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1 Introduction

Let Bn denote the n-strand braid group. We recall that this admits a represen-
tation

�n : Bn → GLn−1(Z[t; t−1])

the (reduced) Burau representation [1]. Although open for a long time, it
is now known that this representation is not faithful for n= 6, (See [8, 5])
and it is an old result that it is faithful for n = 3. (See [7]) Despite these
counterexamples, there is no understanding of the nature of the image groups
in the nonfaithful cases nor any kind of intrinsic characterisation of braids
which lie in the kernel. The two cases n = 4; 5 remain open. Resolution of the
case n = 4 is an important open problem, �rstly for the implications for the
automorphism group of a free group of rank 2 and secondly as a test case
for the faithfulness of the Jones representation, [4]. In the case n = 4 the only
summand which could be faithful is the Burau summand. There is a map � :
GLn−1(Z[t; t−1])→ GLn−1(Z2[t; t−1]) given by reducing coe�cients modulo
two and thus a simpli�ed representation �n ⊗ Z2. Using the ideas contained
in [8] or [5], it is not di�cult to show that this representation continues to
be faithful in the case n = 3, and it was observed in [5] that it is not faithful
for n = 5. The main result of this paper is that we shall give a complete
description of the image group in the case n = 4; this appears to be the �rst
explicit description of the image group for any in�nite linear representation of
a braid group with n= 4.
An especially intriguing aspect is the picture which emerges of the com-

plex which carries the group which contains something rather analogous to an
“geometrically in�nite” end in the language of hyperbolic geometry [9]. It is
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the nature of this end which seems to be what foils all attempts to prove any
kinds of faithfulness results by multiplying matrices.
We now give an outline of the proof, deferring careful de�nitions. The

representation above can be considered to have its image in the general linear
group of the quotient �eld; this is a �eld with a discrete rank one valuation,
and standard methods [2] give an action on a Euclidean building which we
denote �. By restriction, we obtain a representation

� : B4 → Aut(�)

It was �rst observed by Squier [10], that suitably interpreted, the Burau repre-
sentation can be regarded as sesquilinear for a certain form J: This turns out to
have the powerful consequence in this context that we can identify precisely
the stabiliser of the trivial lattice and consequently that all vertex stabilisers
for this action are �nite. It’s worth noting that the restriction to a �eld of
characteristic two has not yet been used, any �eld of nonzero characteristic
su�ces up to this point. If however, we now assume that the �eld is Z2(t)
we can use this information to compute exactly the stabiliser of every vertex
in the building and from this it turns out that we can construct explicitly a
certain complex B and show:

Theorem 1.1 �=im(�) ∼= B and B is contractible.
In particular, the building is contractible, so that in the language of com-

plexes of groups (see Appendix) we will have:

Theorem 1.2 im(�) ∼= (B;G�;  a; ga; b)
We will see that the subgroup of im(�) stabilizing a vertex is �nite, al-

though arbitrarily large, and so it follows from arguments using group coho-
mology that:

Corollary 1.3 The reduced homology Ĥ∗(im(�);Q) = 0:

Many approaches to the faithfulness question of the Burau representation
involve a reduction to consideration of certain subgroup; these approaches usu-
ally involve showing that a certain pair of matrices generate a free group. An
especially interesting feature of our method is the nature of the complex B,
which highlights perhaps why such methods always seem to fail. The com-
plex is the union of two pieces, one of which is a tube which metrically has
bounded diameter out towards the end and as such seems to resemble a geo-
metrically in�nite end in the language of hyperbolic geometry. Most of the
methods currently available for showing that matrix groups are free, amount to
�nding a quasi-isometry of the graph of an abstract free group with the group
graph of the matrix group and this is exactly what is forbidden in a geomet-
rically in�nite end. A sharper version of this statement is that as a result of
its Euclidean structure, the building carries a canonical metric which makes it
into a CAT (0) space, and we have shown that the convex hull of the orbit of
any point is the whole building. Although the clearest picture is provided by
the complex itself, we can also use the information to give a presentation:
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Theorem 1.4 The image group �4 ⊗ Z2(B4) is presented as:
Generators: x; y
Relations:
1. x4 = z
2. y3 = z
3. [x2; yxy] = 1
4. [x; (yxy)i]4 = 1 for all i = 0
5. The group generated by 〈(yxy)ix(yxy)−i | i = 0〉 is nilpotent of class 3
Here z denotes a generator of the centre of B4.

An interesting feature here is that all the nonfaithfulness is determined by the
vertex stabilisers.
Moreover, it follows from our method of proof that:

Theorem 1.5 The subgroup of GL3(Z2[t; t−1]) consisting of isometries of the
form J is precisely the image of �4 ⊗ Z2.

Of course, it is immediate from 1.4 that the representation �4 ⊗ Z2 is not
faithful; this was already known to the authors previous to this work. Although
this aspect is not the thrust of this paper, we point out some corollaries. The
�rst is that there are knots whose Jones polynomials are identically 1 when
reduced modulo 2. Vaughan Jones was kind enough to furnish us with some
13-crossing examples in the knot tables. However, as observed in [4], the
existence of such knots does not su�ce to prove that �4 ⊗ Z2 is non-faithful.
Application of a condition which is equivalent yields:

Corollary 1.6 There is a four-braid whose Jones polynomial is the same as
that of the four component unlink when coe�cients are reduced modulo 2.

The smallest such braid has the order of 160 crossings.

2 Preliminaries

We have an inclusion Z2[t; t−1]→ Z2(t) and since the target �eld admits a
discrete rank 1 valuation, this gives an action of the group Bn on the Euclidean
building �(n− 1) associated to the group SLn−1(Z2(t)):

We recall how this building and action are de�ned, restricting our attention
to the case n = 4, since this is the only case in which we shall subsequently
be interested. This will serve the additional purpose of establishing notation.
Denoting the nonzero elements of Z2(t) by Z2(t)∗, let � : Z2(t)∗ → Z be a
discrete rank one valuation on Z2(t) given by tn → −n. Standard properties
imply that

O = {x ∈ Z2(t) | �(x)= 0}
is a subring of Z2(t), the valuation ring associated to �. This is a local ring and
the unique maximal ideal is easily seen to be M = {x ∈ Z2(t) | �(x)¿ 0}, a
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principal ideal. Choose some generator � for this ideal. This element is called
a uniformizing parameter and by construction we have that �(�) = 1: Since
M is maximal, the quotient k = Z2(t)=M is a �eld, the residue class �eld.
One sees easily that in this case, the residue class �eld is Z2.
Now let V be the vector space Z2(t)3. By a lattice in V we shall mean

an O-submodule, L, of the form L = Ox1 ⊕ Ox2 ⊕ Ox3 where {x1; x2; x3} is
some basis for V . Thus the columns of a non-singular 3× 3 matrix with en-
tries in Z2(t) de�ne a lattice. The standard lattice is the one corresponding
to the identity matrix. We de�ne two lattices L and L′ to be equivalent, if
for some � ∈ Z2(t)∗ we have L = �L′. We denote equivalence class by [L].
The building � is de�ned as a ag complex in the following way. The points
are equivalence classes of lattices, and [L0]; : : : ; [Lk ] span a k-simplex (in our
situation k = 0; 1; 2 are the only possibilities) if and only if one can �nd repre-
sentatives so that �L0 ⊂ L1 ⊂ · · · ⊂ Lk ⊂ L0. All two-simplices are of the form
{[x1; x2; x3]; [x1; x2; �x3]; [x1; �x2; �x3]}; this is usually referred to as a chamber
and denoted by C. The set of chambers de�ned by all lattices of the form
[�ax1; �bx2; �cx3] where a; b; c ∈ Z is called the apartment associated to the
basis {x1; x2; x3}. We shall denote such an apartment by �[x1; x2; x3] or just by
� if the context is clear. Clearly the group SL3(Z2(t)) acts on lattices and one
sees easily that incidence is preserved, so that the group acts simplicially on
�. It is shown in [2] that this building is a so-called Euclidean building, in
particular, it is contractible and can be equipped with a metric which makes
it into a CAT (0) space and for which SL3(Z2(t)) acts as a group of isome-
tries. The metric is such that each 2 dimensional simplex is isometric to a unit
Euclidean equilateral triangle. Every triangle lies in in�nitely many apartments
each of which is isometric to the Euclidean plane.
To each lattice is associated a type (in our case {0; 1; 2}), de�ned as

follows: If we consider the action of the full group GL3(Z2(t)) this acts transi-
tively on lattices, so given a lattice L, we choose some g ∈ GL3(Z2(t)) throw-
ing the standard lattice to L. It is easily seen that if we reduce �(det(g)) modulo
3, this is well de�ned on the class of the lattice L; by de�nition this is the
type of [L]. Both GL3(Z2(t)) and SL3(Z2(t)) act on the building, the main
di�erence being that the group SL3(Z2(t)) is type-preserving. The stabilizer of
the standard lattice is GL3(O). A fact we shall make use of several times is:

Proposition 2.1 GL3(Z2(t)) acts without edge inversions on �.

