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1 Introduction

Representations of the fundamental groups of finite volume hyperbolic surfaces and finite volume
hyperbolic 3-manifolds into Lie groups have been long studied. Classical cases such as the case of
the Lie groups SL(2,R), SL(2,C) and SU(2) have provided powerful tools to bring to bear in the
study of these groups, and the geometry and topology of the manifolds. More recently, this has
been pursued in other Lie groups (see [6], [9], and [20] to name a few).

In particular, [6] provides a powerful method for the construction of representations into the
groups SL(n,R) for n ≥ 3. This paper was motivated by an examination of the integral points of
such representations with a view to addressing questions about the subgroup structure of SL(3,Z).
In particular, we give a partial answer to a question of Lubotzky which we now describe.

The group SL(3,Z) has the Congruence Subgroup Property, and in this sense its finite index
subgroup structure is much simpler than that of a lattice in SL(2,C). However, some interesting
questions about the structure of subgroups of finite index had remained. For example, in [11],
Lubotzky asked the following question:

Question 1: (See §4 Problem 1 of [11]) For n ≥ 3, does SL(n,Z) contain arbitrarily small 2-
generator finite index subgroups?

By “arbitrarily small”, Lubotzky means that every finite index subgroup of SL(3,Z) contains a
2-generator subgroup of finite index.

Some progress on Question 1 is given in [22] where it was shown that any noncocompact irre-
ducible lattice in a higher rank real semi-simple Lie group contains a subgroup of finite index which
is generated by three elements. In addition it is known that Question 1 has an affirmative answer
for SL(n,Zp) (see [12]). In this paper we provide evidence for an affirmative answer for the case
n = 3:

Theorem 1.1 SL(3,Z) contains a family {Nj} of 2-generator subgroups of finite index with the
property that

⋂
Nj = 1.

The nature of the subgroups used to resolve this question are perhaps as interesting as the resolution
itself: Using the method developed in [6], we produce two one-parameter families of representations
of π1(S3 \ K) into SL(3,R), where K is the figure-eight knot. These families have the property
that integral specializations of subgroups of this image group, in particular the group itself and the
image of the fibre group, give some potentially very interesting subgroups of SL(3,Z). A sketch of
this construction is described in Appendix 7.1.

∗Both authors partially supported by the NSF
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We now give an overview of the content and some further results in this note. In §2 we introduce
two families of representations Fk and FT of the figure eight knot group into SL(3,R) which are
irreducible with a small number of exceptions. Integral specialisations of the parameters k and T
give representations into SL(3,Z). In order to prove Theorem 1.1, we first prove:

Theorem 1.2 Fix k ∈ Z (resp. nonzero T ∈ Z).
Then the image of the fibre groups ρk(F ) (resp. βT (F )) are Zariski dense subgroups of SL(3,R).

This has the interesting consequence that the figure-eight knot group surjects all but finitely
many of the finite simple groups PSL(3, p).

In §3, we examine in some more detail the family βT , which is used to prove Theorem 1.1. We
show

Theorem 1.3 Fix a non-zero integer value of T .
Then the group βT (F ) (and therefore βT (Γ)) has finite index in SL(3,Z).

Furthermore,
⋂

T>0 βT (F ) = 1.

The fact that each βT (F ) has finite index rests upon a result of Venkataramana (see Theorem
3.7 of [24]), which requires Zariski denseness and the construction of certain unipotent elements.
The fact that the family is cofinal in T exploits a reducible specialisation. We remark that while
it follows from the statement that the index [SL(3,Z) : βT (F )] → ∞ as T → ∞, the proof gives
little idea what these indices actually are. They can be estimated, however, and a method for this
is described at the end of §2; the indices are typically enormous. For example, [SL(3,Z) : β7(F )]
must be divisible by 1064332260 = 22.32.5.17.347821.

In §4, we do some similar analysis for the ρk family. The situation for these representations is
a good deal more delicate and there is none of the uniform behaviour apparent which made the βT

family tractable. We are only able to prove finite index for k = 0, 2, 3, 4, 5 and our method fails for
other values. It appears to be very difficult to decide if the subgroups ρk(F ) have finite index for
k ≥ 6, however as in the previous paragraph we are able to estimate the indices, and if they are
finite they are gigantic, which seems to be independently interesting.

In §5, we indulge in some speculation and potential applications directed towards the nature of
finitely generated infinite index subgroups; these remain very mysterious. Some work has been done
on this (see [24] and §3.1), however, some very basic questions remain unanswered. For example, an
old question of Serre [21] asks whether SL(3,Z) is coherent (i.e. whether finitely generated subgroups
of SL(3,Z) are finitely presented). A question of a similar flavour is whether SL(3,Z) has the finitely
generated intersection property (i.e. the intersection of finitely generated subgroups of SL(3,Z) is
finitely generated).

One of the reasons that such questions have remained mysterious is the extraordinary difficulty
of producing subgroups inside SL(3,Z) which are interesting. If the representations ρk (for k ≥ 6)
have infinite index, they seem to be potentially useful in this regard, since one could then conjecture
that the image of the stable letter does not power in to the image of the fibre group which suffices
to disprove the finitely generated intersection property. This is explained in 5.1. With a little
more, one can address the coherence question (see 5.1.2). A natural question raised by this work is
whether there are any injections of finite volume hyperbolic 3-manifold groups into SL(3,Z). This,
and some related issues are also touched upon in §5 and 6 (in which we also collect some assorted
final comments). The Appendix contains some hints about calculations.

Acknowledgements: The authors are very grateful to Eamonn O’Brien and Morwen Thistlethwaite
for help with various computational aspects that were needed. In addition, we thank Bill Goldman
for helpful correspondence and for making some of his unpublished calculations available to us.
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2 Two representations of the figure eight knot group

Let K denote the figure-eight knot and Γ = π1(S3 \K). As is well known, Γ admits a presentation
coming from the fact that S3\K is a once-punctured torus bundle over S1. If we choose generators x
and y for the fibre group (which we shall denote by F ) and z as the stable letter, then Γ is presented
as:

< x, y, z|z.x.z−1 = x.y, z.y.z−1 = y.x.y > .

