
THE A-POLYNOMIAL HAS ONES IN THE CORNERS

D. COOPER  D. D. LONG

1. Definition of the A-polynomial

The A-polynomial was introduced in [3] (see also [5]), and we present an

alternative definition here. Let M be a compact 3-manifold with boundary a torus T.

Pick a basis λ,µ of π
"
T, which we shall refer to as the longitude and meridian.

Consider the subset R
U

of the affine algebraic variety R¯Hom(π
"
M, SL

#
#) having

the property that ρ(λ) and ρ(µ) are upper triangular. This is an algebraic subset of R,

since one just adds equations stating that the bottom-left entries in certain matrices

are zero. There is a well-defined eigenvalue map

ξ3 (ξλ¬ξµ ) : R
U

MN##

given by taking the top-left entries of ρ(λ) and ρ(µ). Thus the closure of the image

ξ(C ) of an algebraic component C of R
U

is an algebraic subset of ##. In the case that

the image closure is a curve, there is a polynomial, unique up to constant multiples,

which defines this curve [7, (1.13)]. The product over all components of R
U

having this

property of the defining polynomials for these curves is the A-polynomial. It is shown

in [3] that the constant multiple may be chosen so that the coefficients are integers.

The additional requirement that there is no integer factor of the result means that

the A-polynomial is defined up to sign.

The main new result in this paper is that the coefficients of the A-polynomial

which appear in the corners of the Newton polygon of A are all ³1. We use this to

give another proof that the roots of the edge polynomials of the A-polynomial are

roots of unity. Proofs of this fact may be found in [3] and [4]. We also obtain as a

corollary that the trace of the core curve under a Dehn filling of a one-cusped

manifold, along a non-boundary slope, is an algebraic integer. Equivalently, the

eigenvalue is an algebraic unit. We note that Bass has shown that if there are no

closed incompressible surfaces, then all traces are algebraic integers. Our proof shows

that certain traces are forced to be algebraic integers even in the presence of a closed

incompressible surface. Our method is to obtain information about the A-polynomial

using 0-adic valuations associated to representations all of whose traces are

algebraic. These valuations determine an action on a tree via the Tits–Bass–Serre

theory.

2. 0-adic �aluations

When one has a field F and a discrete rank-1 valuation ν on F, the Tits–Bass–Serre

theory provides an action of SL
#
F on a simplicial tree. This fact has been exploited
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in 3-manifolds by Culler and Shalen in the case that F is a function field for a complex

curve using valuations which are basically ‘polynomial degree’, and by Bass in the

case that F is a number field using 0-adic valuations. The A-polynomial is derived

from a curve of representations, and the relation between the Newton polygon of the

A-polynomial and boundary slopes of the knot complement uses the valuation

studied by Culler and Shalen. Our goal is to discover what information about the A-

polynomial can be obtained by using 0-adic valuations. To see that this makes sense,

consider a curve C of representations of the torally bounded 3-manifold M. Let us

suppose that C projects into a curve (minus finitely many points) under the eigenvalue

map. There are points on this curve where one of the eigenvalues is algebraic over 1,

and a little thought shows that this means that any representation ρ : π
"
M!SL

#
# on

C which projects to this eigenvalue can be conjugated so that it has image in SL
#
F

for some number field F. Now it is well known that a valuation on a field extends to

a finite extension of the field. Thus the p-adic valuation on 1 can be extended over

F. This leads to splittings of π
"
M, and a natural question is to ask whether one

obtains new information from these valuations. In particular, might they detect

incompressible surfaces which are not detected by the valuations previously

considered? It is a consequence of our main result that these valuations give no new

boundary slopes.

Suppose that

f(x, y)¯3
i,j

c
a,b

xayb

is a polynomial in two variables. Then we define the Newton polygon, Newt ( f ), of

f(x, y) to be the convex hull in the plane of the set ²(a, b) r c
a,b

1 0´. (This terminology

is not entirely standard; compare [2].)

The main result of this analysis is Theorem 2.5, which says that the coefficients of

the A-polynomial in the corners of the Newton polygon are all ³1. This is combined

with information obtained from the volume-form to give yet another proof of the fact

presented in [3] and [4], namely that the limiting eigenvalues associated to a

degeneration are roots of unity. However, this approach does not yield the connection

between the order of the root of unity and the number of boundary curves on a

splitting surface. Our excuse for doing this is that this proof is simpler than any of the

other proofs. We wonder if there may be other consequences of Theorem 2.5.