Proof. We note that an edge cannot be identi�ed with itself with orientation
reversed; for if we consider the vertex which lies in the triangle containing the
edge but not on the edge, this type is preserved by any such map, hence all
types are preserved and the edge could not have been reversed.

The link of the standard lattice is the ag geometry for V = Z32 : it is
a bipartite graph whose 14 vertices are the 7 one-dimensional and 7 two-
dimensional subspaces of V . This graph is shown in Fig. 0 (with certain labels).
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Fig. 0
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In our case, the braid group maps

B4 → GL3(Z2(t))→ Aut(�)

We shall denote this composition by �; since central matrices acts trivially on
the building, this factors through B4 → B4=Z where Z denotes the centre of
B4. We shall use:

Lemma 2.2 Denoting the centre of B4 by Z; we have:

B4=Z ∼= 〈x; y | x4 = y3 = 1 [x2; yxy] = 1〉
where x = �1�2�3 and y = �1�2�3�1:

This is somewhat non-standard, albeit elementary, so rather than include it
at this point in the exposition, we relegate it to an appendix. The matrices for
these generators are:

�4(x) =

( 0 0 t
−t 0 t
0 −t t

)
�4(y) =

( 0 0 −t
−t2 t −t
0 t −t

)

3 Constructing the complex

In this section, we construct the complex B which will be the basis for the
complex of groups description given in Sect. 4. We begin with an informal
description of the whole construction before dealing with the details.
The complex B will consist of two parts. The �rst, denoted X , will be

obtained by quotienting out the cone on the link of the identity lattice by im(�).
The complex X has a single free edge which is a circle. The second part of the
complex is topologically a half open annulus S1 × [0;∞) and it is glued onto
this circle by a homeomorphism along its boundary component. Both X and this
tube are constructed by making all obvious identi�cations forced by the image
group and then we prove that no further identi�cations are possible. The main
theorem of this section is the proof that �=im(�) ∼= B. As part of this process,
we are able to identify all stabilisers exactly and thus form the complex of
groups.
Before embarking on the construction of X , we prove a simple lemma

which plays a central role in all that follows. This lemma depends on the fact
that the Burau representation can be considered as unitary for a certain form
(the intersection pairing on the in�nite cyclic covering of the punctured disc).
This is due in essence to Squier. Since our notation is somewhat di�erent from
his, we establish this �rst.
Clearly we have an involution of the ring Z[t; t−1] de�ned by mapping ∗ :

t → t−1 and this gives an involution on GLk(Z[t; t−1]), also denoted ∗, de�ned
by applying ∗ to all the entries of the matrix in question and transposing. Then
Squier shows:
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Lemma 3.1 [10] The four strand Burau representation is sesquilinear; i.e.
A∗ · J · A = J for A ∈ im(�4) for the form

J =

(−(s+ s−1) s−1 0
s −(s+ s−1) s−1

0 s −(s+ s−1)

)

where s2 = t.

We remark that Squier’s form appears a little di�erent in [10], but this is
because in that paper, a preliminary conjugacy is applied to the Burau repre-
sentation. The form of Lemma 3.1 applies to the most usual description of the
Burau representation.

Lemma 3.2 Suppose that A lies in im(�) and stabilises the identity vertex of
�. Then there is � in Z2(t) such that the entries of � · A are all constants.
Proof. If an element A of GL3(Z2[t; t−1]) stabilises any vertex of �, then
it must be type preserving and so it has determinant ±t3n for some n. In
particular it can be adjusted by homothety (i.e. replaced by ±t−nA) so that
it lies in SL3(Z2[t; t−1]). Since by hypothesis, A stabilises the identity vertex
of �, it follows that A lies inside SL3(O), that is to say that all its entries
value = 0. Notice that if in addition, the original element A lies in the image
of the Burau representation, then its entries are all Laurent polynomials and
it follows that the entries of the homothety adjusted matrix continue to be
Laurent polynomials.
The fact that A lies in the image of the Burau representation means that we

also have A∗ · J · A = J and so A∗ · (J=s) · A = J=s. One now checks that J=s
is O-invertible and therefore we see from the description given in Lemma 3.1
that J=s ∈ GL3(O). (We have temporarily extended the valuation so that it is
de�ned on Z[s; s−1] by setting �(s) = −1=2). But this implies that A∗ ∈ SL3(O):
However, consideration of the action of the involution shows that the only
matrices with Laurent polynomial entries which have both A and A∗ lying in
SL3(O) are the constant matrices.

Since Lemma 3.2 shows that any matrix in Q ∈ stab(I) ∩ im(�) has no t
dependence, it is in particular unchanged by the composition map

� = p2 ◦ �4 ⊗ Z2 : B4 → GL3(Z2[t; t−1])→ GL3(Z2)

where the map p2 is given by the specialisation t = 1. This is a representation
of �4, the symmetric group on four letters, so that there are twenty four possi-
bilities for the matrix Q. On the other hand, any such matrix lies in the image
of �4 ⊗ Z2 (i.e. before setting t = 1) so that Q must satisfy Q∗ · J ·Q = J
where J continues to involve s. Using this observation a computation shows:

Lemma 3.3 The only matrices in im(�) which stabilise the identity vertex
are powers of the element �(x):
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Since much reference will be made to the vertex stabilisers which can arise
in im(�), we adopt the convention that unless the context makes it clear that
this is not the case, stab(q) will mean stab(q) ∩ im(�). In passing we note that
Lemma 3.3 has the following consequence:

Corollary 3.4 The group �(B4) acts on � with �nite vertex stabilisers.

Proof. Pick any vertex v ∈ � and consider stab(v). This acts on Link(v) which
contains �nitely many points, so a subgroup H of �nite index in stab(v) acts
trivially on this link, so that H 5 stab(w) for any w adjacent to v. There is a
�nite distance from v to I so repeating this process we see there is a subgroup
of �nite index in stab(v) which stabilises I , hence by Lemma 3.3 is a �nite
group.

Remark 3.5 In fact, characteristic 2 does not play a role in the argument so
far: If one puts t = 1 in the Burau representation, a computation reveals that
for any prime it is only the element x which preserves the form J . Since
vertex links are �nite for any prime, it follows that 3.4 continues to hold for
the action on any building �(p) coming from reduction modulo a prime.