Given this presentation, the following proposition can be checked directly by matrix multiplcia-
tion.

Proposition 2.1 Define a map ρk : Γ −→ SL(3,Z[k]) by

ρk(x) = Xk =

 1 −2 3
0 k −1− 2k
0 1 −2



ρk(y) = Yk =

 −2− k −1 1
−2− k −2 3
−1 −1 2


ρk(z) = Zk =

 0 0 1
1 0 −k
0 1 −1− k


Then ρk is a homomorphism.

While these matrices appear fairly innocuous, we will show that they generate rather interesting
subgroups. For example, if k = 5, then we shall show that < X5, Y5 > has finite index in SL(3,Z).
While we are unable to say exactly what this index is, we can prove that it must be divisible by
22.33.5.312.127.331.

The second family of representations is described as follows.

Proposition 2.2 Define a map βT : Γ −→ SL(3,Z[T ]) by

βT (x) = XT =

 −1 + T 3 −T T 2

0 −1 2T
−T 0 1



βT (y) = YT =

 −1 0 0
−T 2 1 −T
T 0 −1


βT (z) = ZT =

 0 0 1
1 0 T 2

0 1 0


Then βT is a homomorphism.

In either case an integral specialisation gives:

Corollary 2.3 For integral k or T , ρk(Γ), βT (Γ) ≤ SL(3,Z).
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Henceforth we shall refer to these families of representations as Fk and FT . We begin with some
basic analysis of this pair of families of representations, beginning with the issue of irreducibility.

Lemma 2.4 The representations ρk and βT are each irreducible except possibly for four exceptional
values of their parameter.

In particular, ρk is irreducible for all k ∈ Z, and βT is irreducible for all non-zero T ∈ Z.

Proof: Suppose that the representation ρk is reducible. Then since n = 3, there must be an invariant
one-dimensional subspace either for ρk or for the associated contragradient representation (i.e. the
representation obtained by composing the given representation with transpose-inverse.)

It follows that if the representation is reducible, ρk([x, y]) must have eigenvalue one. A compu-
tation shows that the characteristic polynomial of this element is

pk(Q) = 1 + (−17− 2k − 2k2)Q+ (6− 8k − 7k2 + 2k3 + k4)Q2 −Q3

which, when evaluated at Q = 1 gives pk(1) = (−11 + k + k2)(1 + k + k2). Thus ρk is irreducible
(even when restricted to F ) except possibly for the four values of k which are roots of this equation.
In particular, it is irreducible for any specialisation k ∈ Z.

We argue similarly for βT . In this case the characteristic polynomial of the image of the com-
mutator evaluated at 1 gives is −T 3(−8 + 3T 3) and the result follows as above. tu

Remark: The case of the factor (−8 + 3T 3) that arises in the analysis of the family FT does indeed
determine a reducible representation, and we will make use of this later (see §3.1 for an explicit
discussion of this).

Our next general observation concerns the Zariski denseness of these representations. This will be
needed for the proof of Theorem 1.1.

Theorem 2.5 Fix k ∈ Z (resp. nonzero T ∈ Z).
Then the image of the fibre groups ρk(F ) (resp. βT (F )) are Zariski dense subgroups of SL(3,R).

Of course this implies that the groups ρk(Γ) and βT (Γ) are Zariski dense.

The case that T = 0 is rather different, since β0(Γ) is finite. An easy computation shows that the
image of the group F is a Z/2× Z/2 upon which β0(z) acts as the obvious element of order three.

Notation: Throughout we will denote the finite groups (P)SL(n,Fp) and (P)GL(n,Fp) by (P)SL(n,p)
and (P)GL(n,p) respectively.

Proof of Theorem 2.5: The proof is structured in the following way. A key ingredient is the
following result of Lubotzky ([13] Proposition 1 with n = 3).

Proposition 2.6 Let Γ < SL(3,Z) and assume that for some odd prime p ≥ 3, under the reduction
modulo p, Γ surjects onto SL(3, p).

Then Γ is a Zariski dense subgroup of SL(3,R).

We then combine Proposition 2.6 with the following theorem.

Theorem 2.7 Let G be a finitely generated nonsoluble subgroup of SL(3,Z). Suppose that there is
an element g ∈ G whose characteristic polynomial is Z-irreducible and non-cyclotomic.

Then for infinitely many primes p, reduction modulo p surjects G onto SL(3, p).
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The result of Theorem 2.5 will then follow by exhibiting some explicit elements of the type required
by Theorem 2.7.

Proof of 2.7. Our strategy will be to apply results about the structure of subgroups of SL(3, p)
due to D. Bloom [2]. In fact, [2] deals with subgroups of PSL(3, p), but we will simply blur this
distinction here. Indeed, it is easy to see that G surjects SL(3, p) if and only if it surjects PSL(3, p),
so there is no loss in considering only SL(3, p). We give the argument here.

One way is clear, and so if now G surjects PSL(3, p) and not SL(3, p) then the image of G in
SL(3, p) is some proper subgroup G0 < SL(3, p). Denoting the center of SL(3, p) by Z, it follows
that SL(3, p) =< G0, Z >. Now Z is either the trivial group or a cyclic group of order 3. Thus, we
will now assume that Z is cyclic of order 3. It follows from this that G0 is a normal subgroup of
SL(3, p) of index 3. However, this is impossible since SL(3, p) is a perfect group.

We state only what will be needed from [2] for us. This statement follows directly from Theorems
1.1, and 7.1 of [2]. Note that in the notation of [2], α = 1.