We first recall some general facts. Let k be a number field, that is, a finite extension

of 1. Denote by /
k

the ring of algebraic integers of k. For each prime 0 of k, we

denote by ν0 the discrete valuation (the 0-adic �aluation) associated to 0. Let k0

denote the completion of k with respect to the valuation ν0, and /0 the ring of 0-adic

integers, that is, the set ²x `k0 : ν0(x)& 0´. The ring /0 has a unique maximal ideal

generated by an element π, called a local uniformising parameter, such that ν0(π)¯ 1.

It follows from number theory that /0}π/0 is a finite field (the residue class field )

of characteristic p, where 0 r p. Let P be the set of all 0-adic valuations associated to

k. For our purposes, the key lemma is as follows is (compare [1, Lemma 6.8.2]).

L 2.1. If k is a number field, then /
k
¯4ν0`P

/0.

In words, this means that we can characterise the algebraic integers as those elements

which value non-negatively in every valuation on the number field. This has the

following consequence.
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L 2.2. Suppose that p is a prime number and r" 0, and

h(t)¯ c
!
­c

"
t­c

#
t#­…­c

k
prtk

is an integer polynomial, irreducible o�er :, with the property that c
k
is prime to p and

not ³1. Let b be some root of h(t).

Then there is a �aluation ν on 1(b) so that ν(p­1}p)& 0 and ν(b)! 0.

Proof. Multiply h(t) by pnk−r for some large positive integer n. The highest

coefficient of the resulting polynomial is c
k
pnktk¯ c

k
(pnt)k, so if we set d¯ pnb, we

see that d satisfies the polynomial

h*(t)¯ c
!
pnk−r­…­c

k−"
pn−rtk−"­c

k
tk.

This polynomial is still : irreducible, since d and b visibly define the same field over

1. In particular, both b and d are not algebraic integers.

Let ν
p
be the p-adic valuation on 1, so that ν

p
(pn)¯ n, and let νh

p
be any extension

of this valuation to 1(d )¯1(b). We claim that νh
p
(d )& 0. The reason is that if this

were not so, then, since p does not divide c
k
, νh

p
(c

k
)¯ 0, so we have νh

p
(c

k
dk)¯

νh
p
(c

k
)­kνh

p
(d )¯kνh

p
(d ).

However, all of the other terms in the sum defining h*(d ) are of the shape x
j
d j,

where j!k and x
j
is an integer, so that, since νh

p
(d )! 0, we have

νh
p
(x

j
d j)¯ νh

p
(x

j
)­jνh

p
(d )& jνh

p
(d )"kνh

p
(d ),

and we see that νh
p
(c

k
dk) is the unique term of minimal valuation. However, this

implies that

νh
p
(0)¯ νh

p
(h*(d ))¯ νh

p
(c

k
dk),

a contradiction.

Now, by Lemma 2.1, there is some valuation ν on 1(d ) for which ν(d )! 0, and

the above paragraph shows that this cannot be the p-adic valuation when restricted

to 1. The only valuations on 1 are the q-adic valuations. Hence for some q1 p, we

have ν
q
(d )! 0 and ν

q
(p­1}p)¯ ν

q
(p#­1)& 0, and ν

q
(p) and ν

q
(1}p) are both zero.

Moreover, 0" ν
q
(d )¯ ν

q
(pn b)¯ nν

q
(p)­ν

q
(b)¯ ν

q
(b), as was required.

Suppose that we choose a new basis α, β on π
"
T. This changes the Newton

polygon of the A-polynomial by a shear, but coefficients are not changed. Given a

corner of Newt (A), choose new coordinates α, β on π
"
T so that α is not a boundary

slope and no two terms have the same L-degree. We can also arrange that the given

corner is the unique term in A(M,L) of maximal L-degree. It is shown in [3] that the

slope of a side of the Newton polygon for A is always a boundary slope.

Assume that we have arranged the greatest common divisor of the coefficients to

be 1, and that term of highest L-degree is mM sLr. Let C « be a component of the

representation variety which contributes a factor to the A-polynomial. If the

dimension of C is bigger than 1, then we may intersect it with hyperplanes defined by

integral equations, to produce a curve C defined by equations with integer coefficients

and such that ξ(C «) and ξ(C ) have the same closure. We have a map C!# given by

mapping ρ to tr (ρ(α)). We may assume that the trace of ρ(α) is not constant on the
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curve C, since if it were, it follows from the fact that α is not a boundary slope that

the traces of all peripheral elements are constant on C. This would imply that C does

not contribute to the A-polynomial.