3.1 Constructing X

With the notation established above one �nds that the orbit under im(�) of the
identity lattice I contains (at least) twelve points at distance 1 and so lying
as vertices in Link(I). Since this latter complex is the ag manifold coming
from the subspaces of W ∼= Z32 (See [2]) it contains 14 vertices. To establish
notation, we label twelve of these vertices by elements in the group:

{y; y2; xy; xy2; x2y; x2y2; x3y; x3y2; yxy; xyxy; (yxy)−1; x(yxy)−1}:

The two remaining vertices we denote simply by 13 and 14; we show below
that in fact these are not in the orbit of I . See Fig. 0. We include representative
lattices in the Appendix.
Our �rst task is to construct the complex X . To this end, we consider

star(I) and some identi�cations which are forced by the group. For example,
since x stabilises I , it acts on Link(I) and we compute from this description
that it acts as the permutation which is the product of two four-cycles and two
transpositions:

(y; xy; x2y; x3y)(y2; xy2; x2y2; x3y2)(yxy; xyxy)((yxy)−1; x(yxy)−1)

Referring to Fig. 0, we see that since x exchanges yxy with xyxy and 13 is
the unique vertex distance 1 from these two points it follows that x �xes 13
and similarly 14. In fact x as an element of GL3(Z2) is a rotation of order 4
and thus preserves a unique line and plane which are 13 and 14 respectively.
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The element y does not stabilise I , but it does give rise to further identi-
�cations, for example the triangle with vertices I; y; y2 is mapped to itself by
3-cycle, and the edge (y2; xy) is mapped to the edge (I; yxy):

The last and most interesting identi�cation arises as follows. The vertex
yxy is distance 1 from 13. Thus if we apply (yxy)−1 to the edge (yxy; 13) we
obtain an edge (I; (yxy)−1(13)), so that (yxy)−1(13) ∈ Link(I). The element
yxy acts on the building as an element of in�nite order, so that Lemma 3.4
prohibits 13 being �xed and one �nds that yxy(14) = 13. Taking account of all
such identi�cations, we obtain the complex X shown in Fig. 1(a). This consists
of four triangles glued with the identi�cations shown in that �gure, where the
triangle which is labelled 1 comes from the self identi�cation of the triangle
I; y; y2 discussed above.

Of course a fortiori when the whole group acts there could be further
identi�cations. We claim (See Theorem 3.7) that in fact this does not happen.
The proof of this requires:

Theorem 3.6 The vertices 13 and 14 do not lie in the orbit of the identity
lattice.

Proof of 3.6 Since yxy(14) = 13, if one of the vertices lies in the orbit, then
they both do. Suppose in search of a contradiction, that 13 lies in the orbit of
the image. From this it follows that every element of the link of I lies in the
orbit of I . Since the building is connected, it follows that every vertex in the
building lies in the orbit of I .
We have identi�ed stab(I) as 〈x〉 so that vertices 13 and 14 have the

property that they are �xed by all of stab(I) and moreover, they are the only
vertices in the link of I which are �xed by all of stab(I).
Accordingly, we de�ne a vertex p ∈ Link(q) to be an s-point for q if every

element in stab(q) also �xes p. The comments in the above paragraph show
that every point in the building has exactly two s-points in its link and that if
� is an element in im(�) then � carries the s-points of q to the s-points of
�(q).
We have already observed that yxy(14) = 13 and it follows that xyxy(14)

= x(13) = 13, so that 13 is an s-point for at least three points, namely I;
yxy and xyxy. Thus every vertex in � must be an s-point for at least three
points. Now any of the twelve group vertices is of the form g(I), so that the
stabiliser of such a point is g · stab(I) · g−1. In particular, Lemma 3.3 makes
it easy to check if the generator of stab(g) also stabilises I ; namely we need
only compute g · x · g−1 and see if it is one of four constant matrices. A
calculation reveals that this does not happen, so that I is an s-point for at
most two vertices, namely 13 and 14, which is the required contradiction.

It follows from the proof that � contains three kinds of vertex:
1. Vertices in the �(B4) orbit of I .
2. Vertices which do not lie in the �(B4) orbit of I but are distance 1 from
this orbit.

3. Vertices which are not of either of the above types.
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Clearly, this classi�cation is braid group invariant, and it follows from
Theorem 3.6 that Type 2 points exist. We refer to the points of Type 1 as
group points and continue to refer to the points of Type 2 as s-points. Our
analysis below will show that there are countably many orbits of points of the
third type and we shall exhibit explicitly one vertex in each orbit.

Theorem 3.7 The complex X has no further identi�cations in �=im(�).

Proof. First we observe that there can be no more vertex identi�cations. For
there are only two vertices in X , one is a group point and one is an s-point.
Thus it follows from the fact that the group acts simplicially and Theorem 3.6
that these points cannot be further identi�ed.
We now deal with the possibility of further identi�cation amongst the trian-

gles. Again, the invariance of s-points immediately implies that both triangles
3 and 4 have the property that they cannot be identi�ed with any other triangle,
nor can they admit any further self-identi�cation.
If there is some group element which carries triangle 1 to triangle 2, this in

particular implies that there is an element g in the group which maps triangle 2
to itself as a three cycle, since such an element exists for triangle 1. We claim
that this is impossible.
First note that there is a map B4=Z → Z3 given by mapping x to the identity.

The image is generated by y and the kernel is those elements in B4=Z which
preserve lattice type. It follows that (inverting g if necessary) that we have
g = w · y where w is an element which preserves lattice type. We refer the
reader to Fig. 1(a). Our �rst claim is that the element w · y cannot now be
an anti-clockwise rotation of triangle 2. For then the element y ·w · y[I ] =
y[y2] = [I ] stabilises the identity lattice and is in particular type preserving,
which it cannot be. Consider y−1 ·w · y; since w · y rotates clockwise, this
is type-preserving and a similar calculation shows that this element stabilises
the vertex y2. Thus y−1 ·w · y ∈ stab(y2) = y−1stab(I)y and so w ∈ stab(I).
Now Lemma 3.3 shows that g is of the form �(xk · y) for k = 0; : : : ; 3 which
is easily checked to be impossible.
We now deal with the case of further identi�cations amongst edges. We

have already shown that such identi�cations cannot arise from extra triangle
identi�cations, but we have to deal with the possibility of an element of the
image which causes an unexpected identi�cation of an edge of a triangle in
Lk(I) with a triangle in an adjacent link.
By virtue of its s-points, the edge (13, 14) cannot be identi�ed with any

other edge except itself and since there are no edge inversions, this edge can
have no further identi�cations.
If edge (yxy; 13) is to be identi�ed any other edge, it can only be the class

of (I; 13). However such a group element stabilises 13 since this is the only
s point, and thus the element is type preserving; a contradiction since the
other end of the edge forces yxy and I to be identi�ed and these have di�erent
type.
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Fig. 1(a)

Fig. 1(b)
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Finally, if edge (I; yxy) is identi�ed with edge (I; y2) this forces an iden-
ti�cation of triangle 3 with either triangle 1 or 2 which we have already
excluded.

3.2. The tube

We now begin to construct the tube which forms the rest of the quotient
complex. Again, for clarity, we summarize the procedure which builds up this
tube, deferring some of the steps in its justi�cation until later.
We note that the element x stabilises both 13 and 14. Moreover, we have

already observed that yxy(14) = 13 so that the element a = yxy · x · (yxy)−1
also stabilises 13.
One computes that the elements x and a both act on the link as elements

of order 2 and that their product has order 4, so that the image of the map
i0 : stab(13)→ Aut(Link(13)) contains a dihedral group D8 ∼= 〈x; a | x2 = a2 =
(a · x)4 = 1〉. We shall show below that this image is exactly this dihedral
group.
We now introduce the following notation. The link of the identity can be

described by �xing once and for all time, matrices M1; : : : ; M14 whose columns
de�ne the lattices at the relevant point in �. Such a choice is not canonical.
All our calculations will be done with respect to the set described in the
appendix to this paper. Then the link of 13 is graph isomorphic to the link of
the identity and we choose the identi�cation so that our numbering is given
by premultiplication by the matrix M13 associated to lattice 13; so that for
example, the vertex we shall identify with 1 in the link of 13 will be the
equivalence class of the lattice M13 ·M1. For convenience we shall denote this
lattice class by 13.1 or for brevity 1∗. A somewhat more general example
will de�ne the notation completely; if we now look in the link of our new
vertex 13.1 at the vertex labelled 7, this will be described by 13.1.7. Of course,
links overlap so a vertex may have many guises; for example, 13:2 = [I ] and
13:1 = [yxy].
We now compute that the permutation action of the generators is given as

follows:

x = (1∗; 3∗)(4∗; 9∗)(8∗; 11∗)(12∗; 13∗)

a = (2∗; 9∗)(3∗; 13∗)(4∗; 14∗)(5∗; 10∗)