Theorem 2.8 ([2]) Suppose that p is a prime and H is a proper subgroup of PSL(3, p). Then H
has one of the following forms:
(1) If H has no non-trivial normal elementary abelian subgroup, then H is isomorphic to either
PSL(2, p), PSL(2, 7), A5, A6 or A7.
(2) If H contains a non-trivial normal elementary subgroup, then H has a normal subgroup N which
is either cyclic of index ≤ 3, or is a diagonal subgroup with H/N isomorphic to a subgroup S3 or is
a normal elementary abelian p-subgroup with H/N isomorphic to a subgroup of GL(2, p).

We will use this result to show that for infinitely many p, the modulo p reduction of G cannot be
any of the exceptional groups provided by Theorem 2.8. This proves that G must surject SL(3, p)
for any such p.

We begin by noting the following. The first two exceptional types in clause (2) are soluble groups
of class at most three. Since G is nonsoluble, there is a nontrivial element in any term of the derived
series, so that if we fix an element in the third term of the derived series, then except for possibly
finitely many primes, the mod p reduction of this element will be non-trivial.

It follows that by restricting to sufficiently large primes, that we can assume the mod p reduction
of G is not of those two types.

Let g ∈ G be an element with irreducible non-cyclotomic characteristic polynomial provided by
the hypothesis. In particular, g has infinite order. Let n be the least common multiple of the orders
of any element of any of the finite groups PSL(2, 7), A5, A6 or A7 coming from the list given in
Theorem 2.8 (1). The element gn is not the identity and its entries are bounded above by M , say,
so that as long as we consider primes p > M , the reduction modulo p of gn will not be trivial, since
g has order too large for the image group to be on that list.

Henceforth we only consider primes which are sufficiently large for the considerations of the
previous two paragraphs to apply. We next claim:

Claim 1: Let p(Q) be the characteristic polynomial of the element g.
Then there are infinitely many primes p for which p(Q) is irreducible over Fp.

Proof of Claim 1: This is a standard consequence of the Cebatorev Density Theorem (see [18]
§7.3). We sketch the details.

Let K denote the number field generated over Q by a root of p, and R the ring of integers of K.
By assumption, [K : Q] = 3.
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The claim will follow once we establish that there are infinitely many rational primes p that
remain totally inert to K; i.e. the ideal pR has norm p3. Let M denote the Galois closure of K/Q.
The possibilities for the Galois group of M/Q are the cyclic group of order 3 or the symmetric group
S3. In the former case M = K and the conclusion follows from the statement of the Cebatorev
Density Theorem applied to the generator of the Galois group.

For the case where the Galois group is S3, we argue as follows. The possible splitting types for
rational primes p that are unramified to M are for p to split completely, or split as products of prime
ideals of M of the form P1P2 with NP1 = NP2 = p3 or P1P2P3 with NP1 = NP2 = NP3 = p. The
Cebatorev Density Theorem implies that there are infinitely many such rational primes p of each
type. By considering the factorization of p in K and then in M/K it follows that the case where
p splits with NP1 = NP2 = p3 gives infinitely primes P in K with NP = p3 as required. This
concludes the proof of Claim 1.

We further restrict attention to those primes p for which Claim 1 holds. The argument is now
completed by showing that for these primes, we may simultaneously rule out both the remaining
case from (1) (i.e. PSL(2, p)) and the nonsoluble possibility of (2).

Let p be a prime which leaves p(Q) irreducible over Fp. This polynomial defines a unique cubic
extension L = Fp(λ) of degree 3 over Fp. Associated to the field extension L/Fp there is a norm
map N : L→ Fp (see [17] §II.8 for example) which in our setting can be described as follows (see [17]
Proposition II.8.6): If α ∈ L has irreducible polynomial over Fp given as f(x) = xm + . . . a1x+ a0,
then N(α) = (−1)a3/m

0 .
Restricting the norm map to the nonzero elements, we obtain a multiplicative homomorphism

µ : L∗ −→ F∗
p. Note that our given λ lies in the kernel of µ since N(λ) = (−1).(−1) = 1.

We claim that ker(µ) has order p2 + p + 1 = (p3 − 1)/(p − 1). The reason is this: Note that
any extension of finite fields L/Fp is always Galois with cyclic Galois group. Thus, we may apply
Hilbert Satz 90 (See [17] §II.10). Here this says that if one fixes a generator σ of Gal(L/Fp), then
every element of norm 1 may be written as a/σ(a) for some element a ∈ L∗.

Now consider the homomorphism L∗ −→ ker(µ) defined by a→ a/σ(a). Hilbert’s result implies
that this is surjective, and the kernel is those elements of the field fixed by the Galois group, i.e.
F∗

p. Thus |ker(µ)| = p2 + p + 1 as required.
Hence λ has multiplicative order dividing p2 + p + 1. It follows that for the primes under

consideration, the order of g divides p2 + p+ 1.

Now observe that p2 + p + 1 is prime to both p and p + 1. Furthermore, an easy argument shows
that the only prime that could divide both p2 + p+ 1 and p− 1 is 3. Moreover, if p is congruent to
2 modulo 3, then p2 + p+ 1 is not divisible by 3 and if p is congruent to 1 modulo 3, then writing
p = 3r + 1, we see that p2 + p + 1 = 3(1 + 3r + 3r2). In particular, 3 divides p2 + p + 1 with
multiplicity at most one.

The upshot of this simple discussion is that the order of g modulo p is a divisor of 3τ , where τ
divides p2 + p + 1 and is prime to 3. Therefore the element g3 modulo p has order τ , where τ is
prime to p, p − 1 and p + 1 and therefore prime to the orders of both PSL(2, p) and GL(2, p) (see
for [19] for example). In either of these cases we deduce easily that the mod p reduction of g3 must
be trivial; however this was ruled out by the use of large primes. tu

Proof of 2.5: The proof of 2.5 is concluded by exhibiting elements of the type required by 2.7; it
is easily seen that for the given integral specialisations, the image of the fibre group contains a free
group of rank 2, which rules out the possibility of soluble image.

