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Chapter 1

Introduction.

The picture that has emerged of the structure of closed 3-manifolds
over the last thirty years is that they are geometric which roughly
speaking means that any 3-manifold admits a canonical decomposi-
tions into pieces and each piece is (in a certain sense which need not
really concern us here) modeled on one of eight geometries. A rea-
sonable picture to bear in mind is the situation for closed surfaces, in
this case there are three models and any surface is either spherical,
flat or hyperbolic depending on the sign of the Euler characteristic.

Of the eight geometries in dimension three, all but the hyper-
bolic geometry are actually quite well understood, but the structure
of hyperbolic 3-manifolds (or indeed hyperbolic n-manifolds) remains
rather mysterious. This class has proved to be a magnet for research
not only in topology, but also in other fields, including number the-
ory and geometric group theory. This course will be concerned with
aspects of the central question of whether hyperbolic 3-manifolds al-
ways contain surface groups as well as the related (but presumably
deeper) questions of whether such immersed surfaces can be promoted
in a finite sheeted covering to an embedded surface.

Such questions can be approached in many ways, here we shall
introduce many of the classical facts related to such problems, and in
particular highlight the connection with group theory. In this setting,
the surface group question is closely related to various separability
properties of the fundamental groups of hyperbolic manifolds.

3
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4 [CAP. 1: INTRODUCTION.

These notes are organized as follows. We begin with some in-
troductory material about the basics of hyperbolic manifolds. The
main consequence of the existence of a hyperbolic structure from this
point of view is that one obtains a canonical representation of the
fundamental group of the manifold into the group of isometries of
the relevant hyperbolic space. We then recall some classical facts
about 3-manifolds, in particular we list four open conjectures which
motivate all that follows.

In §3, we begin discussions of separability properties of groups and
introduce the notions of residually finite and the much more powerful
idea of subgroup separability. It turns out that these are intimately
related to the questions about surface groups that we wish to pur-
sue, and we show that these purely geometric notions have natural
topological definitions. We go on to prove Scott’s theorem which was
historically the first real breakthrough in the area of subgroup sepa-
rability. We also describe certain surface groups which are known to
be separable, the so-called totally geodesic surfaces.

This leads naturally to the notion of an arithmetic hyperbolic 3-
manifold and these are briefly explored; one consequence of this tech-
nology is that one can show there are closed hyperbolic 3-manifolds
which contain no totally geodesic surface. An important class of
arithmetic manifolds is the so-called Bianchi groups and we sketch
the recent proof that the Bianchi groups are subgroup separable.

Finally we close with a discussion of new directions recently opened
in the attacks on these problems - in particular we discuss local re-
tractions over cyclic groups and show that Bianchi groups and (most)
Coxeter groups admit such retractions.

1.1 Preliminaries.

We begin with reviewing very briefly the notion of a hyperbolic n-
manifold. We refer to [4] and [25] for standard facts about hyperbolic
space, many of which we will use without proof. Since our focus here
is largely algebraic, many of the more basic geometric aspects can be
easily ignored in this exposition.

Let Hn denote the unique connected simply connected Rieman-
nian manifold all of sectional curvatures are −1. Suppose that M is
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[SEC. 1.1: PRELIMINARIES. 5

a closed topological manifold, that is to say it is a compact Haus-
dorff (and paracompact!) topological space with the property that
every point lies in an open neighbourhood homeomorphic to Eu-
clidean n-space. Then a hyperbolic structure on M is an atlas of
charts φU : U → Hn with the property that on the overlaps we have

φV ◦ φ−1
U : φU (U ∩ V ) −→ φV (U ∩ V ) ⊂ Hn

is the restriction of a hyperbolic isometry from hyperbolic space to
itself. Such isometries are real analytic and a standard construction
shows that a hyperbolic structure as defined above produces a home-
omorphism

D : M̃ −→ Hn

where M̃ is the universal covering of M . This identification, in turn,
yields a way of transferring the canonical action of π1(M) on M̃ to
an action of π1(M) by isometries of Hn, that is to say, we obtain a
faithful representation

ρ : π1(M) −→ Isom(Hn)

called the holonomy representation. As is discussed in the standard
texts, this representation has many properties, the most important for
us being that the action of ρ(π1(M)) on Hn is properly discontinuous,
so the projection Hn → Hn/π1(M) is a covering map and we have a
homemorphism M ∼= Hn/ρ(π1(M)).

The existence of a hyperbolic structure imposes many topologi-
cal constraints on the manifold. For example, the above discussion
shows that M has contractible universal covering, so that M is a
K(π1(M), 1); from which it follows, for example, that π1(M) is tor-
sion free. Perhaps the most important basic theorem about this sit-
uation is Mostow’s rigidity theorem which says that for n ≥ 3, the
representation ρ we have constructed above is the unique one (up to
conjugacy in Isom(Hn)) with the properties of being discrete and
faithful. This means that many geometrical properties of M (for
example, its volume when equipped with a topological metric) are
actually topological invariants, however, we shall make scant use of
these facts, at least at the outset.
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6 [CAP. 1: INTRODUCTION.

1.1.1 Models of hyperbolic space and groups of
isometries

It will be convenient to recall two models of Hn that will be useful
in what follows. The upper half space model for Hn is defined to be:

U = {(x1, x2, . . . xn) ∈ Rn : xn > 0}

equipped with the metric defined by

ds2 =
x2

1 + x2
2 . . . + x2

n

x2
n

.

This is particularly useful in low dimensions (i.e. n = 2, 3), since it
affords a description of the groups of orientation-preserving isometries
of these models as PSL(2,R) and PSL(2,C) respectively. The full
groups of isometries of these models can be identified with PGL(2,R)
and < PSL(2,C), τ > where τ : U → U is the isometry that is a
reflection in the (x1, x3)-plane.

A description of the groups of isometries as linear groups is univer-
sally obtained by using the hyperboloid model. Let V = Rn+1, and
equip V with the (n+1)-dimensional quadratic form < 1, 1 . . . , 1,−1 >,
which we denote by fn throughout. Consider the upper sheet of the
hyperboloid fn(x) = −1, which we denote for now by Hn. Associated
to the quadratic form fn is the bilinear form Bn : V × V → R, and
this can be used to define a metric

d : Hn ×Hn → R

by decreeing that d is the function that assigns to each pair (x, y) ∈
Hn ×Hn the unique number d(x, y) such that

cosh(d(x, y)) = −Bn(x, y).

(Hn, d) defines a metric space that is isometric to Hn with the
metric described above, and we henceforth we make no distinction.
The group of isometries of Hn can be identified as follows. The
orthogonal group of the form fn is

O(n, 1;R) = {X ∈ GL(n + 1,R) : XtFnX = Fn},
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[SEC. 1.1: PRELIMINARIES. 7

where Fn is the diagonal matrix associated to the quadratic form fn.
This is a lie group and has four connected components. The subgroup
of index 2 which preserves Hn is denoted O0(n, 1;R) and is identified
with Isom(Hn). Passing to the subgroup consisting of elements of
determinant 1, denoted SO(n, 1;R), it follows that SO0(fn;R) may
be identified with Isom+(Hn).

1.1.2

The non-trivial elements acting on Hn can divided into 3 classes;
parabolic elements, elliptic elements, and hyperbolic elements. In
terms of the action on Hn ∪ Sn−1

∞ , an element γ is parabolic if it
has precisely one fixed point on Sn−1

∞ , elliptic if it has no fixed points
on Sn−1

∞ , but has a fixed point in Hn, and hyperbolic if it has two
fixed points on Sn−1

∞ . In this last case, if we denote the fixed points
by α+ and α−, there is a geodesic Aγ (called the axis of γ) in Hn

with endpoints α+ and α−, and the element γ acts by translating by
some distance along Aγ , and possibly rotating through some angle.

In the case of n = 2, 3, one can make use of the description of
elements as 2 × 2 matrices (up to sign) and get an algebraic char-
acterization. In this setting a non-trivial element γ is parabolic if
tr2(γ) = 4, elliptic if tr2(γ) < 4 and hyperbolic otherwise. In the last
case, one can distinguish the class of purely hyperbolic elements, i.e.
those with tr2(γ) > 4.

1.1.3 3-Manifold topology and surface subgroups

The case of most interest is when n = 3. Closed hyperbolic 3-
manifolds admit an amazing number of ways to be studied; we shall
take the point of view here which is not only of interest for itself, but
is connected to other mainstream problems in areas of mathematics
other than topology.

A primary tool for understanding 3-manifolds (not at this stage,
necessarily hyperbolic) emerged in the sixties in the seminal work of
Waldhausen [32]. To describe this work, we need to introduce some
definitions - for simplicity, we shall restrict attention to the case of
closed 3-manifolds. A closed 3-manifold is said to be irreducible if
every embedded 2-sphere in M bounds a ball in M . For example,
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8 [CAP. 1: INTRODUCTION.

the Schoenflies theorem shows that the 3-sphere S3 is irreducible and
it is not hard to show that this implies that S3/F where F is some
finite group acting freely is also irreducible. In contrast, if M is
irreducible and has infinite fundamental group, then one sees easily
that its universal covering is contractible, so that it is a K(π1(M), 1);
for the purposes of these notes, a good example to bear in mind is
that of a closed hyperbolic 3-manifold.

We say a closed 3-manifold is sufficiently large if there is an em-
bedding of a closed orientable 2-manifold i : F → M with the prop-
erty that either F is a 2-sphere and the image of F does not bound
a 3-ball in M , or F has genus at least one, and the induced map
i∗ : π1(F ) → π1(M) is injective. We often identify the surface with
its image and refer to it as an incompressible surface in M . Notice
that this rules out the possibility of manifolds covered by 3-sphere.
We also point out that with some fairly elementary 3-manifold topol-
ogy, if we assume that M is irreducible, then it can be shown that
an essential map M → S1 can be homotoped so that a generic point
preimage is incompressible and so in particular, if H1(M) is infinite,
then it is sufficiently large.