From this we compute the quotient complex Link(13)=D8 is the shaded
hexagon in the chain of hexagons shown in Fig. 2. Notice that consideration
of the generators shows that the vertices 6∗ = 13:6 and 7∗ = 13:7 are �xed for
the entire action of i0(stab(13)) (this will be proved in 3.15). One �nds that
the element yxy acts as follows:

6∗ → 7∗ 10∗ → 13 13→ 8∗ 2∗ → 1∗

so that when we quotient out by the group im(�) we obtain an annulus, con-
sisting of four triangles, two of which already appear in the complex X ; we
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Fig. 2

identify these two triangles onto X . The new complex can be considered to
have been constructed from X by adding an annulus consisting of two trian-
gles. The annulus is added along the edge (13, 14) and this leaves a new free
edge coming from the edge (6∗; 7∗).
Since x and a both stabilise 6∗ and 7∗, we can compute the action of these

elements on Link(6∗) and Link(7∗). One �nds that a acts trivially on Link(7∗)
and that x acts trivially on Link(6∗). However, x continues to be an element of
order 2 when it acts on stab(7∗). Moreover, the above observations show that
the element a1 = yxy · a · (yxy)−1 lies in stab(7∗). If, for brevity, we denote
the vertex 13:7:k by k∗∗, then we may compute that the action of the elements
x and a1 is given by:

x = (1∗∗; 3∗∗)(4∗∗; 9∗∗)(8∗∗; 11∗∗)(12∗∗; 13∗∗)

a1 = (2∗∗; 9∗∗)(3∗∗; 13∗∗)(4∗∗; 14∗∗)(5∗∗; 10∗∗)

It is part of the power of our notation that in these coordinates, the permutations
induced on the link of 7∗ are the same as those induced on 13.
Further, it turns out that the element yxy carries 6∗∗ to 7∗∗. Thus we

obtain another annulus; one boundary component of this annulus coming from
the (6∗; 7∗) edge of the hexagon, the other from the (6∗∗; 7∗∗) edge. It will
turn out that this picture repeats itself and we add on a series of annuli coming
from the links of the 13:7:7: : : : :7 = 7(n), giving rise to an in�nite tube. The
chain of hexagons so generated and a typical such hexagon are illustrated in
Figs. 2 and 3 respectively.
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We now give a more complete discussion of the construction of the tube.
As above, we de�ne a sequence of points 13:7:7: : : : :7: k = k(n).

Lemma 3.8 For every n, yxy(6(n)) = 7(n)

Proof. Unravelling the de�nitions, we see that the lemma requires that y · x ·
y ·M13 ·Mn−1

7 ·M6 = M13 ·Mn
7 · , where  ∈ SL3(O). Equivalently, that M−n

7 ·
M−1
13 · y · x · y ·M13 ·Mn−1

7 ·M6 lies in SL3(O). This is a routine cal-
culation.

We now de�ne a building map � = M13 ·M7 ·M−1
13 ; by construction, �(k

(n))
= k(n+1) for every k ∈ {1; : : : ; 14}. We will see later that these vertices are in
distinct orbits under im(�) so that the element � does not lie in im(�). Using
the map � we can identify the actions of elements in successive stab(7(n)).
The calculations outlined on Link(13) give a pair of elements x and a
lying in stab(13). For k = 0, we de�ne ak = (yxy) k+1 · x · (yxy)−k−1, with
the convention that a0 = a. We claim:

Lemma 3.9 The following diagram commutes:

Link(7(n))
�−−−−−→ Link(7(n+1))y x

y x

Link(7(n))
�−−−−−→ Link(7(n+1))

Lemma 3.10 The following diagram commutes:

Link(7(n))
�−−−−−→ Link(7(n+1))y an

y an+1

Link(7(n))
�−−−−−→ Link(7(n+1))

Lemma 3.11 The map an : Link(7(m))→ Link(7(m)) is the identity map for
m¿n.

These are all routine calculations in linear algebra, made somewhat simpler
by the fact that coe�cients are in the �eld Z2. In particular we have as a
consequence:

Corollary 3.12 For every n, the image of the map in : stab(7(n))→
Aut(Link(7(n))) contains a subgroup isomorphic to D8 ∼= 〈x; an | x2 = a2n =
(an · x)4 = 1〉.

Given these ingredients we build up the second part of our quotient com-
plex, namely an in�nite tube. This is built up from the succession of annuli
which come from quotienting out the hexagon Link(7(n))=D8 by the map yxy.
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Each such annulus consists of four triangles, two of which have occurred in the
previous annulus, and the net e�ect is gluing on an annulus made of two trian-
gles, one of whose boundary components comes from the edge (6(n−1); 7(n−1))
and the other from the edge (6(n); 7(n)). We denote this tube by T . We now
form a complex B by glueing the tube T to the complex X along the circle
coming from the edge (13, 14). The chain of hexagons used in this construc-
tion was already depicted in Fig. 2; for a picture of a fundamental domain
of the tube, the reader is referred ahead to Fig. 6. Our main theorem in this
section is:

Theorem 3.13 The quotient space �=im(�) is isomorphic to B.

The proof of this result takes several steps. The �rst is to show that
Lemma 3.12 describes the whole image of the maps in. First we need the
following (presumably well known) lemma:

Lemma 3.14 Any subgroup G of GL3(Z2) of order 24 is either the stabiliser
of a plane or the stabiliser of a line.
If it is a line which is stabilized then there are exactly two orbits of lines,

one containing one line and the other containing 6 lines.
If it is a plane which is stabilized then a similar statement holds.

Proof. The vector space W ∼= Z32 on which GL3(Z2) acts has seven lines and
seven planes; since the group acts transitively on lines, it follows that the
stabiliser of any line has index 7 and therefore order 24. It follows that if G
stabilises any line it would be a subgroup of, and hence equal to, some such
stabiliser.
We may suppose then, that no orbit for G contains only one element. Thus

the possibilities for the sizes of orbits for G are {2; 2; 3} or {3; 4}.
We claim the �rst case is impossible; for by passing to a subgroup of index

at most four, we obtain a subgroup of G which acts trivially on four distinct
vectors. However any four nonzero vectors in W contain a basis and this is a
contradiction.
Thus G must have orbit type {3; 4}. The action of G on the second orbit

gives a representation of G to the symmetric group on 4 letters which must be
faithful; since exactly as above the orbit contains a basis, so that any element
of G acting trivially �xes a basis and is therefore trivial. Since both groups
have order 24, G acts as the symmetric group on 4 letters on these four lines.
Since some triple of these lines contains a basis, it follows that any such
triple does. Thus after a conjugacy, G is the group of all permutations of the
vectors {e1; e2; e3; e1 + e2 + e3}, where {e1; e2; e3} is a basis for V . One now
sees easily that G stabilises the plane coming from the orbit of size 3; namely
〈e2 + e3; e1 + e3〉 and acts transitively on all other planes.
Theorem 3.15 For every n, the image of the map in : stab(7(n))→
Aut(Link(7(n))) is precisely the group D8. The quotient of Link(7(n)) is a
hexagon, see Fig. 3. The points 6(n+1); 7(n+1) are stabilized by this action,
and are the only points in Link(7(n)) with this property.
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Fig. 3

Proof. First note that GL3(Z2) has order 7.24 and D8 has order 8 thus we
must show that the image is not the entire group and does not have order 24
or 56.
Now GL3(Z2) contains no subgroup of index 3; for the action of the

group on the left cosets of such a subgroup gives a nontrivial representation
GL3(Z2)→ �3 hence a normal subgroup of index at most 6; contradicting the
simplicity of GL3(Z2).
Thus the only possibilities for groups strictly containing D8 are subgroups

of order 24 and the whole group. We shall prove the theorem by showing that
a subgroup of order 24 cannot stabilise a tube vertex.
Since yxy(6(n)) = (7(n)), if either of these stabilisers has order 24, they

both do. By the lemma, it follows that in(stab(7(n))) is either the stabiliser of
a plane or of a line in V . Without loss we suppose the latter and suppose that
5(n+1) corresponds to a line (the argument is the same if 5(n+1) corresponds to
a line.)
We refer the reader to Figs. 2 and 3, recalling that 6(n) = 5(n+1). Since

the orbit of the vertex 5(n+1) under the group in(stab(7(n))) already contains
10(n+1), neither of these is stabilised by in(stab(7(n))). Thus 5(n+1) is in an orbit
of 6 lines so we can �nd g ∈ in(stab(7(n))) throwing this vertex to the vertex
1(n+1) = 8(n). It follows that the element (yxy)−1g(yxy)−1 throws the element
7(n) to the element 7(n−1), implying that in−1(stab(7(n−1))) is also a group of
order at least 24.
Repeating this argument, we see that it su�ces to show that i0(stab(13))

cannot contain a subgroup of order 24. However, this also is impossible. For
this means that either we can �nd an element of the image throwing 5∗(= 14)
to yxy; impossible as the former is an s point and the latter is not. Or we can
�nd an element throwing 8∗ to I and this is impossible as 8∗ = yxy(13) is the
group image of an s point, hence an s point.