We work with the representations ρk; the computation for βT is entirely analogous.
Fix some integral value of k and focus attention on the commutator element [Xk, Yk]; we claim
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this satisfies the conditions of Theorem 2.7.
Recall from the proof of Lemma 2.4 that the characteristic polynomial of this element is

pk(Q) = 1 + (−17− 2k − 2k2)Q+ (6− 8k − 7k2 + 2k3 + k4)Q2 −Q3

One sees easily from this that the commutator has infinite order for any value of k.

Claim 2: pk(Q) is irreducible over Z for all k ∈ Z.

Proof of Claim 2: It suffices to prove the statement by reducing pk(Q) modulo 2. Since pk(Q) is
cubic, one needs only check that pk(Q) cannot have a linear factor.

Thus assume first that k is even. Then pk(Q) modulo 2 becomes Q3 +Q+ 1 which has no linear
factor. When k is odd, notice that the coefficient of Q2 becomes k4 + k2 which is even, and so once
again the reduction of pk(Q) modulo 2 is Q3 +Q+ 1.

This concludes the proof of the Zariski denseness for the representations ρk (and βT ). tu

As in [13], Strong Approximation can be applied to prove the following corollary (using [25]).

Corollary 2.9 For all but a finite number of primes p ∈ Z, Γ surjects the finite simple group
PSL(3, p).

Remark: The figure-eight knot admits a Seifert fibered space surgery with base orbifold group the
(2, 3, 7)-triangle group. Finite quotients of this group (so-called Hurwitz groups) have been widely
studied, and using this it can be shown that the figure eight knot group surjects many infinite fam-
ilies of non-abelian finite simple groups. However, it was shown in [5] that the only Hurwitz group
of the form PSL(3, p) for p a prime is when p = 2. Thus our construction gives more information.

2.1

We close this section with some comparisons between the families Fk and FT .

1) For T 6= 0, the image group βT (Γ) contains many “obvious” unipotent elements, whereas for
k ≥ 6, the groups ρk(Γ) do not. This is easily seen by checking that y2, (yxy)2 and (x−1y)2 are all
mapped to unipotent elements by βT . Although this does not directly account for the finite index
results proven below, it is perhaps suggestive. For example, despite extensive searching, we have
been unable to find a rank one unipotent element in ρ6(F ).

2) Somewhat amazingly, the following relation holds in βT (Γ) for every value of the parameter T .

X−1Y X−1Y X−1X−1Y Y Y XY Y XY −1X = XY −1XY Y XY Y Y X−1X−1Y X−1Y X−1

This appears to be the shortest relation for all but very small values of T . We have been unable
to find an analogous universal relation for the family Fk, although we have found some relations in
these groups for k ≤ 5.

3 The image of βT

We now discuss each family of representations separately in some more detail, beginning with the
image groups βT (F ) (and βT (Γ)).
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We will prove the following result, from which Theorem 1.1 follows.

Theorem 3.1 Fix a non-zero integer value of T .
Then the group βT (F ) (and therefore βT (Γ)) has finite index in SL(3,Z).

Furthermore,
⋂

T>0 βT (F ) = 1.

Note that by Margulis’s normal subgroup theorem [15], it follows that βT (Γ) is of finite index in
SL(3,Z) if and only if βT (F ) has finite index in SL(3,Z).

3.1

As indicated in §2.1(1), the groups βT (Γ) contain unipotent elements. To prove finite index, we
make use of the following result of Venkataramana (see Theorem 3.7 of [24]):

Theorem 3.2 Suppose that n ≥ 3 and x ∈ SL(n,Z) is a unipotent matrix such that x − 1 has
matrix rank 1. Suppose that y ∈ SL(n,Z) is another unipotent such that x and y generate a free
abelian group N of rank 2. Then any Zariski dense subgroup of SL(n,Z) containing N virtually, is
of finite index in SL(n,Z).

Proof of Theorem 3.1. We shall exhibit unipotent matrices b1 and b2 in βT (F ) such that b1 − 1
has rank 1 and < b1, b2 >∼= Z⊕ Z. That βT (F ) has finite index will then follow from Theorem 3.2
together with Theorem 2.5.

Taking
b1 = X−1

T .YT .YT .YT .XT .YT .YT .XT .Y
−1
T .XT

b2 = XT .Y
−1
T .XT .YT .YT .XT .YT .YT .YT .X

−1
T

Elementary linear algebra calculations show that both b1 and b2 are unipotent elements (having
characteristic polynomials −(−1 + x)3), and b1 − 1 and b2 − 1 have rank 1. Conjugating by the
matrix P :  0 1 1

2T 0 1
1 0 1


shows:

c1 = P−1b1P =

 1 0 −T 2(−1 + 2T )(−5 + 3T 3)
0 1 −T (−1 + 2T )(−2 + 3T 3)
0 0 1


c2 = P−1b2P =

 1 0 −3T 2(−1 + 2T )
0 1 −T (−1 + 2T )(−2 + 3T 3)
0 0 1


This exhibits the group < c1, c2 > as acting affinely on the plane as two translations, so that the

group is clearly free abelian and it will be isomorphic to Z⊕Z provided the translations are linearly
independent. Since the second components of the translation vectors are equal, this will be if and
only if their first components are equal, which is to say

T 2(−1 + 2T )(−5 + 3T 3) = 3T 2(−1 + 2T )

i.e. when T 2(−1 + 2T )(−8 + 3T 3) = 0. There are never any non-zero integral solutions, and the
proof that βT (F ) has finite index is complete.
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To prove that these groups intersect in the identity as T varies over positive integers, we argue
as follows.

Suppose that there is a non-trivial element g ∈
⋂

T>0 βT (F ). Notice that for any prime divisor
p of T , reducing the coefficients of βT (F ) modulo p coincides with image of the group F under the
representation β0, that is to say Z/2⊕ Z/2, with matrix image

β0(F ) =<

 −1 0 0
0 −1 0
0 0 1

 ,

 −1 0 0
0 1 0
0 0 −1

 > .