Manifolds which are irreducible and sufficiently large are often
referred to as Haken. The results of [32] give a marvelous array
of techniques for understanding Haken manifolds and a good deal
more is known about this class than for the general irreducible 3-
manifold, even if this manifold has infinite fundamental group. For
example, Waldhausen proves that such manifolds are determined up
to homeomorphism by their fundamental groups, and that homotopic
homeomorphisms are in fact isotopic.

Historically speaking, there was a feeling in the late 60’s and early
70’s that being Haken was rather common, but the work of Thurston
in the middle 70’s suggested otherwise and nowadays it is felt that
perhaps Haken 3-manifolds are in some sense rather rare. So one
needs to develop techniques which suffice even if the manifold is not
Haken, this being especially important for the case that the manifold
is hyperbolic. There has been an enormous amount of work in this
direction in low dimensional topology, we shall focus on just one
aspect, the notion of being virtually Haken and related ideas.

Definition 1.1.1. An irreducible 3-manifold M is defined to be vir-
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[SEC. 1.1: PRELIMINARIES. 9

tually Haken is there is a finite sheeted covering MF −→ M for which
MF is Haken.

In contrast to the situation for Haken manifolds, it’s generally
expected that every irreducible 3-manifold with infinite fundamental
group will in fact be virtually Haken and the key case (in fact the only
case left assuming the truth of Perelman) is that of a closed hyperbolic
3-manifold. In fact there is evidence that much stronger conjectures
hold, in particular all the following conjectures are generally expected
to be true:

Surface Conjecture Every closed hyperbolic 3-manifold contains
the fundamental group of a closed orientable surface, (necessarily of
genus > 1).

Conjecture 0 Every closed hyperbolic 3-manifold has a finite sheeted
covering which is Haken.

Conjecture 1 Every closed hyperbolic 3-manifold has a finite sheeted
covering which has H1(M) infinite.

Conjecture ∞ Given a K > 0, every closed hyperbolic 3-manifold
has a finite sheeted covering which has H1(M) infinite and of rank
> K.

These are, of course, ordered so that each conjecture implies all the
conjectures above it.

The question of whether every closed hyperbolic 3-manifold con-
tains a surface group has received a good deal of attention and while
there are some results known ([13] and [23]) this is not the aspect of
the problem that we shall concentrate on in these notes, rather we
shall ask the question, suppose that one is given a surface subgroup,
how can it be used to address the other problems? We note that
a hyperbolic manifold is a K(G, 1) so standard obstruction theory
guarantees that the inclusion map i : π1(F ) → π1(M) is induced by
a continuous map f : F → M which we may suppose to be an immer-
sion. It is the desire to take this non-embedded π1- injective surface
and the attempt to promote it to an embedding in a finite sheeted
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10 [CAP. 1: INTRODUCTION.

covering that guides us in what follows, and relates to separability
properties of groups.

1.1.4 An example

A good example of a Haken hyperbolic 3-manifold to keep in mind
is that of a surface bundle over the circle. These are constructed as
follows. Let Σg be a closed orientable surface of genus g ≥ 2, and
φ : Σg → Σg a homeomorphism. The Mapping Torus of φ is the
closed 3-manifold, denoted Mφ that is formed by taking

Σg × [0, 1]/{(x, 0) ≡ (φ(x), 1)}.

From this description, Mφ is seen to be a fiber bundle over S1

and the fibers are embedded incompressible surfaces homeomorphic
to Σg. In particular these manifolds are Haken; indeed the first Betti
number of Mφ is positive.

Part of proof Thurston’s hyperbolization theorem shows that Mφ

is hyperbolic if and only if φ is a pseudo-Anosov map. This construc-
tion fits with the conjectures discussed above. A strengthening of
Conjecture 1 above asks:

Conjecture 1′: Let M be a closed hyperbolic 3-manifold. Then M
has a finite sheeted cover which is a surface bundle over the circle.
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Separability properties
of groups

Motivated by the discussion in §3.2 our point of view is that one
wishes to try and understand a complicated infinite group, namely
π1(M), and one way of doing this is to attempt to understand the
finite quotients of this group; equivalently, the standard theory of
covering spaces shows that one might wish to gain insights into M by
thinking about its finite covering spaces. This raises an immediate
problem: On the face of it, there is no a priori reason to think that
the group π1(M) has any subgroups of finite index at all. This is the
first issue that we shall address and is the motivation for the next
section

2.1 Residual finiteness

Definition 2.1.1. A group G is said to be residually finite, if, given
any nonidentity element g ∈ G, there is a subgroup of finite index H
in G with g /∈ H.

By using the action of G on the left cosets of H by left translation,
we obtain a permutational representation p : G −→ S[G:H] from which
it follows that H contains the normal subgroup of finite index ker(p)

11
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12 [CAP. 2: SEPARABILITY PROPERTIES OF GROUPS

and there is therefore a homomorphism

φ : G −→ A ∼= G/ker(p)

where it is visible that |A| < ∞ and φ(g) �= I.
Conversely, if such a homomorphism exists, then, g /∈ ker(φ) which
has finite index, so that these conditions are equivalent. We shall use
them both. We also note that the restriction to one element is not
necessary, one sees easily that it is equivalent replace the element g
by any finite set of elements in the above definition.

Residual finiteness guarantees a large supply of subgroups of finite
index in G, indeed it shows that the intersection of all the subgroups
of finite index in G yields only the identity element I. For future
reference we notice that the algebraic condition above is equivalent
to the following geometric condition (which we do not attempt to
state in the most general form possible)

Lemma 2.1.2. Suppose that M is a closed manifold and G = π1(M).
Then G is residually finite if and only if the following condition holds:

For every compact subset C of M̃ , there is a finite sheeted covering
MF of M so that the natural map M̃ → MF is an embedding when
restricted to C.

Proof: We recall that the natural action of π1(M) on its universal
covering is properly discontinuous, that is to say, given any compact
set C, the number of group elements for which gC ∩ C �= ∅ is finite.

If we assume the group G is residually finite, we can find a sub-
group of finite index H in G which excludes this finite number of
group elements, and elementary covering space theory now shows
that the set C embeds in the finite covering MF corresponding to H .

Conversely, suppose the geometric condition holds, and we are
given a nontrivial element of the fundamental group g. We may
represent g by a based map [0, 1] → M and nontriviality is equivalent
to the preimage of this map being an arc in the universal covering
which is to say the endpoints are distinct. Taking these two endpoints
as the compact set C, we see that there is a finite sheeted covering
of M in which this arc fails to close up, that is to say a finite sheeted
covering MF to which the loop g does not lift as a loop. Covering
space theory shows that the element g does not lie in the subgroup
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[SEC. 2.1: RESIDUAL FINITENESS 13

corresponding to the covering MF .

It will also be useful to note the following simple group theoretic facts

Lemma 2.1.3. Let G be a group and H a subgroup of G
(i) If G is residually finite, then so is H.
(ii) If H is residually finite and [G : H ] < ∞, then G is residually
finite.

Proof: (i) Take any nonidentity element h of H ; G is residually finite
so there is a homomorphism to a finite group φ : G → A which does
not kill g; restrict this homomorphism to H .
(ii) Given a g ∈ G, either g /∈ H in which case we are done, or we can
find a subgroup of finite index in H which excludes g; this subgroup
also has finite index in G.

While it is by no means true that all groups are residually finite
(see the example given at the end of this section, and indeed there
are infinite groups with no subgroups of finite index at all, see for
example [28]), many of the groups which arise in nature are, and, in
fact, this is a fairly soft property in the sense that there are quite
general results which guarantee that a group is residually finite. The
most famous of these, and the most useful for us, is Mal’cev’s theorem:

Theorem 2.1.4. Let R be a finitely generated integral domain. Then
for any nonidentity element g ∈ GL(n, R) there is a finite field K and
a homomorphism

φ : GL(n, R) → GL(n, K)

so that φ(g) �= I.

Proof: The key ingredient is the following purely algebraic result:

Lemma 2.1.5. Let R be a finitely generated integral domain. Then
(i) The intersection of all the maximal ideals of R is the zero ideal.
(ii) If M is any maximal ideal of R, then R/M is a finite field.

If we assume this result, we may prove Mal’cev’s theorem: The
given element g is not the identity element, so that at least one of
the elements of the difference g − I is nonzero; fix such an element
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14 [CAP. 2: SEPARABILITY PROPERTIES OF GROUPS

an denote it by r. By (i) of the Lemma, there is a maximal ideal M
which does not contain r and by (ii) the quotient R/M is a finite
field. The map induced from projection

φ : GL(n, R) −→ GL(n, R/M)

has the required properties, since by choice of r, the element φ(g) is
not the same in the quotient as the element φ(I).

This result is used in the following fashion. As discussed in §3.1,
the groups Isom(Hn) are all subgroups of GL(n + 1,R). If M is a
hyperbolic n-manifold, then although the canonical representation ρ :
π1(M) → Isom(Hn) < GL(n+1,R) apparently takes its values in the
real field, we can form a finitely generated integral domain by taking
a generating set for π1(M) and looking at the subring of R generated
by the entries of the ρ-images of these generators - together with 1
say. Denoting this ring by R we see that ρ : π1(M) → GL(n + 1, R).
Since ρ is injective we have proved:

Theorem 2.1.6. The fundamental group of a closed hyperbolic n-
manifold is residually finite.

Indeed, Mal’cev’s theorem is a rich source of residually finite
groups, since many commonly occurring groups have faithful linear
representations, free groups and surface groups being the most obvi-
ous examples.

