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The group SL(Z) of 2 X 2 integer matrices with unit de-
terminant is a quintessential arithmetic group. By this we
mean that there is an algebraic group, that is, a variety
defined by polynomial equations, namely,

SL, : {(a,b,c,d) :ad —bc —1 = 0},

whose points over a ring happen to also form a group (un-
der standard matrix multiplication, which is a polynomial
map in the entries); then SL; (Z) is the set of integer points
in this algebraic group. More generally, an arithmetic
group I is a finite-index subgroup of the integer points
G (Z) of an algebraic group G. Roughly speaking, a “thin”
group is an infinite-index subgroup of an arithmetic group
which “lives” in the same algebraic group, as explained be-
low.

While the term “thin group”! was coined in the last 10~
15 years by Peter Sarnak, such groups had been studied as
long as 100-150 years ago; indeed, they appear naturally
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in the theory of Fuchsian and Kleinian groups. For a long
while, they were largely discarded as “irrelevant” to arith-
metic, in part because there was not much one could do
with them. More recently, thin groups have become a “hot
topic” thanks to the explosion of activity in “Super Approx-
imation” (see below). Armed with this new and massive
hammer, lots of previously unrelated problems in number
theory, geometry, and group theory started looking like
nails. Our goal here is to describe some of these nails at a
basic level; for a more advanced treatment of similar top-
ics, the reader would do well to consult [Sar14].

Let’s get to the general definition from first seeing some
(non-)examples. Take your favorite pair, A, B, say, of 2 X
2 matrices in SLp(Z) and let I = (A, B) be the group
generated by them; should I be called thin?

Example 1. Suppose you choose A = ((1) %) and B =
(9 8). Then, as is well known, T is all of SLy(Z). This
cannot be called “thin”; it’s the whole group.

Example 2. If you choose A = ({?) and B = (}9),

then the resulting I' is also well-known to be a congruence
group, meaning roughly that the group is defined by con-
gruence relations. More concretely, I' turns out to be the
subset of SL» (Z) of all matrices with diagonal entries con-
gruent to 1 (mod 4) and evens off the diagonal; it is a good
exercise to check that these congruence restrictions do in-
deed form a group. It is not hard to prove that the index?
of I'in SLy(Z) is 12, so just 12 cosets of I will be enough
to cover all of SL» (Z); that also doesn’t qualify as thin.

Example 3. Say you chose A = (§1) and B = (}9);
that will generate I' = ( é 212 ), the group of upper triangu-
lar matrices with an even upper-right entry. This group is

2 f the reader was expecting this index to be 6, that would be correct in PSL> (Z), or alter-
natively, if we added —1 to T
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certainly of infinite index in SL; (Z), so now is it thin? Still
no. The reason is that I' fails to “fill out” the algebraic vari-
ety SL;. That s, there are “extra” polynomial equations sat-
isfied by I besides det = 1; namely, I’ lives in the strictly
smaller unipotent (all eigenvalues are 1) algebraic group

U:{(a,b,c,d) :ad—bc—1=a—1=d—-1=c=0}.

The fancy way of saying this is that U is the Zariski-closure
of I, written
U = Zcl(I).

That is, Zcl(T') is the algebraic group given by all polyno-
mial equations satisfied by all elements of . And if we
look at the integer points of U, we get U(Z) = (%), in
which I has finite index (namely, two). So again I’ is not

thin.

Example 4. Take A = (?1) and B = (3 3). This exam-
ple is a little more subtle. The astute observer will notice
that B = A%, soT = (A), and moreover that

AT = (g ).

where [}, is the nth Fibonacci number, determined by
fnt1 = fn + fnu—1 and initialized by f1 = f> = 1. Again it
is easy to see that I' is an infinite index subgroup of SL» (Z),
and unlike Example 3, all the entries are changing. But it

is still not thin! Let ¢p = HT\E be the golden mean and K
the golden field, K = Q(¢); there is a matrix g € SL»(K)
which conjugates I' to
2n
N o=grgt = {(% o) INE T
The latter group lives inside the “diagonal” algebraic group

D : {(ab,c,d):b=c=ad—1=0} = {(,%)}

This group is an example of what's called an algebraic
torus; the group of complex points D (C) is isomorphic
to the multiplicative “torus” C*. When we conjugate back,
the torus D goes to

D, = g 'Dg = Zcl(I');

the variety D; is now defined by equations with coeffi-
cients in K, not Q. The rational integer points of D are
exactly I' = D1 (Z), so I is not a thin group.