By abuse of notation we will not distinguish β0(F ) from its images in SL(3, p).
It follows that for any prime p, the image of g upon reduction modulo p is one of four possible

matrices, so that one of the matrices of β0(F ) must occur infinitely often. Denoting this matrix by
A, we see that A.g lies in infinitely many different principal congruence subgroups, so that A.g = Id,
and therefore g = A ∈ β0(F ).

So far we have shown that
⋂

T>0 βT (F ) contains at most the four elements of β0(F ).
To rule out the three nontrivial elements, we need to delve somewhat more deeply into the

reducible representations alluded to earlier. Taking

P =

 4/T 2 0 0
−2/T 1 1

1 1 0


we can conjugate the contragradient representation so that reducibility at (−8 + 3T 3) = 0 becomes
obvious:

P−1βT (x)∗P =

 (−4 + 3T 3)/4 −T 3(1 + 2T )/4 −T 4/2
3(−8 + 3T 3)/4 −(1 + 2T )(−4 + 3T 3)/4 −T (−4 + 3T 3)/2

−(2 + 3T )(−8 + 3T 3)/(4T ) (−8− 8T + 2T 2 + 7T 3 + 6T 4)/4 (−2− 4T + 2T 3 + 3T 4)/2



P−1βT (y)∗P =

 (−4 + 3T 3)/4 −T 3(1 + 2T )/4 −T 4/2
(8− 3T 3)/4 (−4− 4T + T 3 + 2T 4)/4 T (−2 + T 3)/2

(2 + T )(−8 + 3T 3)/(4T ) −(2 + T )(−4 + T 2 + 2T 3)/4 (2 + 2T − 2T 3 − T 4)/2


In particular, any fixed matrix g ∈ SL(3,Z) lying in

⋂
T>0 βT (F ) must have the property that

P−1g∗P has first column with (2, 1) and (3, 1) entries both divisible by (−8 + 3T 3). However this
does not happen for the three nontrivial elements of β0(F ). For example, one can compute that

P−1

 −1 0 0
0 −1 0
0 0 1

P =

 −1 0 0
2 1 0
−2 −2 −1


This completes the proof of Theorem 3.1 tu

A more detailed examination of the last aspect of this proof gives some estimates for the index of
these subgroups. For example, consider the case T = 7. Then 3 · 73− 8 = 1021, a prime. Reduction
of the group β7(F ) modulo 1021 is reducible and the above computation shows that the image group
∆ fits into a short exact sequence

1 −→ Z/1021⊕ Z/1021 −→ ∆ −→ SL(2,Z/1021) −→ 1
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and therefore has order 10212 · 1021(1021 − 1)(1021 + 1) = 1109502522156840. Of course, the
group SL(3,Z) will surject SL(3,Z/1021), which has size 10218(1 − 1/10212)(1 − 1/10213) =
1180879326882889591658400, (see [19]) so that the index [SL(3,Z) : β7(F )] must be divisible by the
ratio of these two group sizes, i.e. 1064332260 = 22.32.5.17.347821.

4 The image of ρk

In this section we consider the family Fk. Despite a certain uniformity linking the two constructions
(see the Appendix), the families of representations βT and ρk appear to behave very differently.

4.1

We first prove that for some small values of k, suitable unipotent elements can be found.

Theorem 4.1 The group ρk(F ) (and therefore ρk(Γ)) has finite index in SL(3,Z) for k = 0, 2, 3, 4, 5.

Proof: The strategy is the same as that for the proof of 3.1, namely for these values of k we are
able to locate inside ρk(F ) rank one unipotents and unipotent elements which commute with them.
The result will then follow as before.

Unlike the βT representations, there seems to be no uniform way to construct the elements in
question as k varies over the values above.

The following are the shortest words < u1, u2 > known to the authors for which one can apply
this method. To avoid unnecessarily cluttering the notation, we give the words as words in the fibre
group F , their ρk images are the required unipotents:

k = 0: Then u1 = a1.b1 u2 = c1.d1 where

a1 = x2y−3xyx−1, b1 = x−1yxy−3x2, c1 = x2y−3x3y−1x, d1 = xy−1x3y−3x2

k = 2: Then u1 = a1b1a
−1
1 b−1

1 u2 = a1c1a
−1
1 c−1

1 where

a1 = x3(yx)3y, b1 = y−1x−1yxy−1xyx−1y−1, c1 = x−1yxy−1x−1yx−1y−1xy

k = 3: Then u1 = a1b1 u2 = c1a1b1c
−1
1 where

a1 = yx−2yx3, b1 = x−3yx4y, c1 = x2y−1x−1y−1x(xy)−2

k = 4: Then u1 = a1.b1 u2 = c1.d1 where

a1 = (xy)2(yx)−2x2y−1x−2y, b1 = yx−2y−1x2(xy)−2(yx)2,
c1 = y−1x2yx−2(yx)2(xy)−2, d1 = (yx)−2(xy)2x−2yx2y−1

k = 5: Then u1 = a1.b1 u2 = b1.c1 where

a1 = yx−3yx−1y−1xy−1x−1, b1 = x−1y−1xy−1x−1yx−3y, c1 = y−1x3y−1x−1y−1xy−1x−1

This completes the proof of 4.1. tu

Remarks: (i) We do not know whether ρk(F ) has finite index for the values not on this list; the
approach outlined above seems to encounter difficulties, since for these other values, we have been
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unable to locate the required unipotents. As a byproduct of the proof, we generate the relation
[u1, u2] = 1 in the image of the free group.

The case of k = 1 seems different and this is discussed in some more detail below.

(ii) As in the case for βT , this method does not find the index of the subgroup. However, as
we shall show below, one can estimate the index. For example, [SL(3,Z) : ρ5(F )] is divisible by
22.33.5.312.127.331.

4.2

A possible alternative approach to the finite index question is the following: One of our motivations
for consideration of these representations was to try and construct a representation of the figure
eight knot group for which the stable letter does not power into the image of the fibre group (See
5.1.1 for why this is of interest.) However, as we have observed above, [15] implies that if ρk(Γ) is
of finite index in SL(3,Z) if and only if ρk(F ) has finite index in SL(3,Z). Since ρk(F ) has finite
index in SL(3,Z) implies that ZN

k ∈ Fk =< Xk, Yk > for some integer N , we can ask the question:

Question 2: Is there a value of k for which Zk does not power into < Xk, Yk >?