The map ξ is therefore dominating and can omit only finitely many values. We are

now going to specialise M to be a prime p, which we choose so that :

E p­1}p is in the image of ξ ; and

E p is coprime to m.

L 2.3. If we factorise A(p,L) o�er the integers as F0K

i="
h
i
(L), then m r F.

Proof. If not, then since m is prime to p, we can find some polynomial h
j
(t)¯

c
!
­c

"
t­c

#
t#­…­c

k
prtk for which the highest common factor of m and c

k
is larger

than 1. By Lemma 2.2, there is a valuation on the field 1(b) with (i) ν(p­1}p)& 0,

and (ii) ν(b)! 0. By hypothesis, there is a representation ρ on the curve C with

tr (ρ(α))¯ p­1}p and tr (ρ(β))¯ b­1}b. Furthermore, the set of such repre-

sentations in C is finite. Thus ρ is an isolated point in a variety defined by polynomial

equations with integer coefficients. By Lemma 2.4 below, the image of this

representation is in SL
#
K for some number field K. Extend the valuation ν to a

valuation on K ; Bass–Serre theory applied to SL
#
K now gives a splitting of the knot

group, which is non-trivial since the trace of the element β has negative valuation (see

[6, Theorem 2.1.2]). Moreover, the element α can be conjugated into a vertex

stabiliser, since its trace has positive valuation. It is shown in [6] that this makes α into

a boundary slope, a contradiction.

L 2.4. Let :[X
"
,X

#
,… ,X

k
] be the ring of polynomials with integer

coefficients in the �ariables X
"
,… ,X

k
. Let p

"
, p

#
,… , p

n
`:[X

"
,X

#
,… ,X

k
], let I be the

ideal generated by these polynomials, and let S be the affine algebraic set determined

by I. Suppose that S has a component V which is a single point. Then the coordinates

of V are algebraic o�er :.

Proof. Let x
"
,x

#
,… ,x

k
`# be the coordinates of V, and let K¯1(x

"
,x

#
,… ,x

k
) ;

we must show K is an algebraic extension of 1. If not, then we may suppose that

x
"
,… ,x

r
are independent transcendentals, and that x

r+"
,… ,x

k
are algebraic over K

"

¯1(x
"
,… ,x

r
). Let y

"
,… , y

r
be transcendentals so that rx

i
®y

i
r is small. Thus there

is a field isomorphism f : 1(x
"
,… ,x

r
)!1(y

"
,… , y

r
). We claim that f extends to an

isomorphism defined on K with image some subfield of # and such that r fx
i
®x

i
r is

small for all 1% i%k. To see this, since x
r+"

is algebraic over K
"

it has minimum

polynomial m(t) over K
"
with coefficients in K

"
. Let m«(t) be the polynomial obtained

by applying f to the coefficients of m(t). Then m«(t) is close to m(t), so there is a

complex number z which is a zero of m«(t) that is near x
r+"

. Then define f(x
r+"

)¯ z.

Continue this way. Thus f(V ) is very close to V. Since the polynomials defining S have

integer coefficients, the algebraic set they define is invariant under f, so V is not

isolated, a contradiction.

Our main theorem in this section now follows.

T 2.5. If A(M,L) is normalised so that the greatest common di�isor of the

coefficients is 1, then the corner �ertices of the Newton polygon of A are ³1.
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Proof. In the notation already established, this amounts to showing that

m¯³1. With our choice of coordinates, we may write

A(M,L)¯ 3
r−"

i=!

k
ji

M jiLi­mM sLr,

and we specialise to M¯ p, then obtain some polynomial all of whose coefficients are

divisible by F. By Lemma 2.3, m r F, and it follows that m divides every coefficient

k
ji

pji, and hence, since it is prime to p, we have m rk
ji

for every i. Our normalisation

gives the GCD of these integers as ³1, proving the result.

R. We note that since the ring of algebraic integers is integrally closed, it

follows easily that ξ is an algebraic unit if and only if ξ­ξ−" is an algebraic integer.

Bass showed in [1] that if a closed hyperbolic 3-manifold contains no closed

incompressible surface, then the trace of every element is an algebraic integer. In the

light of the remark, the next result implies the following. If a closed hyperbolic 3-

manifold is obtained by Dehn filling a one-cusped manifold along a non-boundary

slope, then the trace of the core curve after Dehn filling is an algebraic integer.