Example 5. This time, let A = ({{)and B = (% }),
with I' = (A, B). If we replace the upper-right entry 4 in
A by 1, we're back to Example 1. So at first glance, per-
haps this I has index 4 or maybe 8 in SL»(Z)? It turns out
that I actually has infinite index (see, e.g., [Kon13, §4] for
a gentle discussion). What is its Zariski closure? Basically
the only subvarieties of SL; that are also groups look, up to
conjugation, like U and D (and UD), and it is easy to show
that I' lives in no such group. More generally, any sub-
group of infinite index in SL; (Z) that is not virtually (that
is, up to finite index) abelian is necessarily thin. Indeed,
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being non-virtually abelian rules out all possible proper
sub-algebraic groups of SLp, implying that Zcl(I') = SL,.

It is now a relatively simple matter to give an almost-
general definition.

Definition 6. Let ' < GL,(Z) be a subgroup and let G =
Zcl(T') be its Zariski closure. We say I’ is a thin group if
the index of T in the integer points G (Z) is infinite. (Most
people add that I should be finitely generated.)

For more context, we return to the classical setting of a
congruence group I' < SL»(Z). Such a group acts on the
upper half plane H = {z € C . 3z > 0} by fractional
linear transformations

< a b > - az+b
c d)’ cz+d’
and much twentieth- and twenty-first-century mathemat-
ics has been devoted to the study of:

e “Automorphic forms,” meaning eigenfunctions
@ . H - C of the hyperbolic Laplacian A =
V2 (Oxx + 0yy) that are I'-automorphic, that is,

@p(yz) = @(z),

forall y € I' and z € H, and square-integrable
(with respect to a certain invariant measure) on
the quotient I'\H. These are called “Maass forms”
for Hans Maass’s foundational papers in the
1940s. Their existence and abundance in the case
of congruence groups is a consequence of the cel-
ebrated Selberg trace formula, developed in the
1950s.

e “I-functions” attached to such @. These are cer-
tain “Dirichlet series,” meaning functions of the
form

Ly(s) = Z L(n)’

s
n>1 n

where dg (1) is a sequence of complex numbers
called the “Fourier coefficients” of @. When @
is also an eigenfunction of so-called “Hecke op-
erators” and normalizing dg (1) = 1, these L-
functions are also multiplicative, enjoying Euler
products of the form

2
Lo(s) = 1—[ (1 + a(p(sp) n a(p(zlz ) n ) ’
p p p

where the product runs over primes. Needless to
say, such L-functions are essential in modern an-
alytic number theory, with lots of fascinating ap-
plications to primes and beyond.

® More generally, one can define related objects
(called “automorphic representations”) on
other arithmetic groups G(Z), and study their
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L-functions. The transformative insight of Lang-
lands is the conjectured interrelation of these on
different groups, seen most efficiently through the
study of operations on their L-functions. Conse-
quences of these hypothesized interrelations in-
clude the Generalized Ramanujan and Sato-Tate
Conjectures, among many, many others. We ob-
viously have insufficient capacity to do more than
graze the surface here.

Hecke, in studying Example 5, found that his theory of
Hecke operators fails for thin groups, so such L-functions
would not have Euler products,® and hence no direct ap-
plications to questions about primes. Worse yet, the Sel-
berg trace formula breaks down, and there are basically no
Maass forms to speak of (never mind the L-functions!). So
for along while, it seemed like thin groups, although abun-
dant, did not appear particularly relevant to arithmetic
problems.

About fifteen years ago, a series of stunning break-
throughs led to the theory of “Super Approximation,” as
described below, and for the first time allowed a certain
Diophantine analysis on thin groups, from which many
striking applications soon followed. To discuss these, we
first describe the more classical theory of Strong Approxima-
tion. In very rough terms, this theory says that from a cer-
tain algebraic perspective, “thin groups are indistinguish-
able from their arithmetic cousins,” by which we mean the
following.

