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D. D. LONG and A. W. REID

Abstract

We prove that the fundamental group of the double of the figure-eight knot exterior admits a faithful
discrete representation into SO(4, 1; R), for which the image group is separable on its geometrically finite
subgroups.

1. Introduction

Let G be a group, and let H be a finitely generated subgroup; then G is called
H-subgroup separable if, given any g ∈ G \ H , there exists a subgroup K < G of
finite index with H < K and g /∈ K . The group G is called subgroup separable (or
LERF) if G is H-subgroup separable for all finitely generated H < G.

If G is a discrete group of isometries of hyperbolic n-space, then, at present,
proving that G is subgroup separable seems to be hard, and it is better to restrict
one’s attention to the class of geometrically finite subgroups of G. If G is H-subgroup
separable for all geometrically finite subgroups H , then G is called GFERF. Thus,
for example, since every finitely generated subgroup of a finite covolume Fuchsian
group is geometrically finite, by Scott’s result [14], Fuchsian groups are GFERF.
This property has attracted some attention recently; see, for example, [1, 6, 15].

To describe our main result, we introduce some notation. Let X denote a com-
pact 3-manifold with torus boundary, whose interior admits a complete hyperbolic
structure of finite volume which arises as H3/Γ, where Γ is a subgroup of finite index
in some Bianchi group PSL(2, Od) (see below for an explanation of the notation.)
Let the boundary component of X be denoted by T , and let DX = X ∪T X be the
closed 3-manifold obtained as the double of X over T . Our main result, proved in
the same spirit as [1], is as follows.

Theorem 1.1. (i) There are an integer n ! 4 and a faithful representation
ρ : G = π1(DX) → SO(n, 1; R) such that ρ(G) is a subgroup of a discrete arithmetic
subgroup of SO(n, 1; R). Furthermore, ρ(G) is geometrically finite.

(ii) ρ(G) is GFERF.

This result should be contrasted with the situation for graph manifolds, for which
many examples are known not to be LERF (see [3, 7, 10]). As is obvious from the
existence of an essential torus in DX, DX is not a hyperbolic 3-manifold. The first
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part of Theorem 1.1 implies that DX is uniformized as a hyperbolic n-manifold for
some n ! 4.

Some notation that we shall employ here is to say that a group G is GFERF if
there is a representation ρ : G → SO(n, 1; R) such that ρ(G) is GFERF.

As a special case of Theorem 1.1, we note that consideration of d = 3 gives the
following theorem.

Theorem 1.2. Take X to be the figure-eight knot exterior and let G = π1(DX).
Then G is GFERF.

We have the following corollary in the language of geometric group theory.
Recall that a subgroup H < G is quasi-convex if there is a K such that any geodesic
in the Cayley graph of G between two points of H lies within the K-neighbourhood
of H .

Corollary 1.3. Let H be a quasi-convex subgroup of G; then G is H-separable.

This follows from work of L. Reeves [12], who established that quasi-convex
subgroups of geometrically finite groups of hyperbolic isometries are geometrically
finite. A sketch of a proof following the ideas in [4] is given at the end of this paper.

2. Preliminaries

We recall some basics about hyperbolic spaces and discrete groups (see [11] for
more details).

2.1. Throughout this paper, we shall use the term Kleinian group to mean
a discrete subgroup of orientation-preserving isometries of Hn. The group of all
orientation-preserving isometries of Hn can be identified with SO0(n, 1; R), the con-
nected component of the identity in SO(n, 1; R). We shall sometimes find it con-
venient to pass between the upper half space model of hyperbolic space and the
Lobachevskii space model. In the upper half space model the action of isometries is
given by the Poincare extension from Rn−1.

Let Γ be a finitely generated Kleinian group, and let C(Γ) denote the convex
core of Hn/Γ. Γ is called geometrically finite if for all ε > 0, the ε-neighbourhood of
C(Γ), denoted Nε(C(Γ)), has finite volume.

2.2. We recall the basic combination theorem for amalgams, see [9, Chap-
ter VII]. Let G and H be Kleinian groups acting on Hn, and also discontinuously
somewhere in the sphere-at-infinity, Sn−1

∞ . Assume that G∩H = J is non-trivial. An
interactive pair for G and H consists of two J-invariant non-empty disjoint sets X
and Y such that every element of G \ J maps X into Y , and every element of H \ J
maps Y into X. The interactive pair is called proper if there is a point of X that is
not H-equivalent to a point of Y , or if there a point of Y that is not G-equivalent
to a point of X. We have the following version of the combination theorem.

Theorem 2.1. Let G, H and J be as above, and in addition let them be finitely
generated and geometrically finite. Let (X,Y ) be a proper interactive pair for G and
H . Then 〈G,H〉 = G ∗J H is a geometrically finite Kleinian group.
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2.3. Let d be a square-free positive integer. We let Od denote the ring of
integers in Q(

√
−d). Then PSL(2, Od) is called a Bianchi group, and the collection

of these groups determines all the commensurability classes of non-cocompact but
finite co-volume arithmetic subgroups of PSL(2,C); see [5, Chapter 10] and [8], for
example.