This information will also be used in giving a complete iterative description
of the groups stab(7(n)) which we shall need when computing the complex of
groups. (See Theorem 4.6 below.)
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Our next series of results will be directed towards showing that the tube
we have just constructed contains no further identi�cations.

Lemma 3.16 There are no elements in the group mapping a triangle in the
tube to itself.

Proof. There are two cases, see Fig. 4. In the �rst case we see that yxy�(7(n))
= yxy(6(n)) = 7(n), so yxy� ∈ stab(7(n)). However, yxy�(6(n+1)) = 8(n+1) but
by Theorem 3.15 the image of stab(7(n))→ Aut(Link(7(n))) �xes 6(n+1), a
contradiction.
In the second case, we argue similarly, observing that yxy�−1 ∈ stab(7(n+1))

but throws 7(n) to 8(n+2) and an analogous contradiction.

Lemma 3.17 The point 6∗ is neither a group point nor in the orbit of an
s-point.

Proof. The point 6∗ cannot be a group point as group points have stabiliser
Z4 and the stabiliser of 6∗ maps onto D8.
If it were an s-point, there would be an element � in the group such

that �(6∗) = 13. We claim this is impossible. By Lemma 3.16, � cannot map
the triangle (13; 6∗; 7∗) to itself. Thus, there are two types of cases, depending
on whether �(13) is mapped to the orbit of 14 or to the orbit of 7∗ (it cannot
be a group point). These are exempli�ed in Fig. 5. In the �rst case, we have
one of yxy� or (yxy)−1� lies in stab(13) and yet moves 6∗ which contradicts
Theorem 3.15. In the second case, we may choose an element � ∈ stab(13)
which moves �(7∗) and deduce the element �−1�� ∈ stab(13) moves the point
7∗ contradicting Theorem 3.15.

We observe that the second part of this argument actually shows a little
more:

Fig. 4
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Fig. 5

Corollary 3.18 For n= 2, the point 6(n) does not lie in the orbit of the point
6(n−1).

Remark 3.19 Notice that the Lemma implies that the orbit of every point in
Link(13) is now accounted for as either a group point, the orbit of an s-point,
or the orbit of 6∗.

Lemma 3.20 For n= 2, a point 6(n) does not lie in the orbit of any 6(m) for
any m¡n.

Proof. We will argue by induction on n. Firstly observe that 6∗∗ cannot be in
the orbit of an s-point. For if it were, since the edge (6∗; 7∗) lies in Link(6∗∗),
it would follow that the group element mapping 6∗∗ to 13 would map that edge
into Link(13). We deduce (see the remark above) that one (and hence both) of
6∗ or 7∗ would be a group point or an s-point, contradicting Lemma 3.17 unless
this edge is actually stabilised. However, since edge inversions are impossible,
this would mean that the group element actually lay in stab(7∗) and we know
that there are no such elements mapping 6∗∗ to 13.

The proof that 6∗∗ cannot lie in the same orbit as 6∗ is the case n = 2 of
Corollary 3.18. This completes the �rst step of the induction.
Now �x some k¿2 which is chosen as small as possible so that we have a

counterexample to the Lemma. Suppose that there is a group element carrying
6(k) to 6(m) where m5 k − 2. We again consider the edge (6(k−1); 7(k−1)); this
is carried into the link of 6(m). Since every point in this link is in the orbit
of 6(m−1), 6(m) or 6(m+1), this is already a contradiction to the minimality of k
unless m = k − 2 or m = k − 1.
If m = k − 2, we argue as in the paragraph above: The minimality of k

implies the edge must be stabilised, and the absence of inversions means we
would �nd a group element in stab(7(k−1)) mapping 6(k) to 6(k−2), a contra-
diction.
If m = k − 1, this is Corollary 3.18.

Proof of Theorem 3.13 The picture of the tube is as shown in Fig. 6. We have
already shown in Theorem 3.7 that the complex X is embedded.
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Fig. 6

We now claim that we may build an equivariant map q : �→ B.

For we clearly have a map from the orbit of I under im(�) to X , and
hence from orbits of the triangles numbered 1 and 2. We then use the orbits
of the s-points to map in the triangles 3 and 4, this is well-de�ned because
by Theorem 3.6, s-points are not group points. Thus we have de�ned q on
a subcomplex C0 ⊂ � which contains the orbit of the link of I . Theorem 3.7
shows that we have accounted for all possible identi�cations, so that q maps
C0 onto the complex X .

We now map in the tube, triangle by triangle. We refer to Fig. 7.

The next triangles of the construction are attached to C0 along the edge
coming from (13, 14). Recall that 14 = 5∗ so there are two triangles to be
attached at this point, as the orbit of 5∗ in the action of stab(13) on its link
contains the two points 5∗ and 10∗. So we append triangles (13; 5∗; 6∗) and
(13; 10∗; 6∗) to C0 and all triangles in the im(�) orbit of these. We have shown
that 6∗ is neither a group point nor in the orbit of an s-point, so that there is

Fig. 7
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no obstruction to extending the map from the orbit of 6∗ to the corresponding
vertex in B and whence from the orbit of these two triangles in �.
This leaves only one triangle (13; 6∗; 7∗) in Link(13) unaccounted for and

we attach the orbit of this triangle. This de�nes the map q on an equivariant
complex C1 ⊂ � which includes the links of I and of 13.

We can now continue this process. At each stage we seek to extend by
triangles the complex Ck on which the map is de�ned. It follows exactly the
same construction of the above paragraphs. By Lemma 3.20, the vertices of
the form 6(k+1) on which we wish to de�ne the map does not appear in the
complex Ck so that there is no obstruction to extending q over subsequent
triangles and extending by equivariance.
Notice that at every stage of this process, if the map is de�ned on a simplex,

then it is de�ned on all simplices its star. In particular, since the building is
connected the map q is eventually de�ned on every simplex. The result now
follows.

This result identi�es the quotient complex completely. The building is con-
tractible, so if we denote the stabiliser of a simplex � ⊂ � by G�, it follows
from Haeiger’s results on complexes of groups (see Theorem 5.1) that we
have:

Theorem 3.21 im(�) ∼= (B;G�;  a; ga; b)

Thus to compute the group of im(�) we need to compute the underlying
group of this complex of groups. The next section is devoted to this calculation.

4. The complex of groups

In this section we compute the underlying group of B. In order to carefully
de�ne the conventions with which we will work, we have included an appendix
which contains a brief summary (which follows Haeiger [3]) of complexes
of groups.

4.1 The underlying group of X

The complex X consists of 2 vertices, 6 edges and 4 triangles. We begin by
taking the subcomplex X0 consisting of the closure of the �rst two triangles.
The underlying group of this subcomplex of groups is B4=Z :

Lemma 4.1 The underlying group H of (X0; G�; �a; ga; b) has the presentation

〈x; y | x4=y3=1 [x2; yxy] = 1〉

where x and y are generators of the two vertex groups.
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Proof. The procedure comes from 5.1.3, 5.1.4. For each cell � in X0 we choose
a cell �̃ with p�̃ = �. These choices all lie in Link(I) and are shown as bold
edges in Fig. 8(a). There are 2 vertices �1; �2; 3 edges �1; �2; �3 and 2 triangles
�1; �2. These choices determine the choice of lifts of cells in the 1-skeleton in
the barycentric subdivision of X0. A vertex or edge of the barycentric subdi-
vision lies in the interior of a unique cell � of X0 and we choose the lift of
the vertex or edge to lie in the chosen lift of �.