We note that for the values k = 0, 1, 2, the element Zk must power into < Xk, Yk >. This follows
from Theorem 4.1 for k = 0, 2, but this can be shown true for elementary reasons as we now explain.

The reason is that for these values, the characteristic polynomial of the matrix Zk has exactly
one real root. It is well-known that Dirichlet’s Unit Theorem (see [18] Chapter 3.3) implies that
the free part of the unit group of the ring of integers for a field generated by a root of such a
characteristic polynomial must be cyclic. Thus, some power of Zk must be equal to some power of
[Xk, Yk]. A simple computation shows that Z10

0 = [X0, Y0], Z4
1 = [X1, Y1] and Z3

2 = [X2, Y2].

The case k = 1 seems particularly interesting. Note from the discussion of the previous paragraph,
ρ1 is a representation of Γ which factors through the fundamental group of the −4-surgery on the
figure-eight knot. Since −4 is a boundary slope of the figure-eight knot, the result of this surgery
is a Haken manifold which can be described as a union of the trefoil knot exterior and the twisted
I-bundle over the Klein Bottle. Some degree of collapsing of this representation must occur (see
Theorem 6.1). As such, it might indeed behave differently to other values of k. Some experimentation
suggests that ρ1(Γ) is virtually free.

It is easily shown that for k ≥ 3 (for such k, the characteristic polynomial has 3 distinct real roots),
a power of Zk can never be a power of [Xk, Yk].

One way that a postive answer to Question 2 could happen would be that for generic k, Zk powered
into Fk. However, this we can rule out:

Theorem 4.2 For generic k, the element Zk does not power into the subgroup Fk.

Proof: Let M be the matrix

M =

 (7− 3
√

5)/2 1 1
(−3 +

√
5)/2 0 −1

(−3 +
√

5)/2 0 −1


Form a new representation r : Γ→ SL(3,R), by setting

r(g) = M−1.ρk(g)∗.M,
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where as above ∗ denotes the contragradient. Now setting k = (−1 + 3
√

5)/2, this representation
becomes reducible. Notice that this k is a root of (−11 + k + k2); this is as it must be, given our
observations about reducibility and the commutator.

At this value for k, the matrices for r(x) and r(y) have a common eigenvector, both with
eigenvalue one, and this is an eigenvector for r(z) with eigenvalue (−3 +

√
5)/2. It follows that r(z)

cannot power into < r(x), r(y) >. tu

While it differs in detail, one can use the kind of method that was described in §3 and exploit the
exceptional representations coming from the roots of (−11 + k + k2)(k2 + k + 1) to give estimates
on the index of the subgroup ρk(F ). For example, if k = 5, then 52 + 5− 11 = 19 and as above this
give that the index must be divisible by 6858.

In fact one can go further for the ρk case. One can compute that for integral k, those primes p
which divide k2+k+1 do not give rise to reducible representations, but correspond to representations
for which the image group is abstractly isomorphic to PSL(2, p) where the 3-dimensional integral
representation arises via SO(τ,Fp), for a suitable and easily computed form τ . For example, taking
k = 5, so that 52 + 5 + 1 = 31, an analogous computation shows that the index must be divisible by
57256380. Putting these two computations together gives that the index of the finite index subgroup
ρ5(F ) is divisible by 21814680780 = 22.33.5.312.127.331.

Using the same analysis, one can estimate indices for other values of k which are not known to
be finite index, for example, if ρ6(F ) is finite index, this index must be divisible by 486591826140 =
22.32.5.7.432.331.631.

5 Finite or infinite index for k ≥ 6? Some speculation &
applications.

It is an intriguing and apparently difficult question about what the situation is regarding the finite
index question for k ≥ 6. In this section we indulge in some speculation and offer some applications.
These are centred around an old question of Serre concerning coherence and the finitely generated
intersection property.

For the applications, the most useful information is whether z powers into the image of F , but
one can quite naturally ask for a strengthening of this:

Question 3: Is there any value of k for which ρk is faithful?

We note that non-trivial normal subgroups inside a hyperbolic 3-manifold group must intersect.
The fibre group F is normal in Γ and therefore must meet ker(ρk) in the event that this kernel is
non-trivial. Since the fibre group is free, and free groups are well known to be Hopfian, it follows
that ρk is faithful if and only if it is faithful when restricted to F . It is therefore a reasonable (and
convenient!) measure of the complication of the representation to check how much collapsing of F
there is for a given integral specialisation of k.

One way to proceed to quantify this collapsing is as follows. Fixing a (small) value for k we
can compare the number of reduced words in the group < Xk, Yk > of length at most n with the
number of reduced words in the free group of rank two of length at most n.

One can check that in fact there is not too much collapsing for most values of k. Moreover,
although we know by Theorem 4.1 that ρk(Γ) has finite index in SL(3,Z) for k = 0, 2, 3, 4, 5, and so
there must be collapsing, the analysis outlined above still gives some information.

For k = 0, 1, 2, 3 one finds that these sets are strictly smaller than that of a free group for rather
small values of n. For example, for k = 3, there are 52 elements of length at most 3, and in the free
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group there are 53. It follows that < X3, Y3 > has a relation of length at most six coming from the
fact that there are two different reduced words with the same matrix; it is easily computed that X
has order six.

However, the situation changes dramatically for larger values of k. For example at k = 4, the
number of words of length 16 or less is the same as that of the free group. So there are no relations
of length 32 or less in < X4, Y4 > despite the fact that this subgroup has finite index. The shortest
relation we know (coming from the proof of 4.1) has length 112.

5.1

We now discuss why one might use 3-manifold groups as an approach to the questions of coherence
and the finitely generated intersection property.