It is not hard* to show that reducing SL»(Z) modulo a
prime p gives all of SL>(Z/pZ). What happens if we re-
duce the group I' in Example 5 mod p? Well, for p = 2,
we clearly have a problem, since the generator A = (§ 1)
collapses to the identity. But for any other prime p # 2,
the integer 4 is a unit (that is, invertible mod p), so some
power of A is congruent to (1) mod p. Hence on reduc-
tion mod (almost) any prime, we cannot distinguish Ex-
ample 5 from Example 1! That is, even though I in Exam-
ple 5 is thin, the reduction map I' - SL»(Z/pZ) is onto.
The Strong Approximation theorem [MVW84] says that if
I' < SL,(Z) has, say, full Zariski closure Zcl(I') = SL,,
then I' — SL,(Z/pZ) is onto for all but finitely many
primes p. In fact, this reasoning can be reversed, giving
a very easy check of Zariski density: if for a single prime
p = 5, the reduction of I' mod p is all of SL,(Z/pZ),
then the Zariski closure of I' is automatically all of SLy;
see [Lub99] for details.

One immediate caveat is that, if one is not careful,
Strong Approximation can fail. For a simple example, try
findinga y € GL2(Z) that mod 5 gives (3 3). The prob-

3Without Euler products, L-functions can have zeros in the region of absolute convergence;
that is, the corresponding Riemann Hypothesis can fail dramatically!

4Th0ugh if you think it's completely trivial, try finding a matrix y € SLy(Z) whose re-
duction mod 5 is, say, (z O) The latter is indeed an element of SL (Z/5Z), since it has
determinant 6 = 1(mod 5).
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Figure 1. The Cayley graph with vertices SL,(Z/37) and
generators A* and B* from Example 5.

lem is that GL,,(Z) does not map onto GL,(Z/pZ), since
the only determinants of the former are +1, while the lat-
ter has determinants in all of (Z/pZ)*. But such obstruc-
tions are well understood and classical. (In fancy language,
GL,, is reductive, while SL;, is semisimple.)

For Super Approximation, we study not only whether
these generators A and B in Example 5 fill out SL»(Z/pZ),
but the more refined question of how rapidly they do so.
To quantify this question, construct for each (sufficiently
large) prime p the Cayley graph, ¢,, whose vertices are the
elements of SL» (Z/pZ) and two vertices (i.e., matrices) are
connected if one is sent to the other under one of the four
generators A1, B*1. When p = 3, the graph” is as shown
in Figure 1. This is a k-regular graph with k = 4, that is, ev-
eryvertex Y € SL,(Z/pZ) has four neighbors. The “graph
Laplacian” of ¢, is the matrix A = I — %J’Zl, where A
is the adjacency matrix of the graph. By the spectrum of ¥,
we mean the eigenvalues

AP <Al <

of A. In the case of the graph above, the spectrum is:

1111335

{02222444 ,(7+\ﬁ) 139}
Notice that the bottom eigenvalue Ag is O (corresponding
to the constant function), and has multiplicity 1; this is
an instance of Strong Approximation—the graph is con-
nected! (In general, the multiplicity of the bottom eigen-
value is the number of connected components.) Hence

the first eigenvalue above the bottom, Ai’”, is strictly posi-
tive, which by standard techniques implies that a random
walk on the graph is “rapidly mixing” (see, e.g., [DSVO03]).

5This graph is begging us to identify each node y with —y(mod p), that is, work in
PSL,.
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But we have infinitely many graphs %}, one for each prime,
and a priori, it might be the case that the mixing rate dete-

riorates as p increases. Indeed, Aﬁp ) goes from % when

p = 3 down to Aﬁ”) ~ 0.038 when p = 23, for which
the graph has about 12,000 vertices. Super Approxima-
tion is precisely the statement that this deterioration does
not continue indefinitely: there exists some € > 0 so that,
for all sufficiently large p,

AP > e

That is, the rate of mixing is uniform over the entire family of
Cayley graphs ¢,. (This is what's called an expander family,
see [Sar04, Lub12].)