T 2.6. Let N be a compact 3-manifold with boundary a torus. Suppose that

α is an essential simple closed cur�e on this torus which is not a boundary slope. Let N(α)

be the result of Dehn filling along α. Let ρ be any irreducible representation of π
"
(N(α))

into SL
#
#, such that ρ is non-tri�ial on the boundary torus. Let ξ be the eigen�alue of

the core cur�e γ of the attached solid torus. Then ξ is an algebraic unit.

Proof. Suppose that α¯µpλq, with p, q coprime (not both zero), is a simple

closed curve on ¦N, with slope p}q, and let V be a solid torus. Dehn filling along α

gives the manifold N(α) obtained by identifying the boundary ¦V with ¦N so that the

boundary of a meridian disc of V is identified to α. A representation ρ : π
"
(N)!SL

#
#

factors through π
"
(N(α)) if and only if ρ(α) is the identity. Suppose that

ρ
!
: π

"
(N(α))MNSL

#
#

is an irreducible representation. The inclusion of N into N(α) induces an epimorphism

of π
"
(N ) onto π

"
(N(α)), so we have an irreducible representation ρ!

!
of π

"
(N ) into

SL
#
#. An argument due to Thurston [9, (5.6.1), (5.6.2)] shows that this

representation can be deformed. In fact, there is a curve C of representations of π
"
(N )

containing ρ!

!
and a loop in ¦N whose trace is non-constant as ρ varies over C. Thus

C determines a component of the algebraic set A(M,L)¯ 0, and ρ!

!
determines a point

x on this curve which also lies on the curve MpLq ¯ 1. We introduce a complex

parameter T for this latter curve, so

M¯T−q, L¯Tp.

The core curve of V is homotopic to γ¯µrλs with ps®qr¯ 1, and so this parameter

may be interpreted as an eigenvalue ξ of ρ(γ), since

ξ¯M rLs ¯T−qr+ps ¯T.
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It follows that the minimum polynomial gξ(T ) over 1 of ξ divides f(T )3A(T−q,Tp).

The coefficient c
n

of Tn in f(T ) is a sum of coefficients of terms in A(M,L), namely

A(M,L)¯3 a
ij
LiM j and c

n
¯ 3

pi−qj=n

a
ij
.

Let n be the degree of f(T ), and suppose that there is more than one term in the

A-polynomial contributing to the coefficient of Tn in f(T ), say a
ij

and a
kl

such that

pi®qj¯ n¯ pk®ql.

Then there is an edge of the Newton polygon Newt (A) of A containing the points

(i, j ) and (k, l ). The slope of this edge is p}q, and from [3] this implies that p}q is

the boundary slope of some essential surface in N. Thus α is a boundary slope.

Thus if α is not a boundary slope, then c
n

equals the coefficient of A(M,L) in one

of the corners of the Newton polygon, and by Theorem 2.5 this coefficient is ³1.

Hence f(T ) is monic. Now it is easy to see (and shown in [3]) that A(1}M, 1}L)¯
A(M,L), and so f(T ) is a reciprocal polynomial. Thus the coefficient of the lowest

term in f is also ³1. Since gξ(T ) divides f(T ), it follows that the highest and lowest

coefficients of gξ(T ) are ³1. Thus ξ is an algebraic unit.

We now give a simple argument using the volume form to show that edge

polynomials have roots on the unit circle.

L 2.7. E�ery root of e�ery edge polynomial of the A-polynomial of a knot lies

on the unit circle.

Proof. Let C be an affine curve in ##. Then a Puiseux parametrisation at a point

(x
!
, y

!
) is a function #!C given by

x(t)¯x
!
­tp, y(t)¯ y

!
­3

¢

n=!

a
n
tn.

Every point on C has a neighbourhood which is covered by the images of finitely

many such parametrisations, corresponding to the different sheets of C passing

through (x
!
, y

!
). Given a basis α, β of π

"
T, we use the same symbols to indicate the

coordinates of a point on C using this basis. We study a particular degeneration, and

assume that the basis is chosen so that β!K and α! 0. The sequence of

representations for this degeneration eventually lies in the image of a Puiseux

parametrisation:

α(t)¯ tp, β(t)¯K­3
¢

n=!

a
n
tn.