3. Proof of Theorem 1.1

We begin by outlining the idea of the proof. The first stage (following the ideas
in [1]) is to embed the group G into an arithmetic subgroup Γ (of some SO0(n, 1; R))
commensurable with an all right reflection group. We then use Theorem 2.1 to show
that the double embeds into Γ, and subsequently appeal to [1, Theorem 3.1].

For ease of exposition, we do this in the case of a figure-eight knot, and then
indicate the changes that need to be done in general. Thus, in what follows, X will
denote the exterior of the figure-eight knot.

We have the following refinement of some of the analysis in [1]. It will also
be convenient to make use of [5, Chapter 10]. See [1] or [5] for more details on
quadratic forms and the arithmetic background.

Proposition 3.1. SO0(4, 1; Z) is commensurable with a group Γ which contains
a subgroup G0

∼= π1(X). Furthermore, G0 preserves a co-dimension 1 totally geodesic
submanifold of H4.

Proof. Let p be the quaternary form 〈1, 1, 1,−3〉. Notice that this form represents
0 non-trivially, and hence the corresponding arithmetic group SO0(p; Z) is non-
cocompact. This implies that SO0(p; Z) is commensurable with some conjugate of
an appropriate image of the Bianchi group PSL(2, O3).

In fact, as is pointed out in [5, Chapter 10.2, Example 7], SO0(p; Z) is the image
of the maximal arithmetic Kleinian group PGL(2, O3) (see also [8]). In particular,

G0 < PSL(2, O3) < PGL(2, O3).

Now the key claim is that q = 〈3〉⊕ p is equivalent over Q to the form 〈1, 1, 1, 1,−1〉;
it is visibly equivalent over R. But this follows from the theory of quadratic forms;
the version required is stated as [1, Lemma 6.3]. One simply notes that the forms
have the same discriminants and Hasse invariants over Q. This gives the required
group Γ commensurable with SO0(4, 1; Z). It is then clear by construction that
G0 < Γ will preserve a co-dimension 1 totally geodesic submanifold of H4.

We also have the following theorem from [1, see Theorem 3.1 and Lemma 3.2].

Theorem 3.2. The arithmetic group SO0(4, 1; Z) is GFERF.

Combining Theorem 3.2 and Proposition 3.1 recovers the fact that π1(X) is
GFERF.

3.1. Let Γ and G0 be the groups provided by Proposition 3.1. It is convenient
to work in the upper half space model of H4, viewed as the following subspace of
R4 with the hyperbolic metric:

{(x, y, z, t) ∈ R4 : t > 0} = R3 × R+.



394 d. d. long and a. w. reid

We shall arrange that G0 preserves the copy of hyperbolic 3-space determined by
the totally geodesic hyperplane H in H4 given by {z = 0}.

Consider now the action of G0 on S3
∞. The hyperplane H meets the sphere-

at-infinity in the (x, y)-plane in R3, and G0 preserves the ‘upper’ and ‘lower’ half
3-spaces bounded by this 2-plane. We label this 2-plane by H0. Since the action
on H4 is just the Poincaré extension of the action on R3, we see that G0, acting
on these half-spaces, is simply the action by Möbius transformations. In particular,
we deduce from this that we can arrange the action of G0 on these half-spaces to
be that given by the standard representation of π1(X) as a subgroup of PSL(2, O3);
that is, that generated by




1 1

0 1



 and




1 0

ω 1



 ,

where ω2 + ω + 1 = 0. Let H denote the peripheral subgroup of G0 fixing infinity,
which consists of parabolic isometries of H4. Note these have a (unique) common
fixed point in S3

∞, namely ∞.
Now H4/Γ has an end corresponding to the Γ-orbit of ∞, and this end is

diffeomorphic to E×[0,∞), where E is a closed three-dimensional Euclidean orbifold.
Since G0 has finite volume acting on H3, G0 is a geometrically finite subgroup of
Γ, and so Γ is G0-separable, by Theorem 3.2. We may now pass to a finite index
subgroup Γ1 in Γ, such that the following statements hold:

(i) X is embedded in H4/Γ1;

(ii) the Euclidean orbifold E, as above, is the 3-torus.

To see this, we argue as follows. Statement (i) is a standard application of
separability properties in topology (see [14]). The second statement follows, since
the set of elliptic elements in Γ fixing ∞ is a finite group, and hence we can separate
each of these elliptic elements from G0. By another application of G0-separability,
we can pass to a further subgroup of finite index such that E is the 3-torus. It may
still be the case that Γ1 has elements of finite order.