Note that whenever n ≥ 4, SL(n,Z) can easily seen not to be coherent, nor have the finitely
generated intersection property. This is because one can inject F × F where F is a free group of
rank 2.

5.1.1 Finitely generated intersection property.

Our strategy to violate the finitely generated intersection property for SL(3,Z) using 3-manifolds
is based on the the well-known fact that if M is a finite volume hyperbolic 3-manifold that fibers
over the circle then π1(M) does not have the finitely generated intersection property. In fact, in our
context, in order to disprove the finitely generated intersection property for SL(3,Z), one needs less
than the faithfulness of ρk.

Theorem 5.1 Suppose that for some integral value k, (` say), Z` does not power into F`.
Then SL(3,Z) does not have the finitely generated intersection property.

Proof: Take a power of X` so that the subgroup H =< Z`, X
R
` > is free of rank two. Then since

F` =< X`, Y` > is normal in ρ`(Γ) we have H ∩F` is normal in the free group H, but the hypothesis
implies that it contains no powers of Z` and therefore has infinite index. It follows that H ∩ F` is
infinitely generated. tu

Remark: The virtual cohomological dimension of SL(3,Z) is 3 (see [4] Chapter VII for instance).
Thus there is no cohomological obstruction for SL(3,Z) to contain the fundamental group of a finite
volume hyperbolic 3-manifold. Indeed, SL(3,Z) contains some 3-manifold groups; for example the
integral Heisenberg group.

5.1.2 Coherence.

With regard to coherence, a strategy to exploit the family Fk is summarized in the following propo-
sition.

Proposition 5.2 Suppose that for some k ∈ Z we can arrange that ρk(F ) is of infinite index in
ρk(Γ) and is not free. Further suppose that the virtual cohomological dimension of ρk(Γ) is 2.

Then SL(3,Z) is not coherent.

Proof: It is a theorem of Bieri [1] that in a group of cohomological dimension 2, any finitely presented
normal subgroup is free or it is of finite index. Thus applying this to ρk(Γ) we argue as follows:

We are assuming that ρk(F ) is not free and that it has infinite index in ρk(Γ); that is to say we
have exhibited an infinite index normal subgroup of ρk(Γ) that is finitely generated but not free.

By passing to a torsion-free subgroup of finite index ∆k in ρk(Γ) it follows from standard proper-
ties of cohomological dimension that ∆k has cohomological dimension 2. The only possibility from

13



Bieri’s result is that Fk ∩∆k is not finitely presented. This completes the proof. tu

6 Final comments

A natural question motivated by this note is:

Question 4: Does there exist an orientable finite volume hyperbolic 3-manifold M for which π1(M)
admits a faithful representation into SL(3,Z)?

6.1

It is not hard to see that if Σg is a closed orientable surface of genus g, then π1(Σg) admits a faithful
representation into SL(3,Z).

Briefly, the case of g = 0, 1 is obvious, and so we can assume that g ≥ 2. Consider the ternary
quadratic form f = x2 − 3y2 − 3z2. The group SO(f,Z) < SL(3,Z) and contains as a subgroup of
finite index the (2, 4, 6) triangle group (see [16]).

By [7] the minimal index of a torsion free subgroup in this triangle group is 24, and this has to
be a genus 2 surface group.

Since these representations lie in SO(2, 1), they are not Zariski dense in SL(3,R). However, we have
been informed by Bill Goldman (private communication) that he has constructed faithful Zariski
dense representations of some Fuchsian triangle groups into SL(3,Z). He has kindly allowed us to
include the matrices for one such example.

Goldman’s example: Goldman has shown that the following matrices determine a faithful Zariski
dense representation of the (3, 3, 4) triangle group into SL(3,Z).

a =

 0 2 −1
0 1 0
1 1 −1

 , b =

 1 0 0
3 0 −1
1 1 −1

 , c =

 1 −1 2
2 −1 1
0 0 1

 .

It is easily checked that b3 = c3 = 1 and a = c.b with a4 = 1. Note that Zariski density can easily
be checked using Theorem 2.7.

Given this, another version of Question 4 is:

Question 5: Does there exist a compact orientable hyperbolizable 3-manifold M which is not an
I-bundle over a surface and for which π1(M) admits a faithful representation into SL(3,Z)?

6.2

As remarked in §5.0.1, it is well-known that SL(3,Z) does contain subgroups isomorphic to the
fundamental group of some closed orientable 3-manifolds. Indeed the fundamental groups of the
torus bundles modelled on NIL and SOLV geometries all are subgroups.

We now show why NIL-geometry gives rise to the only interesting class of Seifert fibered spaces
with infinite fundamental group that admit a faithful representation into SL(3,Z). By interesting
we exclude the case where the manifold is covered by S2 ×R.
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Theorem 6.1 Let M be a compact orientable Seifert fibered space with infinite fundamental group,
not covered by S2 × R or admits a geometric structure modelled on NIL. Then π1(M) does not
admit a faithful representation into SL(3,Z).

Proof: Firstly, SL(3,Z) does not contain Z3. This will automatically exclude those M admitting a
Euclidean geometry, for in that case M is covered by the 3-torus.

This follows from an analysis of centralizers of elements in SL(3,Z). Briefly, let γ ∈ SL(3,Z) be an
element of infinite order. Then the eigenvalues of γ are either ±1, three distinct real numbers or one
real and one pair of complex conjugate numbers. If γ is an element of a subgroup V = Z3 < SL(3,Z)
then it follows that V must consist of virtually unipotent elements. Otherwise, the centralizer of γ
is (virtually) Z⊕ Z or (virtually) Z by Dirichlet’s Unit Theorem.

Now if x ∈ V then x also has all eigenvalues ±1. Now every such element has a square that is
unipotent, and so we deduce from this that V contains a subgroup of finite index consisting entirely
of unipotent elements (consider the subgroup generated by {g2 : g ∈ V }. We can then deduce the
existence of a Z3 subgroup inside a Borel subgroup of SL(3,Z) and this is false.