Assuming Perelman’s solution to geometrization in dimension 3 it
follows that all compact 3-manifolds have residually finite fundamen-
tal groups. Indeed, for Haken manifolds this can be established with-
out geometrization (see [15]), and the proof assuming geometrization
builds on [15].

However, the following is still an interesting open problem.

Question 2.1.7. Let M be a Haken 3-manifold. Does π1(M) admits
a faithful representation into GL(n,C) for some n?

Example of a non-residually finite group:

The most famous class of examples of finitely generated non-residually
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finite groups are the Baumslag-Solitar groups defined as follows. Let
p and q be natural numbers and define the group

BS(p, q) =< a, b| bapb−1 = aq > .

If neither p or q is 1, it was shown in [3] that the group BS(p, q) is not
residually finite. Note that when p = 1 the group BS(1, q) is linear
and hence residually finite. The linear representation is described as

follows; take a =
(

1 1
0 1

)
and a =

( √
q 0

0 1/
√

q

)
.

2.2 Subgroup separability

We now introduce a property, that while being related to residual
finiteness is a good deal stronger.

Definition 2.2.1. Let G be a group and H a finitely generated sub-
group, G is called H-subgroup separable if given any g ∈ G\H, there
exists a subgroup K < G of finite index with H < K and g /∈ K.

G is called subgroup separable (or LERF) if G is H-subgroup
separable for all finitely generated H < G.

In contrast to the situation for residually finite groups, one cannot
reduce to the case that K is normal in G; since conjugates of K will
not in general contain H . It is left to the reader to verify that the
equivalent condition which refers to homomorphisms in this case is:
The subgroup H separable in the group G if and only if for element
g /∈ H , there is a homomorphism

φ : G −→ A

where A < ∞ and φ(g) /∈ φ(H).

It is also left to the reader to verify that the following group theoretic
properties continue to hold

Lemma 2.2.2. Let G be a group and H a subgroup of G
(i) If G is subgroup separable, then so is H.
(ii) If H is subgroup separable and [G : H ] < ∞, then G is subgroup
separable.
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16 [CAP. 2: SEPARABILITY PROPERTIES OF GROUPS

Subgroup separability is an extremely powerful property, and it
is much stronger than residual finiteness. In particular, there is no
theorem analogous to Mal’cev’s - more or less every example must
be treated on its individual merits. The class of groups for which
subgroup separability is known for all finitely generated subgroups
is extremely small; abelian groups, free groups, surface groups and
carefully controlled amalgamations of these.

Examples.
(i) (Hall, [14]) Free groups are subgroup separable.
(ii) (Scott, [27]) Surface groups are separable.
(iii) (Folklore) If A and B are subgroup separable then so is A ∗ B.
(iv) If A, B and C are finite, then A ∗C B is subgroup separable. (It
contains a free subgroup of finite index [26])

The powerful nature of this property is underlined by listing some
apparently well-behaved groups which fail to be subgroup separable.
We note that SL(2,Z) contains a free subgroup of finite index, so that
it follows from Hall’s theorem together with (iv) above that it is sub-
group separable. However, as we discuss in §5 this fails for SL(n,Z)
when n ≥ 3. Another interesting example is the following. Let Fn

denote the free group of rank n. Then Fn ×Fn is not subgroup sepa-
rable although it is the direct product of subgroup separable groups.
This failure can be attributed to the lack of a solution to the general-
ized word problem for these groups, see [21] for instance. It is known
that LERF (like residual finiteness for the word problem) implies a
solution to the generalized word problem. The groups BS(1, q) are
residually finite, but not LERF. This can be seen by checking that
the the cyclic subgroup < a > is not separable. This is a special case
of a more general result of Blass and Neumann [5] that shows that if
G is a group and H < G with the property that H is conjugate into
a proper subgroup of itself, then G is not H-separable.

From the point of view of 3-dimensional topology, it is known
that there compact 3-manifolds whose fundamental groups are not
LERF. These examples are all closely related to an example in [11] of
a 1-punctured torus bundle over the circle whose fundamental group
is not LERF.
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[SEC. 2.2: SUBGROUP SEPARABILITY 17

There is also an analogue of a geometric equivalence.

Lemma 2.2.3. Suppose that M is a closed manifold and G = π1(M).
Then G is subgroup separable if and only if the following condition
holds:

For every finitely generated subgroup H < π1(M) and every com-
pact subset C of M̃/H, there is a finite sheeted covering MF =
M̃/K → M subordinate to M̃/H, (i.e. H ≤ K) so that the nat-
ural map M̃/H → M̃/K is an embedding when restricted to C.

It is this geometric equivalence which fuels much of the interest in
this property in low dimensional topology and is discussed in detail
in the next section.
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Chapter 3

Subgroup separability
and Scott’s theorem

As described in §2.3, one of the central problems we are interested
in solving is that if we are given an immersed π1-injective surface F ,
can we promote it to an embedding in a finite sheeted covering of the
ambient 3-manifold M . Restricting attention to the hyperbolic case,
it is known that the manifold H3/π1(F ) is a topological product F ×
R and therefore contains an embedding of closed orientable surface
homeomorphic to F . Taking this surface to be the compact set C in
the geometric version of the subgroup separability property described
by Lemma 2.2.3, we see that there is a subgroup of finite index K >
π1(F ) in π1(M), so that the surface F embeds in H3/K.

There is an important reduction which we introduce at this point.
We first need a definition. We refer to [25] for some of the details
that we omit. Suppose that H is a subgroup of a discrete group of
hyperbolic isometries G. For technical reasons, we need to exclude
subgroups H which are very small, in the sense that it contains a
soluble subgroup of finite index. Then associated to H is a canonical
set, its limit set which we define as the closure in the sphere at infinity
of hyperbolic space of the union of all the fixed points of hyperbolic
elements of H . We denote the limit set by Λ(H). It is clear from this

18
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definition that the limit set is H invariant and provided we exclude
small subgroups, it contains infinitely many points. We can use this
set to construct an H invariant subset lying inside Hn. To this end
we define a totally geodesic hyperplane to be any co-dimension one
totally geodesic submanifold of Hn. The closed set lying to one side
of a totally geodesic hyperplane is a closed half space.

We define the convex hull of the limit set, C(Λ(H)), to be the
intersection of all those half spaces which contain the limit set. One
can see easily from the definition that the convex hull is the smallest
convex closed set which contains all the geodesic axes of elements of
H . The set C(Λ(H)) is visibly H invariant and we may form the
quotient C(Λ(H))/H . One defines H to be geometrically finite if this
set is compact. (Or finite volume in the case that H is a subgroup of
a finite volume hyperbolic group) If H is not geometrically finite it
is called geometrically infinite.

It turns out that in the case of subgroups of Isom(H2) that geo-
metrically finite is equivalent to finitely generated, but in general the
situation is more complicated. It is not entirely elementary, but not
hard, that if H is a normal subgroup of G, then Λ(H) = Λ(G). In
particular, in the case of a hyperbolic surface bundle over the circle
(as described in §2.4), the limit set of the fibre surface is the same as
the limit set of the whole 3-manifold group, i.e. the whole 2-sphere
at infinity.

Somewhat amazingly, the separability situation in this apparently
more complicated context can actually be resolved. The recent so-
lution of the Tameness conjecture by Agol [1] and independently by
Calegari and Gabai [12] shows that any finitely generated geometri-
cally infinite subgroup ∆ of the fundamental group of a finite volume
hyperbolic 3-manifold M is a virtual fiber; that is to say, M has a
finite sheeted cover that is a hyperbolic surface bundle over the circle
and the fiber group is ∆. Combining this with prior work of Thurston
and Bonahon [29] and [6] we summarize what is important for us in
the following theorem

Theorem 3.0.4. Suppose that M is a finite volume hyperbolic 3-
manifold. Then the finitely generated geometrically infinite subgroups
of π1(M) are separable in π1(M).

It follows from this result that we may restrict attention to the
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geometrically finite surface groups and indeed, guided by this and
other considerations, the general direction of the theory has been
trying to separate geometrically finite subgroups, or in the case of
negatively curved groups in the sense of Gromov, the quasi-convex
subgroups. The results of Hall and Scott fit into this pattern since
coincidentally in those settings, finitely generated and geometrically
finite turn out to be equivalent.

3.1 Scott’s theorem.

The proof that free groups are subgroup separable given by Hall was
essentially algebraic, but can be made geometric fairly easily. How-
ever little progress was made for many years until a new technique
was introduced by Scott [27]. We shall now give an exposition of
this technique, recast in modern language and somewhat refined, as
described in [2].

Suppose that P is a finite volume polyhedron in Hn all of whose
dihedral angles are π/2. Henceforth we call this an all right polyhe-
dron. Then the Poincaré polyhedron theorem implies that the group
generated by reflections in the co-dimension one faces of P is discrete
and a fundamental domain for its action is the polyhedron P , that is
to say, we obtain a tiling of hyperbolic n-space by tiles all isometric
to P . Let the group so generated be denoted by G(P ).

Theorem 3.1.1. The group G(P ) is H-subgroup separable for every
finitely generated geometrically finite subgroup H < G(P ).

Proof: As in Lemma 2.2.3 the separability of H is equivalent to the
following

Suppose that we are given a compact subset X ⊂ Hn/H. Then there
is a finite index subgroup K < G(P ), with H < K and with the
projection map q : Hn/H −→ Hn/K being an embedding on X.

