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The work of Waldhausen, Thurston and others has shown that the existence of
an embedding of a closed, orientable, incompressible surface in a 3-manifold is a great
help in the understanding of that manifold. Unfortunately many examples exist of
manifolds which contain no such embedding. However, it does seem at least
conjecturally possible that any irreducible manifold with infinite fundamental group
could contain an immersion of such a surface, and this has motivated the study of
the question of whether such a surface can always be lifted to an embedding in some
finite covering of the 3-manifold. The general question seems to be some way from
resolution; the purpose of this note is to give an affirmative answer in a very special
case.

THEOREM 1. Let M be a closed, hyperbolic 3-manifold which contains a totally
geodesic immersion of a closed surface. Then:

(a) there is a finite covering of M which contains an embedded closed, orientable,
totally geodesic surface;

(b) there is a finite covering ofM which contains an embedded non-separating, closed,
orientable, totally geodesic surface.

The restriction to the closed case is unnecessary, and is made only to save some
words. Standard results and terminology of hyperbolic geometry will be used without
proof; good references can be found in [3] or [5].

By a slight adaptation of the technique used to prove Theorem 1, we are also able
to show the following.

THEOREM 2. Let G be the fundamental group of a closed, hyperbolic 3-manifold.
Then the cyclic subgroups of G are virtually separable.

The traditional group-theoretic condition used to deal with immersion to
embedding problems is subgroup separability or LERF. We now define this despite
the fact we shall use a somewhat weaker property.

If G is a group and H < G, let us define H* = f] {K\ H ^ K ^ G and K has finite
index in G). Then G is said to be LERF if for each finitely generated / f ^ G w e have
H = H*.

The reason for introducing the notation H* is that such a strong condition as
LERF is often not necessary; for many purposes the knowledge that the index [H *: H]
is finite suffices. In [2], this condition was called virtual separability.
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If G is a discrete torsion-free subgroup of PSL2(C), then we shall use the symbol
AG to mean the limit set of G, that is, the closure in the sphere at infinity of the
accumulation points of any orbit. Then our main algebraic result is as follows.

LEMMA 1. Let G be the fundamental group of a closed, hyperbolic 3-manifold and
H < G afuchsian subgroup. Then AH* = AH.

If for the time being we assume this result, we may prove the theorems.

Proof of Theorem 1 (a). Since the lift of a totally geodesic surface continues to
be totally geodesic, by passing to a double covering if necessary, we may suppose that
M is orientable.

Let /: F -*• M be a totally geodesic immersion of a closed surface. Let G be a discrete
faithful representation of the fundamental group of M into PSL2(C) and H = /„ nx(F).
Then H is fuchsian. By the Lemma, AH = AH*, so that H* is also fuchsian. In fact,
if we use the symbol C(AH) for the convex hull of AH (that is, the intersection of
all the hyperbolic half spaces which contain AH) this is a hyperbolic plane H2 which
is preserved by both H and H*. The action of both groups is torsion free and properly
discontinuous, so if we set F' to be W/H*, this is a surface and the induced map
F-> F' is a covering map. Since the surface F is a finite area hyperbolic surface, so
is F'. It follows that the index [H*:H] is finite; it is in fact the area ratio:
Area(F)/Aresi(F'). Thus we have exhibited the subgroup H as virtually separable
inG.

It is easy to see that in our case (H*)* = H*, so that the surface group H* is
genuinely separable in G, and it follows by a standard argument [4] that there is a
finite covering of M, say Mf, to which the surface F' lifts as an embedding and for
which the inclusion F' -* Mf realises the inclusion H* = /„, n^F') -> n^Mf).

The proof of the theorem will be complete when we have obtained an orientable
surface. We do this by observing that if the surface F' were not orientable, there would
be a fuchsian subgroup of index two in H* corresponding to the orientable double
covering F" of F'. We can construct a double covering of Mf by taking two copies
of the manifold Mf\F' and doubling, to obtain a covering of M in which the totally
geodesic surface F" embeds.

REMARK. Notice that the proof does not proceed by lifting the given embedding.

Proof of Theorem 1 (b). As in Theorem 1 (a), we let H be the fuchsian subgroup
corresponding to the embedded, orientable totally geodesic surface F, and as in
Theorem 1 (a), we must have that H = H*.

Let the two components of M\N(F) be denoted C±. Then it is easy to see that
both of the inclusions n^F) = i/-> n^C^.) exhibit H as a subgroup of infinite index.
So we may choose g±eC±, so that no power of g± lies in H. Then since H = H*,
it follows that there is a subgroup K, of finite index in n^M), which contains H but
fails to contain either of g±. Let N be the intersection of all the nx(M) conjugates of
K. It is now easy to see that every lift of F into the covering corresponding to the
subgroup N must be non-separating.