For congruence groups, Super Approximation is now a
classical fact: it is a consequence of “Kazhdan's Property T”
in higher rank (e.g., for groups like SL,,(Z) n = 3), and of
non-trivial bounds towards the “Generalized Ramanujan
Conjectures” in rank one (for example, isometry groups of
hyperbolic spaces); see, e.g., [Lub10, Sar05] for an exposi-
tion. A version of Super Approximation for some more
general (still arithmetic but not necessarily congruence)
groups was established by Sarnak-Xue [SX91].

For thin subgroups I' < SL,(Z), major progress was
made by Bourgain-Gamburd [BG08], who established Su-
per Approximation (as formulated above) for SL,. This
built on a sequence of striking results in Additive Combi-
natorics, namely the Sum-Product Theorem [BKT04] and
Helfgott’s Triple Product Theorem [Hel08], and prompt-
ed a slew of activity by many people (e.g., [Varl2, PS16,
BGT11]), culminating in an (almost) general Super Approx-
imation theorem of Salehi-Golsefidy and Varju [SGV12].

Simultaneously, it was realized that many natural prob-
lems in number theory, groups, and geometry require one
to treat these aspects of thin (as opposed to arithmetic)
groups. Two quintessential such, discussed at length in
[Kon13], are the Local-Global Problem for integral
Apollonian packings [BK14b] and Zaremba's conjecture
on “badly approximable” rational numbers [BK14a].
Other related problems subsequently connected to thin
groups (see the exposition in [Kon16]) include McMullen’s
Arithmetic Chaos Conjecture and a question of Einsiedler-
Lindenstrauss—Michel-Venkatesh on low-lying fundamen-
tal geodesics on the modular surface. The latter, eventu-
ally resolved in [BK17], was the catalyst for the develop-
ment of the Affine Sieve [BGS10, SGS13]; see more discus-
sion in [Kon14]. Yet a further direction was opened by
the realization that the Affine Sieve can be extended to
what may be called the “Group Sieve,” used to great ef-
fect on problems in group theory and geometry in, e.g.,
[Riv08, Kow08, LLR0O8, LM12]. We will not rehash these
topics, choosing instead to end by highlighting the diffi-
culty of answering the slight rewording of the title:

Can you tell... whether a given group is thin?
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Example 7. To ease us into a higher rank example, con-
sider the group I' < SL3(Z) generated by

1 10 0O 1 0
A=10 1 0O)andB=|-1 0 0}.
0 0 1 0 01

A moment’s inspection reveals that I is just a copy of
SL»(Z) (see Example 1) in the upper left 2 X 2 block of
SL3. This I' has Zariski closure isomorphic to SLy, and is
hence not thin.

Example 8. Here’s a much more subtle example. Set

0 01
A=11 0 0
010

1 2 4
B=|10 -1 -1 ].
0 1 0

It is not hard to show that the group I' = (A, B) has
full Zariski closure, Zcl(I') = SL3. Much more striking
(see [LRT11]) is that I is a faithful representation of the
“(3,3,4) hyperbolic triangle” group

T = <A,B:A3:B3 = (AB)* = 1>

and

into SL3(Z); that is, the generators have these relations
and no others. It then follows that I is necessarily of in-
finite index in SL3(Z), that is, thin.

Example 9. The matrices

000 —1 100 5
{100 -1 ., (010 -5
A=lo 10 -1|'B=lo 0 1 5

00 1 -1 000 1

generate a group I' < SL4(Z) whose Zariski closure turns
out to be the symplectic group Sp(4). The interest in these
particular matrices is that they generate the “monodromy
group” of a certain (Dwork) hypergeometric equation. It
was shown in [BT14] that this group is thin. For general
monodromy groups, determining who is thin or not is
wide open; see related work in [Ven14]| and [FMS14], as
well as the discussion in [Sar14, §3.5].