We now uniformize DX, as claimed in Theorem 1.1, by a subgroup of infinite
index in Γ1. This will complete the proof of GFERF. For if K is a geometrically
finite subgroup of G, it is geometrically finite as a subgroup of Γ1. Now Γ1 is
GFERF; hence K is separable in Γ1, and therefore in G. For if γ ∈ G \ K , there
is a subgroup Γ2 of finite index in Γ1 such that K < Γ2, but γ /∈ Γ2. Then Γ2 ∩ G
contains K but not γ.

To uniformize DX, we use Theorem 2.1. X is embedded in H4/Γ1, and so the
boundary torus T of X is embedded in E (recall the notation above), which is just
the 3-torus. Thus, since H preserves H0, we can find a parabolic element p ∈ Γ1

fixing ∞, such that p translates along the z-axis by a number much larger than 2.
Thus 〈H, p〉 ∼= Z3 and the said p translates H far from H (in the Euclidean metric
on R4). In particular, this ensures that G0 ∩ pG0p

−1 = H .
Let Z = {(x, y, z) ∈ R3 : z > 1} and let Y = {(x, y, z) ∈ R3 : z < 1}. Note that,

since H is acting by translations on the upper and lower half 3-spaces described
above, H preserves Z and Y . Furthermore, note that H0 ⊂ Y . We claim that (Z, Y )
is a proper interactive pair for G0 and pG0p

−1. Theorem 2.1 completes the proof.
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Recall that in terms of the PSL(2, O3) action on H3, it follows from the Shimizu–
Leutbecher (or Jørgenson) inequality that, since any element

(
a b
c d

)
∈ PSL(2, O3)

not fixing infinity has |c| ! 1, we deduce that G0 maps Z into Y . Now consider
q ∈ Y . The element p−1(q) is translated parallel to the z-axis far from q: in particular,
p was chosen to translate by more than 2, so the z-coordinate of p−1(q) is less than
−1. Applying G0 either translates parallel to H0, or (as above) the image has
z-coordinate at least −1. In any event, we see that applying p then translates into
Z . Thus q is mapped into Z by pG0p

−1. Thus (Z, Y ) is interactive. To see that it
is proper, we argue as follows. As noted above, H0 ⊂ Y . Also, G0 preserves H0:
it is essentially the limit set for the action on H3. Such points therefore cannot be
G0-equivalent to points in Z . Hence properness is established.

Corollary 3.3. Let M be commensurable with the figure-eight knot exterior.
Then π1(DM) is GFERF.

Proof. We claim that DM is commensurable with DX, from which the corollary
will follow. M is commensurable with X, so there is a finite sheeted covering N of
both X and M. Note that the torus T is covered by some collection of boundary
tori in N, and that these cover boundary tori in M. By elementary covering space
considerations, we see that doubling over T and the respective collections of tori in
M and N is compatible with the covering maps on the two copies of X, N and M
forming the double. Thus DM is commensurable with DX.

3.2. We make some comments on the changes needed to handle the statement
of Theorem 1.1. In [1], representations of the Bianchi groups as groups of isometries
of six-dimensional hyperbolic space was used to prove GFERF. The passage to
six, rather than four as used above, was to handle those PSL(2, Od) for which d
could not be written as a sum of three squares—every integer is a sum of four
squares. Thus, for those d which are the sum of three squares, the argument given
for the figure-eight knot applies verbatim. However, for d not a sum of three squares,
we must work in hyperbolic 6-space. The argument is then modified accordingly.
Corollary 3.3 then also holds in the general setting described.

3.3. The doubling can also be seen geometrically using the ideas in [4]; see also
the proof of subcase C in the proof of [1, Theorem 3.1]. The proof of Corollary
1.3 can be seen in this setting as follows. The group G has a convex hull inside H4

(for example, by taking the convex hull of the limit set), and by taking a point in
this hull, we can get an embedding of the Cayley graph of G into H4. Recall that
the embedding of the Cayley graph of G into H4 is not quasi-isometric because
of the presence of parabolic elements; however, if we remove very small embedded
horoballs, and equip the resulting space with the path metric, then it does become a
quasi-isometric embedding; such a space is often called a neutered hyperbolic space.

Lemma 3.4. A quasi-convex subgroup H of ρ(G) is geometrically finite.

Proof. Since G is quasi-isometrically embedded into the neutered space, and
H is quasi-convex in G, we deduce that there is an L with the property that the
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geodesic in the neutered space between any two points in the Cayley graph of H
(considered as lying in H4) lies within a distance L of the Cayley graph of H . If we
add the very small horoballs back in, we obtain an H-equivariant subset P of H4.
The set P is not quite convex, but the actual convex hull Q lies within, say, 10p of
P , where p is the thin triangles constant for H4.

Apart from a very thin part, Q lies within L + 10p of the Cayley graph of H ,
so that the neutered version Q∗/H is compact. It follows that Q/H itself has finite
volume, and since a quasi-convex subgroup is finitely generated [2, p. 460], H is
geometrically finite, as required.
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