A representation of π
"
M into SL

#
# determines a real number called the �olume of the

representation, and a formula due to Hodgson gives

³2dV¯ Fα dθβ®Fβ dθα ;

see [3] for details. The integral of dV around the loop parametrised as t¯ er+iθ, where

r is large negative and 0% θ% 2π, must give 0. We now compute this :

Fα ¯ log rαr¯ pr, Fβ ¯ log rβr¯ log rK r­O(er), θα ¯ pθ, θβ ¯ Im log β.
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Differentiating gives

dθβ

dθ
¯ Im 01β

dβ

dθ1¯ Im 01β 3
¢

n=!

nia
n
en(r+iθ)1¯O(er).

Hence

2
dV

dθ
¯ Fα

dθβ

dθ
®Fβ

dθα

dθ
¯ p log rK r­O(er).

Integrating this yields

0¯&#
π

!

dV

dθ
dθ¯&#

π

!

®p log rK r dθ­O(er)¯®2π log rK r­O(er).

Thus log rK r¯ 0, so rK r¯ 1 as claimed.

The following is well known.

L 2.8. Suppose that the complex number z is algebraic o�er 1 with minimum

polynomial p `:[t], and suppose that all the roots of p lie on the unit circle. Suppose also

that p is monic. Then z is a root of unity.

Proof. Write p¯ tn­a
"
tn−"­…­a

n
. Then the a

i
are the symmetric functions of

the roots of p. Since these roots all lie on the unit circle, ra
i
r is bounded above by a

binomial coefficient. The set 3 of monic integer polynomials with coefficients so

bounded is finite. Let p
m

be the minimum polynomial of zm for m" 0. The other roots

of p
m

are a subset of the mth powers of the roots of p. Thus they all lie on the unit

circle. Thus p
m

divides an element of 3. Since there are only finitely many such

divisors, it follows that there are only finitely many possible values for zm as m varies.

Thus z is a root of unity.

T 2.9 (see [3] and [4]). E�ery root of e�ery edge polynomial of the A-

polynomial of a knot is a root of unity.

Proof. By Theorem 2.5 every edge polynomial is monic, and by Lemma 2.7 every

root of these polynomials lies on the unit circle. But now Lemma 2.8 gives that the

edge polynomials have all roots on the unit circle.

C 2.10. The p-adic �aluation ν
p

does not detect any boundary slopes

other than those gi�en by slopes of edges of the Newton polygon.

Proof. The precise statement is as follows. Suppose that

ρ : π
"
MMNSL

#
&,

where & is a number field. Suppose that p `: is a prime, and ν0 is an extension of the

p-adic valuation to &. Suppose that this valuation on SL
#
& gives rise to an action of

π
"
M on a simplicial tree with no fixed point. Then this gives rise to an incompressible

surface in M with non-empty boundary provided that ν0 (tr ρα)! 0 for some α in

π
"
T. A primitive element β¯µaλb of π

"
T with ν0 (tr ρβ)& 0 is a boundary slope of M.

Then the slope of β on T is a}b, which equals the slope of some side of Newt (A).
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Let L,M `& be the eigenvalues of the longitude and meridian for ρ, thus

0¯A(M,L)¯3 a
ij
Li M j.

Now ν0(x­y)¯min ²ν0 x, ν0 y´ unless ν0 x¯ ν0 y ; also, ν0 0¯¢. It follows that the

subset of ²a
ij
LiM j´ consisting of those terms with minimal value has at least two

elements. Now

ν0(a
ij
LiM j)¯ ν0(a

ij
)­iν0(L)­jν0(M ),

and since a
ij
`: we have ν0(a

ij
)& 0. The function

f : :#fNewt (A)MN2

given by

f(i, j)¯ iν0(L)­jν0(M )

takes its minimal values on the boundary of Newt (A). Suppose that there is a single

point where f takes on its minimum. Then this is a corner of Newt (A). Since the

coefficient of a corner term is ³1, the value of this corner term is given by f at that

corner. Since

ν0(a
ij
LiM j)¯ ν0(a

ij
)­f(i, j)& f(i, j ),

this corner term is the only term in A(M,L) of minimal value which is impossible.

Thus there is an entire side of Newt (A) on which f takes its minimal values. If the

terms at the corners of Newt (A) which are the ends of this side are ³LaM b and

³LcMd, then these terms have the same ν0-value. Thus La−cM b−d has value zero, and

thus λa−cµb−d is the element in π
"
T which stabilises some edge of the tree associated

to ν0, and therefore this element is the boundary slope. The slope of λa−cµb−d is
b®d

a®c
,

but this is just the slope of the edge of Newt (A) considered.
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