Example 10. The four matrices

10 0 O 1 0 0 O
01 0 O 1 1 1 O
oOoo0 -10 /|l =20 -1 0}
00 0 1 0 0 0 1
01 00 3 2 0 1

1 0 0O 2 3 0 1
001 0| 0 0O 1 0

0 0 01 -12 —-12 0 -5
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Figure 2. A crystallographic sphere packing.

generate a group I' < GL4(Z). Its Zariski closure turns
out to be the “automorphism group” of a certain quadratic
form of signature (3,1). By a standard process (see, e.g.,
[Kon13, p. 210]), such a I acts on hyperbolic 3-space

H3 = {(x1,Xx2,¥) : X; € R,y > 0},

and in this action, each matrix represents inversion in a
hemisphere. These inversions are shown in red in Figure 2,
as is the set of limit points of a I' orbit (viewed in the
boundary plane R? = {(x1,X>, 0)1); the latter turns out
to be a fractal circle packing, see Figure 2. Here circles are
labeled with the reciprocal of their radii (notice these are
all integers!). This limit set is an example of a “crystallo-
graphic packing,” introduced (and partially classified) in
[KN18] as a vast generalization of integral Apollonian cir-
cle packings. It follows from the fractal nature of this limit
set that I is indeed a thin group.

In a sense that can be made precise (see [LM12, Aoull,
Riv10, FR17]), random subgroups of arithmetic groups are
thin. But lest we leave the reader with the false impres-
sion that the theory is truly well developed and on solid
ground, we demonstrate our ignorance with the following
basic challenge.

Example 11. The following group arises naturally through
certain geometric considerations in [LRT11]: letI'= (A, B)
< SL3(Z) with

1 1 2 -2 0 -1
A=10 1 1 ,B= -5 1 -1
0 -3 -2 3 0 1

Reduced mod 7, this I is all of SL3(Z/77), so its Zariski
closure is SL3. Is it thin? As of this writing, nobody knows!
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References
[Aoull] Aoun R. Random subgroups of linear groups are free.

Duke Math. J., 160(1):117-173, 2011. MR2838353

[BGO8] Bourgain J, Gamburd A. Uniform expansion bounds
for Cayley graphs of SL»(F,). Ann. of Math. (2),
167(2):625-642, 2008. MR2415383

[BGS10] Bourgain J, Gamburd A, Sarnak P. Affine linear sieve,

expanders, and sum-product. Invent. Math., 179(3):559-
644, 2010. MR2587341

[BGT11] Breuillard E, Green B, Tao T. Approximate sub-

groups of linear groups. Geom. Funct. Anal., 21(4):774-
819, 2011. MR2827010

[BK14a] Bourgain J, Kontorovich A. On Zaremba'’s conjec-

ture. Annals Math., 180(1):137-196, 2014. . MR3194813

[BK14b] Bourgain J, Kontorovich A. On the local-global
conjecture for integral Apollonian gaskets. Invent. Math.,
196(3):589-650, 2014.

[BK17] Bourgain J, Kontorovich A. Beyond expansion II: low-
lying fundamental geodesics. J. Eur. Math. Soc. (JEMS),

19(5):1331-1359, 2017.|MR3635355

[BKT04]| Bourgain J, Katz N, Tao T. A sum-product esti-

mate in finite fields, and applications. Geom. Funct. Anal.,
14(1):27-57, 2004.

[BT14] Brav C, Thomas H. Thin monodromy in Sp(4). Com-
pos. Math., 150(3):333-343, 2014.

[DSV03] Davidoff G, Sarnak P, Valette A. Elementary Num-
ber Theory, Group Theory and Ramanujan Graphs, volume 55
of London Math. Soc., Student Text. Cambridge University
Press, 2003./ MR1989434|

[FMS14] Fuchs E, Meiri C, Sarnak P. Hyperbolic monodromy
groups for the hypergeometric equation and Cartan invo-
lutions. J. Eur. Math. Soc. (JEMS), 16(8):1617-1671, 2014.

[FR17] Fuchs E, Rivin I. Generic thinness in finitely gen-
erated subgroups of SL,(Z). Int. Math. Res. Not. IMRN,

(17):5385-5414, 2017.[MR3694603

[Hel08] Helfgott HA. Growth and generation in SL(Z/pZ).
Ann. of Math. (2), 167(2):601-623, 2008.
[KN18] Kontorovich A, Nakamura K. Geometry and arith-
metic of crystallographic packings, 2018. Proc. Natl. Acad.

Sci., 116(2):436-441, 2019.

[Kon13] Kontorovich A. From Apollonius to Zaremba: local-
global phenomena in thin orbits. Bull. Amer. Math. Soc.
(N.S.), 50(2):187-228, 2013.