We sum up the strategy which achieves this geometric condition.
The group H is geometrically finite and one can enlarge its convex
hull in Hn/H so as to include the compact set X in a convex set
contained in Hn/H ; this convex set lifts to an H-invariant convex
set inside Hn. One then defines a coarser convex hull using only
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the hyperbolic half-spaces bounded by totally geodesic planes which
come from the P -tiling of Hn; this hull is denoted by HP (C+). This
hull is H-invariant and the key point is to show that HP (C+)/H only
involves a finite number of tiles. The remainder of the proof follows
[27] and is an elementary argument using the Poincaré polyhedron
theorem and some covering space theory. We now give the details.

Let C be very small neighbourhood of the convex hull of H , re-
garded as a subset of Hn. In our setting, the group G(P ) contains
no parabolic elements so that the hypothesis implies that C/H is
compact.

The given set X is compact so that there is a t with the property
that every point of X lies within a distance t of C/H . Let C+ be the
10t neighbourhood of C in Hn. This is still a convex H-invariant set
and C+/H is a compact convex set containing X .

As discussed above, take the convex hull HP (C+) of C+ in Hn

using the half spaces coming from the P -tiling of Hn. By construction
HP (C+) is a union of P -tiles, is convex and H-invariant. The crucial
claim is:

Claim. HP (C+)/H involves only a finite number of such tiles.

To see this we argue as follows.
Fix once and for all a point in the interior of a top dimensional

face of the tile and call this its barycentre. The tiles we use actually
often have a geometric barycentre (i.e. a point which is equidistant
from all of the faces) but such special geometric properties are not
used; it is just a convenient reference point.

Our initial claim is that if the barycentre of a tile is too far away
from C+, then it cannot lie in HP (C+).

The reason for this is the convexity of C+. If a is a point in
Hn not lying in C+ then there is a unique point on C+ which is
closest to a. Moreover, if this distance is R, then the set of points
distance precisely R from a is a sphere touching C+ at a single point
p on the frontier of C+ and the geodesic hyperplane tangent to the
sphere at this point is the (generically unique) supporting hyperplane
separating C+ from a.

Suppose then that P ∗ is a tile whose barycentre is very distant
from C+. Let a∗ be the point of P ∗ which is closest to C+ and let
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p be a point on the frontier of C+ which is closest to P ∗. As noted
above, there is a geodesic supporting hyperplane Hp through p which
is (generically) tangent to C+ and separates C+ from a∗. Let the
geodesic joining a∗ and p be denoted by γ. Note that since p is the
point of C+ closest to a∗, γ is orthogonal to Hp.

If a∗ happens to be in the interior of a tile face of P ∗, then this
tile face must be at right angles to γ, since a∗ was closest. Let Ha∗

be the tiling plane defined by this tile face. Since in this case γ is at
right angles to both Ha∗ and Hp, these planes are disjoint and so the
tiling plane separates P ∗ from C+ as required.

If a∗ is in the interior of some smaller dimensional face, σ, then
the codimension one faces of P ∗ which are incident at σ cannot all
make small angles with γ since they make right angles with each
other. The hyperplane H which makes an angle close to π/2 plays
the role of Ha∗ in the previous paragraph. The reason is that since
a∗ and p are very distant and the planes Hp and H both make angles
with γ which are close to π/2, the planes are disjoint and we see as
above that P ∗ cannot lie in the tiling hull in this case either.

The proof of the claim now follows, as there can be only finitely
many barycentres near to any compact subset of Hn/H .

The proof of subgroup separability now finishes off as in [27]. Let
K1 be the subgroup of G(P ) generated by reflections in the sides of
HP (C+). The Poincaré polyhedron theorem implies that HP (C+) is
a (noncompact) fundamental domain for the action of the subgroup
K1. Set K to be the subgroup of G(P ) generated by K1 and H , then
Hn/K = HP (C+)/H so that K has finite index in G(P ). Moreover,
the set X embeds as required.

3.2 Totally geodesic surfaces.

As described above, one of the interests for low-dimensional topol-
ogy in the subgroup separability condition is to pass from a surface
subgroup to an embedded non-separating surface in a finite sheeted
covering. However, this makes clear that we have no real need to sep-
arate all finitely generated subgroups, certain special classes suffice.
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In particular, there is a very restricted class of subgroup which can
always be separated.

Definition 3.2.1. A closed surface group π1(F ) < π1(M) in a closed
hyperbolic manifold is said to be totally geodesic if the discrete faithful
representation of π1(M) can be conjugated so that the image of π1(F )
lies inside PSL(2,R).

We have stated this condition algebraically since it is in this form
that we shall use it, but it has a natural interpretation in the context
of differential geometry. As usual we can construct an immersion i :
F ↪→ M realising the surface group and the totally geodesic condition
means that the metric induced on the surface F from the ambient
3-manifold M can be arranged to be a constant curvature hyperbolic
metric. In this sense they are at the opposite end of the spectrum
from geometrically infinite surfaces.

In the language introduced above, the universal covering of F
is a totally geodesic hyperplane in H3. The importance of totally
geodesic surfaces for us is the following theorem:

Theorem 3.2.2. Let M be a closed hyperbolic 3-manifold containing
a closed totally geodesic surface F . Then there is a finite sheeted
covering of M which contains an embedded closed orientable totally
geodesic surface.

To prove this theorem, we first establish:

Lemma 3.2.3. Let C be a circle or straight line in C ∪ ∞, and
M = H3/Γ a closed hyperbolic 3-manifold. Let

stab(C, Γ) = {γ ∈ Γ : γC = C}.

Then stab(C, Γ) is separable in Γ.

Proof: Let H denote stab(C, Γ). We may assume without loss of
generality that H is nontrivial since Γ is residually finite. Note that
H is either a Fuchsian group or a Z2-extension of a Fuchsian group.
To prove the Lemma we need to show that given g /∈ H then there
is a finite index subgroup of Γ containing H but not g. By conju-
gating, if necessary, we can assume that H stabilizes the real line.
Denoting complex conjugation by τ , then τ extends to SL(2,C) and
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is well-defined on PSL(2,C). The stabilizer of R in PSL(2,C) is then
characterized as those elements γ such that τ(γ) = γ. The rest of
the argument is similar in spirit to the proof of Mal’cev’s theorem.
Let Γ be generated by matrices g1, g2, . . . , gt. Let R be the subring of
C generated by all the entries of the matrices gi, their complex con-
jugates and 1. Then R is a finitely generated integral domain with
1 so that for any non-zero element there is a maximal ideal which
does not contain that element. Note that both Γ and τ(Γ) embed in
PSL(2, R).

If γ ∈ Γ \H , then γ = P (g) where at least one element from each
set {τ(gij)−gij},{τ(gij)+gij}, i, j = 1, 2, is non-zero. Call these x, y
and choose a maximal ideal M such that xy �∈ M. Let

ρ : PSL(2, R) → PSL(2, R/M) × PSL(2, R/M)

be the homomorphism defined by ρ(γ) = (π(γ), π(τ(γ))) where π is
induced by the natural projection R → R/M. The image group is
finite since R/M is a finite field. By construction, the image of γ is
a pair of distinct elements in PSL(2, R)/M), while the image of H
lies in the diagonal. This proves the lemma.

Proof of Theorem 3.2.2: Let i : F → M be a totally geodesic
immersion of a closed surface. Let Γ be the covering group of M in
PSL(2,C) and let H = i∗(π1(F )). Then H is Fuchsian and preserves
some circle or straight line C in C∪∞. Notice that stab(C, Γ) contains
H and is a discrete group acting on the hyperbolic plane spanned by
C; therefore we have a finite sheeted covering H2/H → H2/stab(C, Γ)
which implies that stab(C, Γ) is the fundamental group of a closed
orientable surface.

Now by Lemma 3.2.3 the group stab(C, Γ) is separable in Γ and
there is an embedded closed surface in the covering H2/stab(C, Γ).
As discussed at the start of §4, separability now implies that there is
a finite sheeted covering MK in which this surface embeds. By un-
twisting this surface if it happens to be nonorientable, it follows that
this manifold or its double covering contains the required embedded
orientable totally geodesic surface.

In fact one can go further and produce infinite virtual Betti number
in this case:
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Theorem 3.2.4. If a closed hyperbolic 3-manifold M contains a to-
tally geodesic closed surface group then it has infinite virtual Betti
number.

Proof: As we showed above, the manifold virtually contains an em-
bedded totally geodesic surface, F . Suppose that this surface is sep-
arating, then it expresses the fundamental group of the manifold as a
free product with amalgamation π1(M) ∼= π1(L) ∗π1(F ) π1(R) where
L and R are the two sides. By untwisting if necessary, we may sup-
pose that the indices [π1(L) : π1(F )] and [π1(R) : π1(F )] are both
infinite. Now separability guarantees that we can find a homomor-
phism of φ : π1(M) → A onto a finite group A so that the indices
[φ(π1(L)) : φ(π1(F ))] and [φ(π1(R)) : φ(π1(F ))] are both strictly
larger than two. By restricting this homomorphism to both sides, we
assemble a new map

π1(M) −→ φ(π1(L)) ∗φ(π1(F )) φ(π1(R))

onto a free product with amalgamation of finite groups. Now as in
[26], the target group here is virtually a free group of rank two or
greater so that π1(M) has infinite virtual Betti number as required.

Remark: Theorems 3.2.2 and 3.2.4 and Lemma 3.2.3 were stated
only for closed hyperbolic 3-manifolds. However, these results also
hold, and are proved the same way for non-compact finite volume
hyperbolic 3-manifolds.

3.3

In light of Theorem 3.2.4 and Conjectures 0, 1 and ∞ from §2, a nat-
ural question is whether every finite volume hyperbolic 3-manifold
contains an immersion of a closed totally geodesic surface. The an-
swer to this is no, but to discuss this in more detail we will require
some arithmetic properties of hyperbolic 3-manifold groups, and we
shall develop some of this below (see [24] for more on this topic).