The proof of the theorem is now easily completed. For let M admit a geometric structure
based on H2 × R or P̃SL2, Z =< c > the center of π1(M) and ρ : π1(M) → SL(3,Z) a faithful
representation.

The discussion above on centralizers applied to ρ(c) shows that ρ(c) cannot have 3 real distinct
eigenvalues or one real eigenvalue and one pair of complex conjugate eigenvalues. Moreover, if ρ(c)
has all eigenvalues ±1 it follows from above that M admits a a geometric structure modelled on
NIL. tu

Remark: In §4 we noted that for k = 2, Z3
2 = [X2, Y2]. This shows that the representation ρ2

factors through −3/1-Dehn surgery on the figure eight knot complement. This manifold is a Seifert
fibered space whose base orbifold is a quotient of H2 by the (3, 3, 4) triangle group. Thus Theorem
6.1 shows that in fact ρ2 factors through the (3, 3, 4) triangle group. Notice that this triangle group
is the triangle group in Goldman’s example. However, Theorem 4.1 shows that the image of ρ2 is
finite index in SL(3,Z), and so these representations are very different.
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7 Appendix

7.1 Construction of ρk and βT .

We briefly outline our method for producing the representations ρk and βT . It is based upon
[6] which takes a representation of a group into some higher rank Lie group (for our purposes
here SL(3,R)) and attempts to deform it. In this way we may produce an exact expression for
the representation variety through that point. Of course, this is not always possible, there are
obstructions to deformation, but the method is usually rather effective if the representation is
deformable.

In [6], this was applied in the context of closed hyperbolic 3-manifolds, where one has a canonical
representation into SO(3, 1) which one tries to deform into SL(4,R).

In the setting of the figure eight knot, one does have a small supply of 3-dimensional real rep-
resentations (for example coming from the reduced Burau representation). This idea was exploited
in [14]. However, the representations ρk and βT have a rather more number theoretic flavour which
we now describe.

We started with a surjection h : Γ→ SL(3, 3) given by

h(z) =

 0 0 1
1 0 4
0 1 0



h(x) =

 2 2 0
0 2 2
2 0 2


which was promoted (basically using Hensel’s Lemma) to a representation h3 : Γ → SL(3,Z3)
(where Z3 denotes the 3-adic integers) with the property that it has Z-integral character. This
representation can be conjugated into SL(3,Z) and one can compute that it has a 2-dimensional
character variety of SL(3,R) deformations. This variety was then computed exactly using the
method of [6] (The authors thank Morwen Thistlethwaite for doing much of the heavy lifting involved
implementing [6] in this last computation). The two families Fk and FT correspond to certain
specialisations of the parameters.

Remark: It is easily checked that Γ has no irreducible representation with infinite image in SL(2,Z)
(see [10]). Indeed, it is shown in [10] there are no infinite representations of Γ into SL(2,C) with
Z-characters.

On the other hand, Γ admits a faithful representation into SL(4,Z). This is seen as follows:
Γ has a representation as an arithmetic Kleinian group coming as a subgroup of index 12 in the
Bianchi group PSL(2, O3). Morevover, this group admits a faithful representation as a subgroup of
SO(p; Z) < SL(4,Z) where p is the quaternary quadratic form x2 + y2 + z2 − 3t2 (see for example
[8] Chapter 10.2, Example 7).

7.2

We have used Magma [3] to compute some indices. Of course this is only possible in the very
simplest cases, since as we have outlined above, usually the index must be too gigantic for current
technology.

For example, for T = −2 the index of [SL(3,Z) : β−2(Γ)] was computed to be 3670016, and
[SL(3,Z) : β−2(F )] = 48 · 3670016 = 221 · 7. We now give a brief discussion of the computation and
the Magma routine that is used.
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The basic idea is that using the presentation for SL(3,Z) that is given in [23], write the matrix
elements generating ρ0(Γ) and β2(Γ) in terms of these generators. The generators are the six
elementary matrices xij. Computations were done in Mathematica to arrive at these expressions.

For example for k = 0 we have:

X0 = x12 ∗ x23−1 ∗ x32 ∗ x23−1 ∗ x12−1 ∗ x12−1 ∗ x23−1 ∗ x23−1 and

Y0 = x12∗x31−1 ∗x31−1 ∗x13∗x31−1 ∗x21−1 ∗x21−1 ∗x23−1 ∗x32−1 ∗x23∗x32−1 ∗x23∗x23∗x32−1

The following routine was run in Magma (following a suggestion of Eamonn O’Brien):

G < x12, x13, x21, x23, x31, x32 >:= Group < x12, x13, x21, x23, x31, x32|(x12, x13), (x21, x23),
(x31, x32), (x12, x32), (x21, x31), (x21, x13)∗x23−1, (x12, x23)∗x13−1, (x13, x23), (x13, x32)∗x12−1,
(x31, x12) ∗ x32−1, (x23, x31) ∗ x21−1, (x32, x21) ∗ x31−1, (x12 ∗ x21−1 ∗ x12)4 >;

S := sub < G|x12 ∗ x23−1 ∗ x32 ∗ x23−1 ∗ x12−1 ∗ x12−1 ∗ x23−1 ∗ x23−1, x12 ∗ x31−1 ∗ x31−1 ∗ x13 ∗
x31−1 ∗ x21−1 ∗ x21−1 ∗ x23−1 ∗ x32−1 ∗ x23 ∗ x32−1 ∗ x23 ∗ x23 ∗ x32−1 >;

ToddCoxeter (G,S : Hard, Workspace := 108, Print := 106);

In the case of T = −2 the elements X−2 and Z−2 in terms of the generators are:

X−2 = x21 ∗ x31 ∗ x32 ∗ x23−1 ∗ x13 ∗ x31−1 ∗ (x12 ∗ x13−5 ∗ x23)−1,

and
Z−2 = x312 ∗ x23−2 ∗ x12 ∗ (x13 ∗ x31−1 ∗ x13)−2 ∗ x12 ∗ x21−4.
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