Fig. 8(a)

Fig. 8(b)
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Next we compute the head elements ha for each edge a of X−(1) and these
are shown next to the edge in the barycentric subdivision they correspond to in
Fig. 9(a). The chosen simplices are again indicated by bold lines and vertices
in this �gure.
From this we compute for each triangle with sides a; b; ab the monodromy

element ga; b. One �nds that these elements are nontrivial in only two cases;
these are the circled elements shown in Fig. 9(a).
Now we choose the maximal tree in X−(1) which is the projection of the

corresponding tree upstairs shown as heavy lines in Fig. 8(b). Then Fig. 9(b)
shows which elements of H each edge represents.
We will now repeatedly exploit the triangle relations in the underlying

group of the form:

(ab)+ = b+a+ga; b :

For example, the shaded triangle in Fig. 9(b) has two sides in the maximal tree
hence they are both trivial in H and since for this triangle ga; b = 1 it follows
that the third edge (labelled E1 in the �gure) is also trivial in H . Since edge
E1 is identi�ed to the other edge labelled E1 in 9(b), it follows that E2 = y−1

in H .
In a similar way one now easily �lls in the remaining information on

Fig. 9(b) using the triangle relations, the information in Fig. 8(b), and the
identi�cations of the edges. In particular we see that the underlying group
is generated by x and y.

Fig. 9(a)
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Fig. 9(b)

The only relations we have not yet incorporated are the inclusions of cell
groups:

 a(g) = a−ga+ :

These relations are non-trivial only when a cell and a face of the cell both have
non-trivial groups assigned. This happens only along E4 and E5 (to see this
recall that the stabilizer of the identity is 〈x〉). Figure 10 shows the two edges
E4; E5 for which we must add relations. There is only one monomorphism
Z2 → Z4 and so �E4 ; �E5 are equal. Since E4 = 1 in H the relations from E4
identify Z2 as a subgroup of Z4. The remaining edge E5 = yxy in H thus
gives the relations

w = (yxy)−1w(yxy)

for every w in Z2. But this is only non-trivial for w = x2 which then says

x2 = (yxy)−1x2(yxy) :

Fig. 10
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Fig. 11

Next we consider triangles 3 and 4. These form an annulus A in the quo-
tient. The computation of the head elements is left to the reader in this case;
as a result, one checks easily that the monodromy elements ga; b in this annulus
are all trivial.
The groups assigned to the cells of A are as shown in Fig. 11. In A the

edge (I; 14) is identi�ed to the edge (yxy; 13). This �gure also depicts the
maximal tree for A by heavy edges. Using this choice of tree and the triangle
relations, we have labelled the edges with the group elements of H that they
represent – this is the edge labelling in Fig. 11.
An edge labelled 1 connecting two vertices creates relations which identify

the group assigned to the tail of the edge with the obvious subgroup of the
group at the head of the edge. Edges not labelled by 1 are labelled b and it
remains to examine the relations which result. Those edges labelled b which
start at a vertex carrying the group 〈x2〉, for example E5, identi�es x2 with
bx2b−1. This leaves a number of edges labelled b starting at the group 〈x〉 and
ending on 〈x; a′〉. These give relations which identify b−1xb with a.
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Thus the underlying group of A has a presentation with the generators and
relations for Stab(13) together with an element b and extra relations saying
b commutes with x2 and conjugates x into a. The presentation of Stab(13) is
given in Theorem 4.7 when n = 0. When the annulus is glued onto triangles 1
and 2, b is identi�ed with yxy; we refer to Figs. 9(b) and 11. Thus we have:

Lemma 4.2 The underlying group of X is

〈x; y | x4=y3=1 [x2; yxy]=1 [x; yxy]4=1〉 :

4.2 The group of the tube

We will compute the group associated to the complex of groups for a single
annulus made from a pair of triangles. This will serve the dual purpose of
computing the contributions from Link(13) as well as the contributions from
the successive annuli which build up the tube.
We refer the reader to Fig. 12(a) which shows the barycentric subdivision

of the �rst two triangles in the sequence embedded in the building �; these lie
in Link(13). The distinguished choices of edges and vertices are indicated as
usual by the heavy lines. Each edge is oriented according to the conventions
described above and labelled with its head element ha. One then sees easily:

Lemma 4.3 For every composable pair of edges a and b; we have ga; b = 1.

This means that the presentation for the group in this case is especially
simple as the relations of Type (d) (see Sect. 5.1.4) are just those of the usual
edge group of algebraic topology. We choose a maximal tree, consistent with

Fig. 12(a)
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Fig. 12(b)

and extending the one in Fig. 11, indicated by bold lines as in Fig. 12(b) and
the labelling of this �gure is by the resulting group elements, where unlabelled
edges correspond to the identity group element. We see that we obtain one
generator from the edges and all other groups come from vertex, edge and
2-simplex stabilisers of �. Almost all the relations of Sect. 5.1.4 Type (c) now
say that the maps  a are inclusions. Some do not; for example, the inclusion
of the stabiliser of the edge a = (13; 14) into stab(14) yields that for g ∈
stab((13; 14)) that −g+ =  (g) = (yxy)−1g(yxy). However the identi�cation
of the edge (13; 14) in Figs. 11 and 12(b) show that  = b = yxy. Thus we
have shown:

Lemma 4.4 If A denotes the annular graph of groups shown in Fig. 12(a),
then

�1(A1) ∼= 〈yxy; stab(7∗)〉
The picture now repeats itself exactly with the groups stab(7(n)) as we add
successive annuli. In every case these stabilisers are subgroups of the group
generated by the elements x and yxy, so that we have shown:

Theorem 4.5
�1(A∞) ∼= 〈x; yxy〉

4.3 A presentation for im(�)

We now compute explicitly all the data necessary to �nd a presentation for
the fundamental group of the complex of groups associated to the action of
im(�) on �. To this end we need:

Theorem 4.6 The groups stab(7(n)) are all �nite groups of order 16 · 4n which
are generated by x; a0; : : : ; an.
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Proof. We have a map i0 : stab(13)→ D8 5 Aut(Link((13))). Anything in
the kernel of this map must in particular stabilise I , so that by Lemma 3.3,
ker(i0)5 〈x〉, whence ker(i0) = 〈x2〉. Thus there is an exact sequence

1→ 〈x2〉 → stab(13)→ D8 → 1

where the dihedral group is generated by x and a. It follows that stab(13) has
order 16 and is generated by x and a.
This is the basis for an inductive argument: If we consider

in : stab(7(n))→ D8, we will again have ker(in)5 stab(7(n−1)) so that stab(7(n))
is described as an extension Kn → stab(7(n))→ D8. In sum we have a diagram:

By Lemma 3.11, the elements a0; : : : ; an−1 all lie in stab(7(n)), so our in-
ductive hypothesis shows that stab(7(n)) is generated by x; a; a1; : : : ; an.
Referring back to Figs. 2 and 3, we recall that x acts as a transposition

on the vertices 8(n−1) and 11(n−1), while the element an−1 moves them not at
all, so that Kn is the kernel of the map stab(7(n−1))→ Z2 given by mapping
every ai to 0 and x to 1. Thus stab(7(n)) has order 8 · 16 · 4n−1=2 = 16 · 4n as
required.

Theorem 4.7 The group stab(7(n)) has presentation:
Generators: x; a0; a1; : : : ; an
Relations:
1. x4 = 1
2. x2 = a20 = · · · = a2n
3. (xai)4 = 1 for all i = 0
4. [ai; aj] = [ai+k ; aj+k ] for all i; j; k
5. [x; ai] = [ak−1; ai+k ] for all i
6. The group is nilpotent of class 3.