Let Γ be a subgroup of PSL(2,C) that does not contain a soluble
subgroup of finite index. The trace-field of Γ, denoted Q(trΓ) is the
field:

Q(trγ : γ ∈ Γ).
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Note that, for any γ ∈ PSL(2,C), the traces of any lifts to SL(2,C)
will only differ by ±, and so the trace-field is well-defined. The trace-
field is a conjugacy invariant of Γ. The connection to finite volume 3-
manifolds is made interesting by the following result that is basically
a consequence of Mostow Rigidity in dimension 3.

Theorem 3.3.1. Let Γ < PSL(2,C) be a discrete group of finite
covolume, then Q(trΓ) is a finite extension of Q.

It follows that if M = H3/Γ is a hyperbolic 3-manifold of finite
volume, then Q(trΓ) is a topological invariant of M .

One deficiency of the trace-field is that it is not a commensura-
bility invariant, however, this is easily remedied.

Definition 3.3.2. Let Γ be a finitely generated group. Define Γ(2) =<
γ2 | γ ∈ Γ > .

Then it is easy to check that Γ(2) is a finite index normal subgroup
of Γ whose quotient is an elementary abelian 2-group.

Theorem 3.3.3. Let Γ be a finitely generated non-elementary sub-
group of SL(2,C). The field Q(trΓ(2)) is an invariant of the com-
mensurability class of Γ.

Notation: The field Q(trΓ(2)) is denoted kΓ and is called the invari-
ant trace-field of Γ.

Another algebraic object that plays a role in the theory of hyperbolic
3-manifolds is a quaternion algebra over the invariant trace-field.

Suppose Γ is a subgroup of PSL(2,C) that does not contain a
soluble subgroup of finite index (in fact we should work in SL(2,C)).
Here we associate to Γ a quaternion algebra over Q(trΓ). Let

A0Γ = {Σaiγi | ai ∈ Q(trΓ), γi ∈ Γ},

where only finitely many of the ai are non-zero.

Theorem 3.3.4. A0Γ is a quaternion algebra over Q(trΓ).

In the case of A0Γ(2), we denote this by AΓ and call this the in-
variant quaternion algebra of Γ.
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Example: Suppose that H3/Γ is non-compact but finite volume (eg
the figure-eight knot complement). Then AΓ ∼= M(2, kΓ). The
only thing to note is that the manifold being finite volume and non-
compact implies that Γ contains parabolic elements. These give rise
to zero divisors in AΓ and hence the invariant quaternion algebra is
not a division algebra. The isomorphism follows.

Notation: A quaternion algebra B over a field k (of characteristic
�= 2) can be described as follows. Let a, b ∈ k∗ and let B be the 4-
dimensional vector space over k with basis 1, i, j,k. Multiplication is
defined on B by requiring that 1 is a multiplicative identity element,
that

i2 = a.1, j2 = b.1, ij = −ji = k (3.1)

and extending the multiplication linearly so that B is an associative
algebra over k. This algebra is denoted by the Hilbert symbol

(
a,b
k

)
.

3.4

We now produce manifolds without totally geodesics surfaces. This
will follow from our next theorem which requires one more definition.

Let B be a quaternion algebra over a number field k. We say
that B is ramified at an embedding σ : k → C if σ(k) ⊂ R and the
quaternion algebra

Bσ ⊗σ(k) R ∼= D

where D is the Hamiltonian quaternions, and Bσ is the quaternion
algebra over σ(k) obtained by applying σ.

If P is a prime ideal of Rk (the ring of integers of k) we say that
a quaternion algebra B/k is ramified at P if B ⊗k kP is a division
algebra over the local field kP (ie the completion of k at P).

Theorem 3.4.1. Let Γ be a Kleinian group of finite co-volume which
satisfies the following conditions:

• kΓ contains no proper subfield other than Q.

• AΓ is ramified at at least one embedding of kΓ.

Then Γ contains no purely hyperbolic elements.
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Before discussing the proof, we recall that a purely hyperbolic el-
ement is a hyperbolic element γ with tr2(γ) > 4. Since a Fuchsian
group is conjugate to a subgroup of PSL(2,R), the “generic” element
is purely hyperbolic. More precisely, if F is a cocompact Fuchsian
group then all elements of infinite order are purely hyperbolic. Thus
Theorem 3.4.1 provides a method of checking the lack of existence
(in a very strong way) of totally geodesic surface subgroups.

Proof: Note that Γ contains a hyperbolic element if and only if Γ(2)

contains a hyperbolic element. Let us suppose that γ ∈ Γ(2) is hy-
perbolic, and let t = tr(γ). By assumption t ∈ kΓ ∩ R = Q, and
|t| > 2.

Now AΓ is ramified at an embedding σ of kΓ, which is necessarily
real. Let σ : kΓ → R be the Galois embedding of kΓ, and ψ : AΓ →
D extending σ. Thus

ψ(Γ(2)) ⊂ ψ(AΓ1) ⊂ D1.

But then, since t ∈ Q,

t = σ(t) = ψ(γ + γ̄) = ψ(γ) + ψ(γ) = trψ(γ).

Since tr D1 ⊂ [−2, 2] we obtain a contradiction. ��

Now although it may appear the conditions of Theorem 3.4.1 are
hard to check, many examples of manifolds are known to satisfy these
conditions. This is the class of arithmetic hyperbolic 3-manifolds (see
[24] for details).

These are defined as follows. Let k be a number field with exactly
one pair of complex conjugate embeddings, let Rk denote the ring
of integers of k, and let B be a quaternion algebra over k which is
ramified at all the real embeddings. Let ρ be a k-embedding of B
into M2(C) and let O be an Rk-order of B. Then a subgroup Γ of
PSL(2,C) is an arithmetic Kleinian group if it is commensurable with
some such Pρ(O1).

Examples of arithmetic Kleinian groups that satisfy the hypoth-
esis of Theorem 3.4.1 are then easily constructed. One just takes
for example a cubic number field and B a quaternion algebra with
the properties given in the definition. A particular example of such
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a group/manifold is the Weeks manifold, the hyperbolic 3-manifold
with the smallest known volume at this point. The field k = Q(θ)
where θ is a complex root of x3 − x + 1 = 0, and B is a quaternion
algebra over k ramified at the real embedding of k and at a prime
ideal of norm 5 in k.

3.5

An important subclass of arithmetic Kleinian groups are the Bianchi
groups. These are the generalization to dimension 3 of the modular
group and are defined as PSL(2, Od) where Od is the ring of integers
in Q(

√
−d). These groups all contain a copy of PSL(2,Z) and so

all contain a non-elementary Fuchsian group. However, they also
contain lots of cocompact Fuchsian subgroups. These are constructed
as follows.

Lemma 3.5.1. Let F be a Fuchsian subgroup of the Bianchi group
PSL(2, Od) which contains two non-commuting hyperbolic elements.
Then F preserves a circle or straight-line in C ∪∞

a|z|2 + Bz + Bz + c = 0,

where a, c ∈ Z and B ∈ Od.

Proof: Since F is a Fuchsian subgroup, it does preserve a circle
or straight-line C in C ∪∞. Assume this has equation a|z|2 + Bz +
Bz+c = 0 with a and c real numbers and B complex. By conjugating
in PSL(2, Od) we may assume that a �= 0. Hence on further dividing,
we can assume that a = 1.

F contains a pair of non-commuting hyperbolic elements, and
these have distinct fixed points which lie on C (recall §2.2). If one

such element g is represented by
(

α β
γ δ

)
then its fixed points are

α−δ±λ
2γ where λ2 = (α + δ)2 − 4 > 0. An easy calculation shows that

the perpendicular bisector of the line (in C) joining these fixed points
has the equation

γz + γz = γµ + γµ,
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where µ = α−δ
2γ . Since the centre of C is the intersection of two

such lines we deduce, since all these coefficients are in Q(
√
−d), that

B ∈ Q(
√
−d). Rewriting the equation of the circle C as

|z + B|2 = |B|2 − c,

we find that, since the fixed points of the hyperbolic element g lie
on C, we can solve for c ∈ Q. Clearing denominators completes the
proof of the lemma. ��

Using arithmetic methods, it can be shown that, if C is a circle or
straight line as above, and HC the hyperbolic plane in H3 erected
on C, then stab(C, PSL(2, Od)) if a Fuchsian group acting with finite
co-area, and indeed one can arrange that the group acts cocompactly.

Example: In the case of d = 1, the Bianchi group is the Picard group
PSL(2,Z[i]). If we let p ∈ Z be a prime congruent to 3 mod 4, then
the circle

Cp = {z ∈ C : |z|2 = p}
gives rise to a subgroup stab(Cp, PSL(2,Z[i]) that is cocompact.

3.6

The discussion in §4.3–4.5, exploits the description of Isom+(H3) as
PSL(2,C). In higher dimensions, since Isom(Hn) = O0(n, 1), arith-
metic methods of constructing lattices exploit the theory of quadratic
forms.

We now discuss this construction. This goes back to Borel and
Harish-Chandra, [8] and [7]) and will require some standard facts
about quadratic forms and orthogonal groups of such forms; [17] is a
standard reference.

3.7

If f is a quadratic form in n + 1 variables with coefficients in k and
associated symmetric matrix F , let

O(f) = {X ∈ GL(n + 1,C) | XtFX = F}
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be the Orthogonal group of f , and

SO(f) = O(f) ∩ SL(n + 1,C),

the Special Orthogonal group of f . These are algebraic groups defined
over k.

Definition 3.7.1. Two n-dimensional quadratic forms f and q de-
fined over a field k (with associated symmetric matrices F and Q)
are equivalent over k if there exists P ∈ GL(n, K) with P tFP = Q.

