].) This description enables one to visualise the
monodromy on F in a very concrete way, but we shall not need to do this, we refer to
[8].

More importantly, the knot K is ribbon, so that by a theorem of Casson-Gordon [3],
the map 9 extends over a handlebody; and by examining the ribbon move, one sees that
the element x2y0 bounds a disc in this handlebody. Below we shall give a description of
the action of 0^ on rc^F); knowledge of one nonseparating curve defines the whole
handlebody, since the characteristic polynomial of 9^:Hl(F)->Hl(F) factorises as
f{t)f(t~l), with f(t) irreducible over Z. This gives handlebody Mt of Lemma 1.1.

One of the surprising features given the highly symmetric nature of K is that the
handlebody Mi is so asymmetric. We digress to observe that this is actually forced to
be the case, but since we make no use of this fact, we only sketch the proof:

Proposition 2.1. There is no compression body over which both 0 and a> extend.

Proof. One computes easily that (o^ has characteristic polynomial g(t)2, where
g(t) = t4 + r3 + • • •+ 1; which is Z irreducible. If follows that if a> compresses at all, it must
either be a handlebody or involve just one 2-handle. The latter is impossible if the
pseudo-Anosov is also to extend over the compression, since the core of the 2-handle
would have to be preserved up to free homotopy. But now an examination of the fixed
point data [1] shows that a> cannot extend over any 3-manifold. •

Notice that this already gives five handlebodies over which 6 extends, since a>rNl

must be different from Nx for 0 < r < 5 . However the reader may check that every such
pair gives a reducible Heegaard splitting.

The second handlebody of Lemma 1.1 arises in the following way. Notice that we
have an orientation reversing square root in GL(2, Z) for the matrix 6. Writing £2 = 0, it
is easy to check that t, also lifts to F, and that choosing an appropriate lift, also denoted
£, we may arrange £,2 = 0 as maps of F. Thus 6 also extends over the handlebody ^N^
This gives another five handlebodies. In the notation of Lemma 1.1, N2 = OJ2^N1.
Empirically one finds that this choice is the only pair which yields an irreducible
Heegaard splitting.

It remains only to show how to obtain the action of #„ on rc^F). It turns out that a
trick makes this fairly easy. We refer to Fig. 2, and regard the basepoint and surface as
living behind the page; so that we are using the Wirtinger under-presentation. Write ab

for b~lab.
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FIGURE 2

Then the action of the monodromy is given by conjugation by a meridian; initially we
use v. We see that:

xl=u~iv y2 = (u~l)v-w — v~lu'lvw

0x2 = vx2v~l = wv~l =

6y2 = vy2v~l =u~lvwv~i = xlx2y3
ix'[1.

Now we may compute the action of the monodromy on the remainder of the
generators by chicanery. Notice that we could have used w to compute the monodromy,
and therefore by symmetry we have:

But

Hence

l =(wv ^ ' (tnv l) =

0x3=xly3x2
 lx3y4 lx2 ' • ^ j ' j ' x ! l=xty3x2

-1..-1 v-i^3 xi .

This gives an inductive method of computing the monodromy which actually works for
any (3,k) Turk's Head knot. One finds:
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0y0 =
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