[Kon14] Kontorovich A. Levels of distribution and the affine
sieve. Ann. Fac. Sci. Toulouse Math. (6), 23(5):933-966,
2014.

[Kon16] Kontorovich A. Applications of thin orbits. In Dy-
namics and analytic number theory, volume 437 of London
Math. Soc. Lecture Note Ser., pages 289-317. Cambridge
Univ. Press, Cambridge, 2016.

[Kow08] Kowalski E. The large sieve and its applications, vol-
ume 175 of Cambridge Tracts in Mathematics. Cambridge
University Press, Cambridge, 2008. Arithmetic geometry,
random walks and discrete groups.

[LLRO8| Long DD, Lubotzky A, Reid AW. Heegaard genus and
property T for hyperbolic 3-manifolds. J. Topol., 1(1):152-

158, 2008 MR2365655

NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 909


http://www.ams.org/mathscinet-getitem?mr=2838353
http://www.ams.org/mathscinet-getitem?mr=2415383
http://www.ams.org/mathscinet-getitem?mr=2587341
http://www.ams.org/mathscinet-getitem?mr=2827010
http://www.ams.org/mathscinet-getitem?mr=3194813
http://www.ams.org/mathscinet-getitem?mr=3211042
http://www.ams.org/mathscinet-getitem?mr=3635355
http://www.ams.org/mathscinet-getitem?mr=2053599
http://www.ams.org/mathscinet-getitem?mr=3187621
http://www.ams.org/mathscinet-getitem?mr=1989434
http://www.ams.org/mathscinet-getitem?mr=3262453
http://www.ams.org/mathscinet-getitem?mr=3694603
http://www.ams.org/mathscinet-getitem?mr=3904690
http://www.ams.org/mathscinet-getitem?mr=3020826
http://www.ams.org/mathscinet-getitem?mr=3294598
http://www.ams.org/mathscinet-getitem?mr=3618792
http://www.ams.org/mathscinet-getitem?mr=2365655
http://www.ams.org/mathscinet-getitem?mr=2415382
http://www.ams.org/mathscinet-getitem?mr=2426239

New journal published by the
uropean athematical < ociety

Vol.1 No.2 pp.101-225. 2018

MATHEMATICAL
STATISTICS AND
LEARNING

ISSN print  2520-2316
ISSN online 2520-2324
2019.Vol. 2, 4 issues
Approx. 400 pages
17.0 cm x 24.0 cm
Price of subscription:
198 € online only

238 € print+online

Editors

Luc Devroye (McGill University, Montreal, Canada)

Gabor Lugosi (UPF Barcelona, Spain)

Shahar Mendelson (Technion, Haifa, Israel and Australian
National University, Australia)

Elchanan Mossel (MIT, Cambridge, USA)

J. Michael Steele (University of Pennsylvania, Philadelphia,
USA)

Alexandre Tsybakov (CREST, Malakoff, France)

Roman Vershynin (University of Michigan, Ann Arbor, USA)

Associate Editors

Sebastien Bubeck (Microsoft Research, Redmond, USA)
Sara van de Geer (ETH Zirich, Switzerland)

Ramon van Handel (Princeton University, USA)

Andrea Montanari (Stanford University, USA)

Boaz Nadler (Weizmann Institute of Science, Rehovot, Israel)
Jelani Nelson (Harvard University, USA)

Philippe Rigollet (MIT, Cambridge, USA)

Rachel Ward (University of Texas at Austin, USA)

Aims and Scope

Mathematical Statistics and Learning is devoted to research
articles of the highest quality in all aspects of mathematical
statistics and learning, including those studied in traditional
areas of statistics and in machine learning as well as in
theoretical computer science and signal processing.

European Mathematical Society Publishing House
Seminar for Applied Mathematics, ETH-Zentrum SEW A21
8092 Zirich, Switzerland

subscriptions@ems-ph.org, www.ems-ph.org

910 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY

[LM12] Lubotzky A, Meiri C. Sieve methods in group theory

I: Powers in linear groups. J. Amer. Math. Soc., 25(4):1119-
1148, 2012.