If k ⊂ R is a number field, and Rk its ring of integers, then
SO(f ; Rk) is an arithmetic subgroup of SO(f ;R), [8] or [7]. The
following is well-known and proved in [2] for example.

Lemma 3.7.2. Let k ⊂ R be a number field and Rk its ring of inte-
gers. Let f and q be n-dimensional quadratic forms with coefficients
in RK which are equivalent over k.

• SO(f ;R) is conjugate to SO(q;R) and SO(f ; k) is conjugate to
SO(q; k).

• SO(f ; Rk) is conjugate to a subgroup of SO(q; k) commensurable
with SO(q; Rk). ��

There is a converse to the second part of Lemma 3.7.2 which we
record here (see [31] for example). Note that if f ′ = λf , for λ ∈ k
(non-zero), then SO(f ′; k) = SO(f ; k). With notation as above,

Lemma 3.7.3. Suppose SO(f ; Rk) and SO(q; Rk) are commensu-
rable. Then f is equivalent to λq for some non-zero λ ∈ K. ��

Assume that k ⊂ R is totally real, and let f be a form in n +
1-variables with coefficients in k, and be equivalent over R to the
form fn. Furthermore, if σ : k → R is a field embedding, then the
form fσ obtained by applying σ to f is defined over the real number
field σ(k). We insist that for embeddings σ �= id, fσ is equivalent
over R to the form in (n + 1)-dimensions, of signature (n + 1, 0).
Since f is equivalent over R to fn, it from follows Lemma 3.7.2 that
O(f ;R) is conjugate, by a matrix P say in GL(n+1,R) to O(fn;R).
From [8] (or [7]) PSO0(f ; Rk)P−1 defines an arithmetic subgroup in
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Isom+(Hn), and so necessarily of finite co-volume. In what follows
we will abuse notation, and suppress the conjugating matrix, and
simply identify SO0(f ; Rk) as an arithmetic subgroup of Isom+(Hn).

The group SO0(f ; Rk) is cocompact if and only if the form f does
not represent 0 non-trivially with values in k, see [8]. Whenever n ≥
4, the arithmetic groups constructed above are non-cocompact if and
only if the form has rational coefficients, since it is well known every
indefinite quadratic form over Q in at least 5 variables represents 0
non-trivially, see [17].

The following theorem summarizes a case that what we shall make
use of (see [31] Chapter 6).

Theorem 3.7.4. If Γ is a non-cocompact arithmetic subgroup of
SO0(fn;R) then Γ is commensurable (up to conjugacy) with a group
SO0(f ;Z) where f is a diagonal quadratic form with rational coeffi-
cients and signature (n, 1). ��

3.8

We will now discuss the proof of the following theorem. This was
proved in [2] for geometrically finite subgroups. Since appearing, the
solution to the Tameness conjecture ([1] and [12]) has allowed for the
extension to LERF.

Theorem 3.8.1. The groups PSL(2, Od) are LERF.

Proof: We first remark that if H is a finitely generated subgroup of
PSL(2, Od) it contains a torsion-free subgroup of finite index, and so
if F is geometrically infinite then it will be separable by Theorem
3.0.4 and the fact that a finite index supergroup is separable. Thus it
remains to show that PSL(2, Od) is H-separable for H a geometrically
finite subgroup.

The key geometric idea is contained in the following lemma.

Lemma 3.8.2. For every d there is a finite index subgroup ∆d of
PSL(2, Od) such that ∆ is contained in the group generated by reflec-
tions in a finite volume all right polyhedron P in H6.

Given this Theorem 3.8.1 follows immediately from Theorem 3.1.1.
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Sketch of the Proof of Lemma 3.8.2

This makes use of the description of arithmetic groups arising from
quadratic forms. Theorem 3.7.4 affords a description of the non-
cocompact lattices, and it can be shown that if pd is the quadratic
form < d, 1, 1,−1 >, then pd is isotropic and so SO0(pd;Z) is a
non-cocompact arithmetic group. Indeed it represents the commen-
surability class (as discussed above) of the image of PSL(2, Od) in
SO0(3, 1).

We now discuss the construction of the all right polyhedron, a
related arithmetic group and the group ∆d.

An all right ideal polyhedron in hyperbolic 6-space:

In H6 there is a simplex Σ with one ideal vertex given by the following
Coxeter diagram (see [25] p. 301).

• • • • • •

•

4

Figure 1

Notice that deleting the right most vertex of this Coxeter symbol
gives an irreducible diagram for a finite Coxeter group, namely E6.
This group has order 27.34.5.

The connection to arithmetic groups is given in the following
lemma.

Lemma 3.8.3. (i) G+(Σ) = SO0(f6;Z).

(ii) There is an all right polyhedron Q built from 27.34.5 copies of
Σ. In particular the reflection group G(Q) is commensurable with
SO0(f6;Z).

Proof: The first part is due to Vinberg [30], and also discussed in [25]
p. 301. For the second part, as noted above, if one deletes the face
F of the hyperbolic simplex corresponding to the right hand vertex
to the given Coxeter diagram, the remaining reflection planes pass
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through a single (finite) vertex and these reflections generate the fi-
nite Coxeter group E6. Take all the translates of the simplex by this
group; this yields a polyhedron whose faces all correspond to copies
of F . Two such copies meet at an angle which is twice the angle
of the reflection plane of the hyperbolic simplex which lies between
them. One sees from the Coxeter diagram that the plane F makes
angles π/2 and π/4 with the other faces of the hyperbolic simplex,
so the resulting polyhedron is all right as required. ��

We can now construct ∆d.

Lemma 3.8.4. Let f be the quadratic form < 1, 1, 1, 1, 1, 1,−1 >.
Then for all d, SO(f ;Z) contains a group ∆d which is conjugate to
a subgroup of finite index in the Bianchi group PSL(2, Od).

The proof requires an additional lemma. Assume that j is a diag-
onal quaternary quadratic form with integer coefficients of signature
(3, 1); so that j is equivalent over R to the form < 1, 1, 1,−1 >.
Let a ∈ Z be a square-free positive integer and consider the seven
dimensional form ja =< a, a, a > ⊕ j, where ⊕ denotes orthogonal
sum. Being more precise, if we consider the 7-dimensional Q-vector
space V equipped with the form ja there is a natural 4-dimensional
subspace V0 for which the restriction of the form is j. Using this it
easily follows that,

Lemma 3.8.5. In the notation above, the group SO(j;Z) is a sub-
group of SO(ja;Z). ��

Proof of Lemma 3.8.4

Let pd be as above. The key claim is that qd =< d, d, d > ⊕ pd is
equivalent over Q to the form f .

Assuming this claim for the moment, by Lemma 3.7.2 we de-
duce that there exists Rd ∈ GL(7,Q) such that RdSO(qd;Z)R−1

d and
SO(f ;Z) are commensurable. This together with Lemma 3.8.5 gives
the required group Gd.

To prove the claim, since every positive integer can be written as
the sum of four squares, write d = w2 + x2 + y2 + z2. Let Ad be the
7 × 7 matrix
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

w x y z 0 0 0
−x w −z y 0 0 0
−y z w −x 0 0 0
−z −y x w 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Note Ad has determinant d2, so is in GL(7,Q). Let F the diagonal
matrix associated to the form f and Qd be the 7× 7 diagonal matrix
of the form < d, d, d, d, 1, 1,−1 > (i.e. of < d, d, d > ⊕ pd). Then a
direct check shows that AdFAt

d = Qd as is required. ��

Remark. The polyhedron Q is finite covolume since there is only
one infinite vertex: deleting the plane corresponding to the left hand
vertex of the Coxeter group is the only way of obtaining an infinite
group and this group is a 5 dimensional Euclidean Coxeter group. By
inspecting other Coxeter diagrams it can be shown that there are ideal
all right polyhedra in Hk at least for 2 ≤ k ≤ 8. This was exploited
in [22] to prove that many other discrete subgroups of Isom(Hn) are
separable on geometrically finite subgroups for 2 ≤ n ≤ 8.
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New directions.

While examination of subgroup separability in the geometric context
has generated a good deal of interesting mathematics, it is unclear
the extent to which it will resolve the central conjectures which it
was introduced to resolve. For example, although it seems somewhat
unlikely, one might be able to show that hyperbolic 3-manifold groups
were subgroup separable and this on its own actually answers none of
the questions in which we were originally interested. In this section
we shall formulate some more recent work which appears to be more
germane. We begin with a simple definition that underpins much of
what follows.

Definition 4.0.6. Let G be a group and H a subgroup. Then a homo-
morphism θ : H −→ A extends over the finite index subgroup
V ≤ G if

• H ≤ V

• There is a homomorphism Θ : V −→ A which is the homomor-
phism θ when restricted to H.

One of the motivations in our setting for making this definition is
the following straightforward theorem:

Theorem 4.0.7. Suppose that G is LERF, and H a finitely generated
subgroup. Suppose θ : H → A is a homomorphism onto a finite group.

36
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Then there is subgroup of finite index V of G containing H and a
homomorphism Θ : V → A with Θ|H = θ.

Proof. We can assume that H has infinite index in G. Let
K = ker θ, a finite index subgroup of H , and hence finitely gener-
ated. Since G is LERF, there is a finite index subgroup K ′ < G such
that K ′ ∩ H = K. Define ∆ =

⋂
{hK ′h−1 : h ∈ H}. Note that

since K is normal in H , K < ∆ and moreover, since K has finite
index in H , the above intersection consists of only a finite number of
conjugates of K ′. Hence ∆ has finite index in K ′ (and also G). Let V
denote the group generated by H and ∆. It is easy to check that, by
construction, ∆ is a normal subgroup of V , so that V = H.∆. The
canonical projection Θ : V → V/∆ defines the required extension.