Proof. Each of the groups stab(7(n)) is a subgroup of 〈x; yxy〉. Setting b = yxy,
one discovers after de�ning a change of basis matrix by:

P =

( 1 1 0
0 1 0
1 0 1

)
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a calculation reveals that:

P−1�4 ⊗ Z2(b)P =
( t 1 + t t
0 1 t
0 0 t

)
P−1�4 ⊗ Z2(x)P =

( 1 1 0
0 1 1
0 0 1

)
:

This observation makes it easy to check that the group stab(7(n)) satis�es all the
stated relations and moreover that the commutator subgroup is the direct sum of
n+ 1 copies of Z2. De�ne an abstract group T (n) with generators and relations
as in the statement, so that we have a surjective homomorphism � : T (n)→
stab(7(n)). Because relation 6 implies that T (n) is nilpotent of class 3, whence
relations 4 and 5 taken with Theorem 5.4 of [6] implies that the commutator
subgroup of T (n) is generated by commutators [x; aj]. Further, relation 2 gives
[x; aj] = (xaj)2, so that by relation 3 each of these commutators has order two.
It follows that the commutator subgroup of T (n) can be no larger than the
direct product of n+ 1 copies of Z2. Restriction of the map � to commutator
subgroups implies that the commutator subgroup of T (n) is actually isomorphic
to n+ 1 copies of Z2.

Now computing the abelianisation of T (n), we see that it is a direct sum
of groups generated by x; x−1a0; : : : ; x−1an, where x has order 4 and each of
the remaining generators has order 2. Thus the abelianisation is a group of
order 4 · 2n+1. It follows that T (n) is a group of order 2n+1 · 4 · 2n+1 = 16 · 4n
which is the order of stab(7(n)). Whence � is an isomorphism, completing the
proof.

Theorem 4.8 The group im(�) is presented as:
Generators: x; y
Relations:
1. x4 = 1
2. y3 =1
3. [x2; yxy] = 1
4. [x; (yxy)i]4 =1 for all i = 0
5. The group generated by 〈(yxy)ix(yxy)−i|i = 0〉 is nilpotent of class 3
Proof. The calculations above make it clear that all relations must lie in the
group generated by x and yxy. Since yxy acts on the building as an element of
in�nite order, it follows that if one writes the relation in this group in terms of
these two elements, it must have zero exponent in yxy. The reason is that any
element u of exponent zero can be written as a product of conjugates of the
form (yxy)rx(yxy)−r . It follows that u lies in stab(7(n)); for some su�ciently
large n and in particular it �xes a vertex.
Now yxy �xes no vertex, so that writing a purported relation as some

power of the element yxy multiplying an element of exponent zero shows that
the yxy exponent is forced to be zero.
Thus any relation can be written as a word in the group 〈(yxy)ix(yxy)−i|i

= 0〉 and hence lies in stab(7(n)) for some n. Now one sees that the relations
of Theorem 4.7 are exactly the relations above restricted to this subgroup.
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Corollary 4.9 The image group �4 ⊗ Z2(B4) is presented as:
Generators: x; y
Relations:
1. x4 = z
2. y3 = z
3. [x2; yxy] =1
4. [x; (yxy)i]4 =1 for all i = 0
5. The group generated by 〈(yxy)ix(yxy)−i|i = 0〉 is nilpotent of class 3
Here z denotes a generator of the centre of B4.

Remarks. An interesting feature of this presentation is that all the extraneous
relations are contained in vertex stabilisers.
It is also interesting to observe that the use of the form J bypasses the

need for calculations involving the matrices x and y; all the proof really uses
is the fact that these matrices are isometries of the form J . To underline this
we observe that our methods show:

Theorem 4.10 The subgroup of GL3(Z2[t; t−1]) consisting of isometries of the
form J is precisely the image of �4 ⊗ Z2.
Proof. In the key Lemma 3.2, we only made use of the fact that the J isometry
had Laurent polynomial coe�cients to prove that all its entries were constants.
The paragraph which followed this then used this fact to deduce that only four
possibilities arose by checking the twenty four elements in the image of the
symmetric group after specialising t=1. However one easily checks that in
fact one does not obtain any new elements in the entire group GL3(Z2). To
sum up, we have shown:

Lemma 4.11 The only matrices in Isom(J )5 GL3(Z2[t; t−1]) which stabilise
the identity vertex are powers of the element �(x).

We can now follow the computation for the vertex stabilisers through from
the beginning noting that all that was ever used was the precise description
of stab(I) and the fact we were dealing with Isom(J ). In particular, all ver-
tex stabilisers have the same size in Isom(J ) as they do in im(�) and these
sizes are all distinct so that Isom(J ) does not cause any more vertex identi-
�cations, hence �=im(�) ∼= �=Isom(J ) and since im(�)5 Isom(J ) the groups
coincide.

5 Appendix

5.1 Complexes of groups

We recall some of the theory of complexes of groups as developed by
Haeiger.

5.1.1 Simplicial cell complexes. Let X be a CW complex and � an n-cell of
X , then an ordering of � is a continuous map of the standard n-simplex �n
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onto � which is a homeomorphism of the interior of � onto the interior of
�. Two orderings of � are consistent if they di�er by an isometry of �. A
simplicial cell complex is a CW complex X together with a maximal set of
(n+ 1)! consistent orderings on each n-cell of X such that the restriction of
an ordering of an n-cell � to a face � of � is an ordering of �.
A simplicial map between simplicial cell complexes is a continuous map

f whose restriction to each n-cell � is a homeomorphism onto an n-cell � and
such that for each ordering � of � the composition f ◦ � is an ordering of �.
An inversion is a simplicial map f which maps at least one n-cell � to

itself with the property that the restriction f|� is not the identity. We will
consider a group G acting by simplicial maps on a simplicial cell complex X
having the property that no element of G is an inversion. In this case we say
that G acts without inversions.
The Barycentric subdivision of a simplicial cell complex X is a simplicial

cell complex X 1. It is formed by taking the images under the orderings of the
barycentric subdivisions of the simplexes �n. Since orderings are consistent,
there is a well de�ned barycenter in each cell � of X . Thus the images under
the orderings of the simplices of the barycentric subdivision of the standard
simplexes �n provides the structure of X 1. The vertices of X 1 correspond to
the cells of X . An edge a of the barycentric subdivision of X 1 corresponds to
a face �¡� of a cell � of X and is to be thought of as a directed edge in
� between the barycenters of � and � directed from the larger cell � to the
smaller face �. The initial vertex of a is i(a) = � and the terminal vertex of e
is t(a) = �. The edge with this orientation is denoted a+ and with the opposite
orientation by a−.

Two edges a; b in X 1 are composable if there is some cell � of X they
both lie in and if t(a) = i(b). In this case there is an edge c = ab in � with
i(c) = i(a) and t(c) = t(b) and there is a 2-simplex in X 1 containing the
3 edges a; b; c.

5.1.2 Complexes of Groups. A Complex of Groups is the data (X;G�;  a; ga; b)
where X is a simplicial cell complex and for each cell � of X there is a group
G� such that

• for each edge a of X 1 there is a monomorphism

 a : Gi(a) → Gt(a)

• If a; b are composable edges of X 1 there is a given monodromy element
ga; b ∈ Gt(b) such that

ga; b ab(ga; b)−1 =  a b

• the cocycle condition (which is vacuous in the case of interest that dim(X )¡
3) whenever a; b; c are composable edges then

 a(gb; c)ga; bc = ga; bgab; c :
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Fig. 13(a)

Fig. 13(b)

For a 2-dimensional complex of groups, the data needed is indicated in the
Fig. 13(b). This shows the barycentric subdivision of a single triangle. There
is a group assigned to each vertex and edge of the triangle, and one for the
triangle. There are inclusions of the triangle group into each edge group and
into each vertex group. There are inclusions of the edge groups into adjacent
vertex groups. Finally there are 6 monodromy elements ga; b corresponding to
the 6 choices of starting at the barycenter of the triangle and going via the
barycenter of an edge to a vertex adjacent to that edge.