[LRT11] Long DD, Reid AW, Thistlethwaite M. Zariski dense
surface subgroups in SL(3,Z). Geom. Topol., 15(1):1-9,
2011.

[Lub99] Lubotzky A. One for almost all: generation of
SL(n,p) by subsets of SL(n,Z). In Algebra, K-theory,
groups, and education, volume 243 of Contemp. Math.,
pages 125-128. Amer. Math. Soc., Providence, RI, 1999.

[Lub10] Lubotzky A. Discrete groups, expanding graphs and in-
variant measures. Modern Birkhduser Classics. Birkhduser
Verlag, Basel, 2010. With an appendix by Jonathan D. Ro-
gawski, Reprint of the 1994 edition.[MR2569682]

[Lub12] Lubotzky A. Expander graphs in pure and applied
mathematics. Bull. Amer. Math. Soc., 49:113-162, 2012.

MR2869010

[MVW84] Matthews C, Vaserstein L, Weisfeiler B. Congru-
ence properties of Zariski-dense subgroups. Proc. London
Math. Soc, 48:514-532, 1984.

[PS16] Pyber L, Szab6 E. Growth in finite simple groups
of Lie type. J. Amer. Math. Soc., 29(1):95-146, 2016.

[Riv08] Rivin I. Walks on groups, counting reducible ma-

trices, polynomials, and surface and free group au-
tomorphisms. Duke Math. J., 142(2):353-379, 2008.

[Riv10] Rivin I. Zariski density and genericity. Int. Math. Res.
Not. IMRN, (19):3649-3657, 2010.

[Sar04] Sarnak P. What is...an expander? Notices Amer. Math.
Soc., 51(7):762-763, 2004.

[Sar05] Sarnak P. Notes on the generalized Ramanujan con-
jectures. In Harmonic analysis, the trace formula, and Shimura
varieties, volume 4 of Clay Math. Proc., pages 659-685.
Amer. Math. Soc., Providence, RI, 2005.

[Sar14] Sarnak P. Notes on thin matrix groups. In Thin Groups
and Superstrong Approximation, volume 61 of Mathematical
Sciences Research Institute Publications, pages 343-362.

Cambridge University Press, 2014. MR3220897
[SGS13] Golsefidy AS, Sarnak P. The affine sieve. J. Amer.

Math. Soc., 26(4):1085-1105, 2013. MR3073885

[SGV12] Golsefidy AS, Varja PP. Expansion in perfect groups.
Geom. Funct. Anal., 22(6):1832-1891, 2012.
[SX91] Sarnak P, Xue X. Bounds for multiplicities of automor-
phic representations. Duke J. Math., 64(1):207-227, 1991.

MR1131400

[Var12] Varji PP. Expansion in SL4(Ok/I), I square-
free. J. Eur. Math. Soc. (JEMS), 14(1):273-305, 2012.

MR2862040

[Ven14] Venkataramana TN. Image of the Burau representa-
tion at d-th roots of unity. Ann. of Math. (2), 179(3):1041-

1083, 2014./{MR3171758

Credits
Figures 1 and 2 are by Alex Kontorovich.

VOLUME 66, NUMBER 6


http://www.ams.org/mathscinet-getitem?mr=2947947
http://www.ams.org/mathscinet-getitem?mr=2764111
http://www.ams.org/mathscinet-getitem?mr=1732043
http://www.ams.org/mathscinet-getitem?mr=2569682
http://www.ams.org/mathscinet-getitem?mr=2869010
http://www.ams.org/mathscinet-getitem?mr=3402696
http://www.ams.org/mathscinet-getitem?mr=2401624
http://www.ams.org/mathscinet-getitem?mr=2725508
http://www.ams.org/mathscinet-getitem?mr=2072849
http://www.ams.org/mathscinet-getitem?mr=2192019
http://www.ams.org/mathscinet-getitem?mr=3220897
http://www.ams.org/mathscinet-getitem?mr=3073885
http://www.ams.org/mathscinet-getitem?mr=1131400
http://www.ams.org/mathscinet-getitem?mr=2862040
http://www.ams.org/mathscinet-getitem?mr=3171758
http://www.ams.org/mathscinet-getitem?mr=3000503
http://www.ams.org/mathscinet-getitem?mr=735226