In other words, if the ambient group is LERF, then every homomor-
phism of a finitely generated subgroup onto a finite group can be
extended to some subgroup of finite index in G. We shall say that
the homomorphism θ virtually extends and that G has the local ex-
tension property for homomorphisms onto finite groups. It turns out
that these extension properties give elegant expressions of several well
established notions, for example residual finiteness:

Theorem 4.0.8. G is residually finite if and only if G has the prop-
erty that for each of its cyclic groups there is a virtual extension of
at least one of the maps onto a nontrivial (cyclic) group.

Proof. If G has the stated extension property, then given a non-
identity g ∈ G we can extend some homomorphism of 〈g〉 −→ Z/k
to V −→ Z/k, where V has finite index in G. Then the kernel of
this map has finite index in G and excludes g so that G is residually
finite. Conversely, suppose that G is residually finite, and let some
nonidentity g ∈ G be given. Choose some normal subgroup of finite
index in G, N say, which excludes g.

Then the map

N.〈g〉 −→ N.〈g〉/N ∼= 〈g〉/〈gk〉

for some k. This extends the map 〈g〉 → Z/k, this map being non-
trivial by choice of N .
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Another nice application of Theorem 4.0.7 is the following.

Theorem 4.0.9. SL(n,Z) is not subgroup separable for all n ≥ 3.

Proof: Assume to the contrary that SL(n,Z) is subgroup separable.
Then since SL(n,Z) contains free subgroups of all possible ranks,
given an finite group G, Theorem 4.0.7 constructs a finite index sub-
group ΓG of SL(n,Z) and an onto homomorphism θ : ΓG → G.
However, SL(n,Z) for n ≥ 3 has the Congruence Subgroup Property;
ie every subgroup Γ of finite index in SL(n,Z) contains the kernel of
some reduction homomorphism;

SL(n,Z) → SL(n,Z/mZ),

for m ∈ Z, m ≥ 2. Thus kerθ contains a group of the form Γ(m)
for some m ≥ 2. It follows that G is a quotient of a subgroup of
SL(n,Z/mZ). However, as we discuss below, this is impossible for
certain groups G. For example we can choose G = A� for � very large,
and we obtain a contradiction.

To establish the existence of the groups G we use the following
lemma (see for example [20] Window 2).

Lemma 4.0.10. Let p be a prime, let SL(n, p) denote the finite group
SL(n,Z/pZ). For fixed n, if A� is a quotient of a subgroup of SL(n, p),
then n ≥ 2�−6

3 .

Thus for large enough � the alternating group A� is not a quotient
of a subgroup of SL(n, p). This lemma completes the proof since
by the structure theory of the finite groups SL(n,Z/mZ), given the
prime factorization m = pm1

1 pm2
2 . . . pmr

r it can be shown (essentially
the Chinese Remainder Theorem) that:

SL(n,Z/mZ) ∼=
∏

SL(n,Z/pmi

i Z).

Furthermore, the homomorphism SL(n,Z/pmi

i Z) → SL(n, p) has ker-
nel a finite p-group. Putting these statements together it follows that
if G = A� as above, so that in particular A� is simple, elementary
finite group theory shows that A� is necessarily a quotient of a sub-
group of SL(n, p) which is false by Lemma 4.0.10. ��



“25˙coloquio˙i
2005/5/16
page 39

�

�

�

�

�

�

�

�

[SEC. 4.1: 39

4.1

An important generalization of the extension property is the follow-
ing:

Definition 4.1.1. Let G be a group and H a subgroup. Then G
virtually retracts to H if there is a finite index subgroup V of G with

• H ≤ V

• There is a homomorphism θ : V −→ H which is the identity
when restricted to H.

The finite index subgroup V will be called a retractor. One should
regard a virtual retraction as an extension of the identity homomor-
phism H −→ H , to some finite index subgroup V of G and clearly,
given any such retraction, we can extend any homomorphism H → A
over the finite index subgroup V . While retractions are presumably
somewhat rare, one can still ask for their existence in more restricted
circumstances, for example, we might require that H be a finite sub-
group, or an infinite cyclic subgroup or a geometrically finite (or
quasi-convex) subgroup in some more geometric setting. The most
important incarnation of this comes from the following conjecture:

Conjecture 4.1.2. Suppose that G is the fundamental group of a
closed hyperbolic 3-manifold. Then G virtually retracts to any of its
cyclic subgroups

A group that satisfies this conjecture is said to virtually retract
over its cyclic subgroups.

We note that although this question is significantly stronger than the
traditional virtual Betti number conjecture, phrased in these terms
it places the question closer in spirit to questions about extensions
of cyclic groups as in the notion of residual finiteness. We also note
that it neither implies, nor is implied by LERF. For example if M
is a closed 3-manifold that is modeled on the SOL geometry, then
π1(M) is LERF, but it does not virtually retract over all of its cyclic
subgroups. To see this, since M admits a SOL geometry, it has a
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finite sheeted cover M1 that is a torus bundle over the circle (recall
§2.4, where in this case the surface is a torus), and it is easy to see
that π1(M1) does not virtually retract onto infinite cyclic groups in
the fiber group.

On the other hand, an examination of the proof of the generalized
Scott’s theorem given §4.1 shows:

Theorem 4.1.3. Suppose that G is a finitely generated group which
virtually embeds into an all right hyperbolic Coxeter subgroup of Isom(Hn).

Then G virtually retracts to its geometrically finite subgroups.

As with the subgroup separability property, the property of vir-
tually retracting over Z is well behaved for subgroups. That is to say,
if G virtually retracts over Z and K ≤ G, then K virtually retracts
over Z. This is easily seen: If Z < K is given and V a subgroup of
finite index in G which is a retractor for this Z, then V ∩ K is a
retractor for Z in K.

For finite supergroups there is also a similar result:

Theorem 4.1.4. Suppose that G is a group and K a subgroup of G
of finite index.

Then if K virtually retracts over Z, so does G.

Proof: We begin by noting that from the argument above, we may
assume that K is normal in G. Given a 〈g〉 ∼= Z in G, choose a
retraction r : A −→ 〈g〉 ∩ K, where A has finite index in K. By the
normality of K, 〈g〉 acts by conjugacy on A while stabilizing 〈g〉∩K,
so that we may intersect all these conjugates and restrict the original
retraction, and we may suppose that A is normalised by 〈g〉.

Choose a faithful linear representation ρ : 〈g〉 ∩ K → GL(V ), for
some finite dimensional vector space V . By composition with the
retraction, we get a (non-faithful) linear representation A → GL(V ).
Note that A.〈g〉/A ∼= 〈g〉/(〈g〉 ∩ A) is finite, so that we may induce
upwards to get a representation ρ∗ : A.〈g〉 → GL(V ′).

Since A is normal in A.〈g〉, the restriction of the induced represen-
tation ρ∗ down to A gives [A.〈g〉 : A] copies of ρ which is therefore a
faithful representation of 〈g〉∩K. It follows that when ρ∗ is restricted
to 〈g〉, it is faithful on a subgroup of finite index, namely 〈g〉 ∩ K.
This forces kerρ∗ to be finite and hence trivial, since Z is torsion free.
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We have already mentioned the connection with the classical virtual
Betti number problem. In fact we have more:

Theorem 4.1.5. Suppose that M is a hyperbolic n-manifold for
which π1(M) virtually retracts over its cyclic subgroups.

Then M has infinite virtual Betti number.

Proof: Suppose that the first Betti number of M is k and let γ
be an element lying in the kernel of the map π1(M) → H1(M). Let
q : M̃ → M be a finite sheeted covering in which the lift of (some
power of) γ becomes an element of infinite order in H1(M̃).

By considering the transfer map, we see that with rational coeffi-
cients H1(M̃) ∼= H1(M) ⊕ ker(q∗) and the element γr lies in ker(q∗).
It follows that H1(M̃) has rank at least k + 1. ��

Remark: Thus virtually retracting over cyclic subgroups proves in-
finite Betti number in a way which seems more natural than the tra-
ditional approach of finding a surjection to a nonabelian free group.
It is also rather easy to show that this condition is somewhat more
robust than subgroup separability. For example, if A and B virtually
retract over their cyclic subgroups, so does A × B.

4.2

We now discuss two classes of group where virtually retracting over
cyclic subgroups can be established without using the full power of
LERF.

Case 1: The Bianchi groups: Although the Bianchi groups are
known to be LERF by Theorem 3.8.1, and the method of proof shows
that the Bianchi groups will virtually retract to all geometrically
finite subgroups, we can give a proof of virtual retraction to infinite
cyclic subgroups. Because our main interests are in the topology of
3-manifolds, we will work with torsion-free subgroups of finite index
in the Bianchi groups to avoid some technicalities.

Theorem 4.2.1. Let Γ < PSL(2, Od) be a torsion-free subgroup of
finite index and γ ∈ Γ be a non-trivial element. Then Γ virtually
retracts onto < γ >.
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Proof: We will assume that γ is hyperbolic (the case of parabolic is
similar). Let Aγ denote the axis of γ (recall §2.2). The theorem will
follow from the next claim.

Claim: There exists a hyperbolic plane H ⊂ H3 such that:
(i) Aγ ∩H in one point.
(ii) Γ(H) = stab(H; Γ) acts with finite covolume on H.

Assuming the claim we proceed to complete the proof. By Lemma
3.2.3 (in the finite volume setting), Γ(H) is separable in Γ. Further-
more by passage to a subgroup of index 2 (if needed) we can assume
that there is a Γ1 < Γ of finite index, and

Σ(H) = H/(Γ1 ∩ Γ(H)) ↪→ H3/Γ1

embeds as a non-separating orientable surface (recall Theorem 3.2.2).
By assumption Aγ ∩ H and so this implies that the projection of
Aγ to M1 = H3/Γ1 meets Σ(H). Now the geometric version of
separability can be used to find a further finite sheeted covering for
which intersection pairing with Σ(H) defines a retraction on some
power of γ. The proof is completed by the next lemma.