5.1.3 The Group complex associated to a group action. Suppose that a group
G acts simplicially without inversions on a simplicial cell complex X̃ then
there is an associated complex of groups which is unique up to isomorphism.
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This is constructed as follows. First the quotient space X = X̃ =G inherits a
simplicial cell structure from X due to the hypothesis of no inversions. Let

p : X̃ → X

be the quotient map. Next for each cell � of X choose a cell �̃ lying over �
and de�ne

G� = Stab(�̃) :

For each edge a of X 1 with i(a) = � and t(a) = � let �̃ and �̃ be the choices
made above. Now it is likely that �̃ does not contain �̃ therefore we choose a
di�erent �̃1 lying over � and containing �̃ and choose g ∈ G an element such
that g�̃ = �̃1. Now de�ne

 a = incl ◦ cg : Gi(a) → Gt(a)

where cg(x) = g−1xg is conjugation.
Finally the monodromy elements ga; b arise as follows. If a; b are compos-

able edges with i(a) = �, and t(a) = i(b) = � and t(�) = ! let �̃; �̃; !̃ be the
choices made above of simplices in X̃ over the simplices �; �; ! in X . In de�n-
ing  a;  b;  ab we chose cells �̃1; �̃2; �̃1 in X̃ and head elements ha; hb; hab ∈ G
with �¡ha�̃ = �̃1 and !¡hab�̃ = �̃2 and !¡�̃1. Then de�ne the monodromy
elements by:

ga; b = hahbh−1ab :

See Fig. 13(a).

5.1.4 The Underlying Group of a Complex of Groups. Given a complex of
groups (X;G�;  a; ga; b) we de�ne FG to be the group:
Generators
(a) elements of G� for the cells � of X .
(b) directed edges of X 1.

Relations
(a) relations of G�
(b) when a+; a− are opposite orientations on the same edge

a+ = (a−)−1 :

(c) For g ∈ Gi(a) then
 a(g) = a−ga+

(d) If a; b are composable then

(ab)+ = b+a+ga; b

Given two vertices �; � of X 1 a G(X ) path from � to � is a sequence g0;
e1; g1; : : : ; en; gn where e1; e2; : : : ; en is an edge path in X 1 (thus t(ek) = i(ek+1))
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with i(e1) = � and t(en) = �, and where gk is an element of Gt(ek ). The Un-
derlying group based at x of the complex of groups is the set of elements in
FG representable as G(X ) paths starting and ending at the basepoint, a vertex
� of X 1. We need the following basic fact from [3], p. 516, Theorem (4.1):

Theorem 5.1 Suppose that a group G acts simplicially without inversions
on a simplicial complex X . Let (X;G�;  a; ga; b) be the complex of groups
constructed from this data; and let H be the underlying group of this complex.
Then there is a natural isomorphism H ∼= G.

It is also shown by Haeiger that one may obtain a presentation of the
underlying group by collapsing a maximal tree and then considering all edge
paths. This is the presentation we use, the extra relations are:

(e) Choose a maximal tree T in the barycentric subdivision X (1) and for each
edge a ∈ T set

a = 1 :

5.2 Presentation of B4=Z

Theorem 5.2 The 4-string braid group admits a presentation

〈x; y | x4 = y3 [x2; yxy] = 1〉

where x = �1�2�3 and y= �1�2�3�1. Then �1 = x−1y; �2 = yx−1; �3 =
xy−2x2. Furthermore the center is generated by x4.

Proof. The 4-string braid group has a presentation:

B4 = 〈�1; �2; �3 | �1�2�1 = �2�1�2 �2�3�2 = �3�2�3 �1�3 = �3�1〉

We obtain another presentation using as generators x = �1�2�3, y = �1�2�3�1.
To see these are generators we express �1; �2; �3 in terms of them.

y = �1�2�3�1
= �1�2�1�3
= �2�1�2�3
= �2x

Thus

�1 = x−1y �2 = yx−1 �3 = (�1�2)−1x = xy−2x2 :
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The center of B4 is in�nite cyclic generated by x4 and we compute that x4 = y3

as follows:
y3 = (�1�2�3�1)(�1�2�3�1)(�1�2�3�1)

= �1�2(�3�1)�1�2(�3�1)�1�2�3�1
= �1�2(�1�3)�1�2(�1�3)�1�2�3�1
= (�1�2�1)�3(�1�2�1)�3�1�2�3�1
= (�2�1�2)�3(�2�1�2)�3�1�2�3�1
= �2�1(�2�3�2)�1�2�3�1�2�3�1
= �2�1(�3�2�3)�1�2�3�1�2�3�1
= �2(�1�3)�2�3�1�2�3�1�2�3�1
= �2(�3�1)�2�3�1�2�3�1�2�3�1
= �2�3(�1�2�3)(�1�2�3)(�1�2�3)�1
= �2�3(�1�2�3)4(�2�3)−1

= �2�3x4(�2�3)−1

= x4 :

Next we compute the relations between x and y. The relation �1�2�1 = �2�1�2
gives

(x−1y)(yx−1)(x−1y) = (yx−1(x−1y)(yx−1)
x−1(yy)x−2y = yx−2(yy)x−1

x−1(x4y−1)x−2y = yx−2(x4y−1)x−1

x3y−1x−2y = yx2y−1x−1

(x3y−1x−2)y = yx2(y−1x−1)
y(xy) = (x2yx−3)yx2

(x4)yxy = (x4)x2yx−3yx2

x4yxy = x2y(x4)x−3yx2

x4yxy = x2y(x)yx2

x2(yxy) = (yxy)x2

Next we compute the relation �2�3�2 = �3�2�3 which gives

(yx−1)(xy−2x2)(yx−1) = (xy−2x2)(yx−1)(xy−2x2)
y−1x2yx−1 = xy−2x2y−1x2

(y−1)x2yx−1 = xy−2x2(y−1x2)
x2yx−1x−2y = yxy−2x2

(x4)x2yx−3y = (x4)yxy−2x2

x2yxy = yx(y−2x4)x2

x2yxy = yx(y)x2

x2(yxy) = (yxy)x2
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Finally we compute �1�3 = �3�1 which gives:

(x−1y)(xy−2x2) = (xy−2x2)(x−1y)
x−1yxy−2x2 = xy−2xy

x−1yx(y−2)x2 = x(y−2)xy
x−1yx(x−4y)x2 = x(x−4y)xy
x−1yx(y)x2 = x(y)xy

yxyx2 = x2yxy

(yxy)x2 = x2(yxy)

Whence we obtain:

Corollary 5.3 Denoting the centre by Z; a presentation of B4=Z is given by:

〈x; y | x4 = y3 = 1 [x2; yxy] = 1〉

where x = �1�2�3 and y = �1�2�3�1.

5.3 Lattice representatives

For the convenience of the reader who wishes to duplicate some of the calcula-
tions, we indicate the simple representatives of the fourteen vertices in Link(I)
which we have used. The �rst eight points are the two orbits on which x acts
as four cycle:

M1 = [y] =

 0 0 1

t 1 1

0 1 1

 M2 = [y2] =

 0 1=t 0

1 0 1

1 0 0



M3 = [xy] =

 0 1 1

0 1 0

t 0 0

 M4 = [xy2] =

 1 0 0

1 1=t 0

0 0 1



M5 = [x2y] =

 t 0 0

t 1 1

t 1 0

 M6 = [x2y2] =

 0 0 1

1 0 0

1 1=t 0



M7 = [x3y] =

 t 1 0

0 1 0

0 0 1

 M8 = [x3y2] =

 1 1=t 1

1 1=t 0

0 1=t 0
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There are then two orbits on which x acts as a transposition:

M9 = [yxy] =

 1 0 0

1 1=t 1

1 1=t 0

 M11 = [xyxy] =

 1 1=t 0

0 1=t 0

0 0 1



M10 = [(yxy)−1] =

 0 0 1

t 0 0

t 1 0

 M12 = [x(yxy)−1] =

 t 1 0

t 1 1

0 1 0


and �nally the two lattices which are not group points; these are �xed by x:

M13 = [13] =

 t 0 0

0 1 0

t 0 1

 M14 = [14] =

 1 0 0

1 1 0

0 1 1=t
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