Proof of Lemma 1. By conjugating G if necessary, we may suppose that the group
H lies inside PSL2(R). Suppose that G is generated by the matrices gi,-..,gt- If we



IMMERSIONS AND EMBEDDINGS OF TOTALLY GEODESIC SURFACES 483

denote complex conjugation by T, let R be the subring of C generated by all the entries
of the matrices gt, all the complex conjugates of these entries, together with 1. Then
R is a finitely generated integral domain with a 1 and we have that G and xG both
embed in the group PSL2(/?) ^ PSL2(C). Recall that the symbol J(R) in ring theory
is used to denote the intersection of all the maximal ideals of R. We need the following
result (see [1] or [6]).

LEMMA 2. Let R be a finitely generated integral domain with a 1. Then:
(a) J(R) = (0);
(b) iftffl is a maximal ideal ofR, then the quotient R/ffll is a finite field.

In order to prove the result of Lemma 1, it suffices to show that given any element
g of G which has at least one of its two fixed points off AH, there is a homomorphism
of G onto a finite group for which the image of g does not lie in the image of H.
Since we have normalised so that AH = U, any such g must have a non-real entry
in its matrix. Call this entry x. Then x — rx is non-zero, so by Lemma 2 (a) there is a
maximal ideal 90? < R which does not contain this element. Let n: R-> R/Wl
denote the projection map. Then we have a homomorphism
/?:PSL2(i*)->PSL2(ity9«)xPSL2(i?/2R) defined by sending the matrix y to
(n(y), nxiy)). The right-hand side of this equation is a finite group and by restriction
we obtain a map p: G -• PSL2CR/2R) x PSL2CR/2R). Observe that the image of the
element g is a pair of matrices which are distinct, since they differ in the place
corresponding to x. On the other hand all the matrices of//map in as identical pairs,
since all their entries are real. Hence pg cannot lie in pH and the Lemma is proven.

The above result has been proved independently by G. Mess.
We now embark on the proof of Theorem 2. This entails a slight variation on the

above theme.

Proof of Theorem 2. Recall that we can think of the isometry group of hyperbolic
3-space as SO+(3,1). Then given a hyperbolic 3-manifold, its fundamental group G
admits a discrete faithful representation into SO+(3,1) and hence via the natural
inclusion, into SO+(4,1). Call this totally geodesic representation p:G-> SO+(4,1).
If we identify hyperbolic 4-space with the interior of the 4-ball, we can think of the
limit set of G as being contained inside a 'level' Bz <= B*.

Fix some element yeG, and recall that we seek to show that [<j>*: <y>] < oo.
Choose any h e G whose fixed points do not coincide with those of y. There is an
element FeSO+(4,1) whose axis is equal to that of y and whose action on the
element h is to move at least one of its fixed points off the 'level' B3. Using the
element F, we can conjugate the representation p, to obtain a new representation
pr: G-> SO+(4,1), whose limit set has been 'twisted', so that the fixed points of y still
lie in the level Bz, and at least one of the fixed points of h does not.

There is an involution x of H4 which reflects in the level B3. Then x commutes with
y, so leaves its matrix in SO+(4,1) unchanged, but T definitely changes the matrix of
h. Now we may proceed exactly as in the proof of Lemma 1, using the map T in place
of complex conjugation, to find a finite representation of G for which the image of
h avoids the image of the subgroup <y>.
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It follows that the only elements which cannot be so separated from y are those
which have the same fixed points as y; whence [<y>*: <y>] < oo, as required.

COROLLARY 1. IfGis the fundamental group of a hyperbolic 3-manifold which is
a surface bundle over the circle, the cyclic subgroups are genuinely separable.

Proof Surface groups are LERF (see [4]), and the corollary is an easy conse-
quence of this fact and Theorem 2.

COROLLARY 2. A primitive geodesic in a closed hyperbolic 3-manifold may be lifted
to a simple geodesic in some finite covering.

REMARK. A topological argument shows that every loop on a surface can be lifted
to a primitive loop in some finite regular covering; so we deduce that for fuchsian
groups, the cyclic subgroups are genuinely separable. This, of course, is contained
in [4].

Postscript. Since proving the result of Theorem 2, it was brought (rather
indirectly) to the author's attention that a more general theorem was already known
to algebraists, namely:

PROPOSITION. Let G be a residually finite group. Then if A is a maximal abelian
subgroup in G, A = A*.

In the context of closed, hyperbolic 3-manifold groups, the maximal abelian
subgroups are cyclic, so Theorem 2 follows. In fact, the proof of the Proposition shows
a little more; namely that a subgroup in a residually finite group which is maximal
subject to some verbal law is separable.

Proof of Proposition. L e t / ^ , . . . , Xn) be some abstract polynomial, and let H
be a subgroup which is maximal subject to f[hlt...,hn) = 1 for all hteH. (In the
abelian case we choosef[Xx,X2) = X1X2Xx

lX2
1.) Since G is residually finite, we can

choose a sequence of normal subgroups of finite index Nt, with C\Nt = {e}. Now
observe that for each N{ we have f{hxNt,...,hnN{)eNt, since this projects trivially
into G/Nt. Hence OftHNt,..., HNt) = {<?}, so that the subgroup f]HNt = H*
satisfies/. Since H was chosen to be maximal for this, it follows that H = H*.
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