Lemma 4.2.2. Suppose that G is a group which virtually retracts
over 〈γr〉. Then G virtually retracts over 〈γ〉.

Proof. Suppose that π : K → Z is a retraction over 〈γr〉, where
〈γr〉 < K and K has finite index in G.

The element γ acts by conjugation on K, stabilising 〈γr〉, so re-
placing K by all its γ conjugates, we may assume that K is normalised
by γ. Set K+ =< K, γ >= K · 〈γ〉.

Then K+ has finite index in G. Moreover,

K+/K ∼= 〈γ〉/〈γr〉, so that [K+ : K] < ∞.

Choose some one dimensional faithful representation ρ : Z → C
and induce the composition ρ◦π up to K+ to obtain a representation
ρ+ : K+ → V for some complex vector space V .

Since K is normal in K+, the restriction of ρ+ down to K gives
a direct sum of [K+ : K] copies of the original representation, in
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particular, ρ+ is faithful on 〈γr〉 and hence faithful on 〈γ〉. Restricting
ρ+ to ρ−1

+ (ρ+(〈γ〉) gives the required retraction. ��

The proof of the claim is completed as follows. Firstly, part (ii) of
the claim follows from the discussion in §4.5. To prove part (i) of the
claim, it is easy to see using the density of Q(

√
−d) in C that we

can construct a circle C that encloses one of the fixed points β of γ
and excludes the other and is centered at z0 = u0/v0 (u0, v0 ∈ Od)
with radius a small rational number q. Such a circle has an equation
of the form |z − u0

v0
|2 = q2. Expanding, clearing denominators and

rearranging puts this equation in the form of Lemma 3.5.1. ��

Case 2: Coxeter groups: Scott’s theorem and the proof of Theorem
3.8.1 highlights the importance of groups generated by reflections in
the faces of all right polyhedra. We now discuss Coxeter groups more
generally in the context of virtual retractions to infinite cyclic groups.

We first recall some basic statements about Coxeter groups, see
[16] for details.

Suppose that W is a group and S is a set of generators all of order
2. Then (W, S) is a Coxeter system if W admits a presentation:

< S | (s · t)m(s,t) = 1 >

where m(s, t) is the order of s · t and there is one relation for each
pair s, t with m(s, t) < ∞.

We refer to W as a Coxeter group. The Coxeter diagram of this
presentation consists of a vertex for each element of S together with
an edge connecting distinct vertices s, t whenever m(s, t) �= 2 and
the edge is labelled by m(s, t). It is also standard practice in the
case when m(s, t) = 3 to leave the edge unlabelled, and we follow
that convention here. Since the generators have order 2, this means
that if two vertices are not connected by an edge then the generators
corresponding to the vertices commute. Thus, if the diagram is not
connected, the Coxeter group is the direct sum of the subgroups
given by the connected components. A Coxeter group (W, S) is called
reducible if its diagram is not connected. Otherwise the Coxeter group
is irreducible, in our context we may as well restrict to irreducible
Coxeter groups. We shall sketch a proof of (see below for definitions):
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Theorem 4.2.3. Suppose that W is a Coxeter group with all its two
generator special subgroups finite. Let γ ∈ W be an element acting
hyperbolically on the Coxeter complex. Then W virtually retracts over
< γ >.

This implies:

Corollary 4.2.4. A Coxeter group is either virtually abelian or has
infinite virtual Betti number.

Proof: If a Coxeter group isn’t virtually abelian, we can add relations
of the form (s.t)k = 1 to find an infinite non-virtually abelian Coxeter
group with all two generator special subgroups finite.

We now form the Davis version of the Coxeter complex. We briefly
recall the construction. Firstly by a special subgroup of W we mean
a subgroup < S′ > of W where S′ ⊂ S. The finite special subgroups
form a poset under inclusion and the Davis complex Σ consists of
left cosets of all finite special subgroups where inclusion of faces is
defined by reverse inclusion of cosets. In particular, if n = |S|, the
(n − 1)-simplices correspond to the elements of W and the dual 1-
skeleton of Σ is a modified Cayley graph of W with generating set S.
(The modification consists of identifying the edge labelled s with the
edge labelled s−1 for each generator s ∈ S.) The action of W on the
left cosets by left multiplication induces a simplicial action of W on
Σ. A top dimensional simplex, C, of Σ is called a chamber. Observe
that the only element of W which maps some chamber to itself is
the identity (see [10], Chapter III, §4 Lemma 6). In his thesis, it was
shown by Moussong that the cells of this complex can be metrized
as Euclidean polyhedra so that in the induced piecewise Euclidean
metric, Σ is a CAT (0) space.

Following [10], (Chapter III, §4), we see that given any pair of
adjacent chambers C and C′, there is a unique automorphism s of
the Coxeter complex of order 2 which exchanges C and C′ while
fixing C ∩ C′, and this gives rise to a wall (denoted by Hs) in the
Coxeter complex, namely Hs = Fix(s). Conversely, any reflection in
W gives rise to a unique wall. Note that walls separate the Coxeter
complex (See [10], for example, Chapter III §3 Corollary 3) and are
totally geodesic in the CAT (0) metric, since they are the fixed set of
an orientation reversing isometry.
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Fix the following notation: let g ∈ W , then CW (g) denotes the
centralizer of g in W .

Lemma 4.2.5. stab(Hs) = CW (s).

Proof. Let γ be an element of stab(Hs). Then γ(C ∩C′) is some
codimension-1 face in Hs and is therefore fixed by s. It follows that
s and γ−1 · s · γ are both automorphisms of order two fixing C ∩ C′

pointwise and exchanging γC with γC′. Thus γ−1 · s · γ · s−1 maps C
to itself and therefore is the identity element of W. (See [10], Chapter
III, §4 Lemma 6)

Conversely, if γ ∈ CW (s), then it follows that s(γHs) = γHs. As
s fixes a unique wall, we deduce that γHs = Hs, and γ ∈ stab(Hs)
as was required. ��

The key use of this lemma is the following result of [19]. For the
convenience of the reader we include a proof:

Theorem 4.2.6. ([19]) Let α : G → G be an automorphism of a
residually finite group G. Then Fix(α) is separable in G.

Proof. Choose an element γ not lying in Fix(α). This means
that the element γ−1 · α(γ) is not the identity element, so that there
is a homomorphism φ : G → F onto a finite group F , so that φ(γ−1 ·
α(γ)) is not the identity element. Define a homomorphism

Φ : G −→ F × F

by Φ(g) = (φ(g), φ(α(g)). Note that Φ maps Fix(α) into the diagonal
subgroup of F ×F , however by construction, Φ(γ) = (φ(γ), φ(α(γ)))
does not lie in the diagonal subgroup, so that Φ−1{ (f, f) | f ∈ F}
is the required subgroup of finite index. ��

It is a theorem of Tits that Coxeter groups are linear, it follows that
they are residually finite and we deduce

Corollary 4.2.7. In the notation above stabHs is a separable sub-
group of W .

Fix some element g ∈ W which which acts hyperbolically (See [9]
p. 229); in particular, there is a geodesic line γ in Σ along which g
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acts as translation. As in [9] Theorem 6.8, the translation distance
along γ is the minimal distance points in Σ are moved. The key claim
is now:

Lemma 4.2.8. Then there is a wall Xs so that one end of γ lies on
one side of Xs, the other end lies on the other.

Proof: Choose some axis γ for the element g; this must meet some
wall Xs transversely. The wall is totally geodesic so γ cannot meet
it more than once; hence the ends of γ lie on either side of Xs. ��

Of course, this implies in particular that Xs∩γ is nonempty. We can
use this result to prove the main result.

Consider the subgroup W+, of index 2 in W which is the kernel of
the map W → Z2 given by sending each generator in S to 1 ∈ Z/2;
the action of W+ on walls is now orientation preserving. Moreover,
W is linear so there is a torsion free subgroup of finite index inside
W+ which we denote by WT . Let stab(Xs) be the stabilizer of Xs

inside the group WT .
Choose some point p− so far towards the −∞ end of γ, that

the −∞ end of γ never returns to Xs. Now choose some very large
power gt ∈ WT so that gt(p−) = p+ lies a similarly long way towards
the +∞ end of γ. In particular, p− and p+ are on either side of
Xs. Consider π : X −→ X/stab(Xs); this contains the compact
subcomplex formed by Xs/stab(Xs) together with the image of the
subarc of γ between p− and p+. Denote this subcomplex by C.

Since stab(Xs) acts by isometries which do not exchange the sides,
the points π(p−) and π(p+) lie on opposite sides of Xs/stab(Xs).
Moreover, the ends of the projection of the geodesic γ never return
to Xs/stab(Xs) past the points π(p−) and π(p+) In particular the
arc meets Xs/stab(Xs) an odd number of times.

The subgroup stab(Xs) is separable inside WT so by REF, there is
a subgroup stab(Xs) ≤ K of finite index in WT , so that the projection
of C in the covering X/stab(Xs) −→ X/K is an embedding of C.

Since C is embedded in X/K, and the ends of γ in the covering
X/stab(Xs) never return to Xs/stab(Xs) past the chosen points, so
that the lift of g ⊂ X/K running through the arc portion of C must
meet the surface portion Xs/stab(Xs) in an odd number of points.
It follows that taking intersection number with Xs/stab(Xs) gives
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the relevant element of H1(X/K;Z) which retracts some power of g.
The theorem follows from Theorem 4.2.2.
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