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1. Introduction

Let Γ be a Fuchsian group. We denote by ax(Γ) the set of axes of hyperbolic
elements of Γ. Define Fuchsian groups Γ1 and Γ2 to be isoaxial if ax(Γ1) = ax(Γ2).
The main result in this note is to show (see Section 2 for definitions) the following.

Theorem 1.1. Let Γ1 and Γ2 be isoaxial arithmetic Fuchsian groups. Then Γ1

and Γ2 are commensurable.

This result was motivated by the results in [6], where it is shown that if Γ1

and Γ2 are finitely generated non-elementary Fuchsian groups having the same non-
empty set of simple axes, then Γ1 and Γ2 are commensurable. The general question
of isoaxial was left open. Theorem 1.1 is therefore a partial answer. Arithmetic
Fuchsian groups are a very special subclass of Fuchsian groups (for example, there
are at most finitely many conjugacy classes of such groups of a fixed signature), and
the general case at present seems much harder to resolve.

The technical result of this paper which implies Theorem 1.1 is Theorem 2.4
(below), proved in Section 4. Denoting the commensurability subgroup by Comm(Γ)
and the subgroup of PGL(2,R) which preserves the set ax(Γ) by Σ(Γ) (careful
definitions are given below), we have the following theorem which describes the
commensurability subgroup of an arithmetic Fuchsian group geometrically.

Theorem 2.4. Let Γ be an arithmetic Fuchsian group. Then Comm(Γ) = Σ(Γ).

The problem of ‘isoaxial implies commensurable’ is like a dual problem to
‘isospectral implies commensurable’. It was shown in [8] that this latter statement
holds for arithmetic Fuchsian groups. As in the case considered here, the general
statement about isospectrality implying commensurability is still open.

2. Preliminaries

Here we collect together some arithmetic facts that we shall use, together with a
statement of the main technical result required in the proof of Theorem 1.1.
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2.1. We begin by recalling some notation for quaternion algebras; see [10].
Let k be a field of characteristic 6= 2. By a quaternion algebra A over k, we mean

a 4-dimensional vector space over k such that A is spanned over k by {1, i, j, ij},
which are subject to the relations i2 = a, j2 = b and ij = −ji, where a and b are
non-zero elements of k.

Let A be a quaternion algebra over the field k, and x = x0 +x1i+x2j+x3ij ∈ A.
The norm of x, denoted nA(x), is given by x2

0 − ax2
1 − bx2

2 + abx2
3. A∗ will denote the

invertible elements of A, that is, those x ∈ A with nA(x) 6= 0.
If A is a quaternion algebra over a number field k, ν a place of k, and kν the

completion of k at ν, then A is said to be ramified at ν if A⊗k kν is a division algebra
of quaternions. If ν is a real place of k, then this is equivalent to A ⊗k kν being
isomorphic to the Hamiltonian quaternions.

2.2. Throughout, we shall employ the following convention. Given a subgroup
G of GL(2,R), we denote its image in PGL(2,R) by PG.

A Fuchsian group is a discrete subgroup of PSL(2,R); however, we sometimes
work with Fuchsian groups as subgroups of SL(2,R).

We now give the definition of an arithmetic Fuchsian group; see [9] or [3], for
example.

Let k be a totally real number field, and let A be a quaternion algebra over k
which is ramified at all infinite places except one, which we take to be the place
associated to the identity embedding of k. Via the identity place, we obtain an
embedding ρ : A ↪→ M(2,R). Let O be an order of A, and let O1 be the elements
of norm 1 in O. Then ρ(O1) is a discrete subgroup of SL(2,R). Pρ(O1) is a finitely
generated Fuchsian group of the first kind (so that H2/Γ has finite area).

A Fuchsian group Γ in (P)SL(2,R) is called arithmetic if Γ is commensurable
with some group (P)ρ(O1).

2.3. As described in [7], to any non-elementary Fuchsian group Γ we can
associate a number field (the invariant trace-field ), and a quaternion algebra over
the invariant trace-field (the invariant quaternion algebra) which is an invariant of
the commensurability class of Γ. Recall that the trace-field of a Fuchsian group Γ
is simply Q(tr(γ) : γ ∈ Γ). Let Γ(2) = gp{γ2 | γ ∈ Γ}. The invariant trace-field is
denoted kΓ and is the field Q(tr(γ) : γ ∈ Γ(2)). The algebra

AΓ = {Σaiγi | ai ∈ kΓ, γi ∈ Γ(2)},

where all sums are finite, is a quaternion algebra over kΓ (see, for instance, [1] or
[9]). AΓ is called the invariant quaternion algebra of Γ.

Let Γ be a finitely generated Fuchsian group of the first kind. Then, in the
language discussed above, we have the following characterization of arithmeticity
due to Takeuchi [9]. Γ is arithmetic if and only if the following conditions hold:

• kΓ is a totally real number field;

• traces of elements of Γ are algebraic integers;

• AΓ is ramified at all infinite places of kΓ except one, which is usually taken
to be the identity place.

To connect with the definition given in Subsection 2.2, kΓ = k, and there is some
embedding ρ (as above) with ρ(A) = AΓ ⊂M(2,R).



on fuchsian groups with the same set of axes 535

2.4. Define the commensurability subgroup of a Fuchsian group Γ to be

Comm(Γ) = {γ ∈ PGL(2,R) | γΓγ−1 is commensurable with Γ}.

We have the following result, essentially due to Borel [2]. We give a sketch of
the proof, since the first part has relevance in arguments that follow.

Theorem 2.1. Let Γ be an arithmetic Fuchsian group. Then Comm(Γ)=AΓ∗/kΓ∗.

Proof. Let A = AΓ and k = kΓ. We first show that Comm(Γ) < A∗/k∗.
Let ω : A∗ → A∗/k∗ be the canonical projection (which we also use for the
homomorphism (A⊗k R)∗ → (A⊗k R)∗/R∗).

Let γ ∈ Comm(Γ), and γ0 ∈ GL(2,R) ∼= (A ⊗k R)∗ such that ω(γ0) = γ. Since
γ ∈ Comm(Γ), it follows that AγΓγ−1 = A, and thus γ0 induces an automorphism
jγ0

: A→ A by conjugation. By the Skolem–Noether Theorem (see [10, Chapter 1]),
jγ0

must be inner in the sense that there is u ∈ A∗ such that jγ0
(a) = uau−1 for all

a ∈ A. It now follows that uγ−1
0 is central in the quaternion algebra A⊗k R. Hence u

and γ0 differ by a scalar, so ω(u) = ω(γ0) = γ, and this completes the proof of this
direction.

For the reverse inclusion, we simply make the comment that it is not hard to
check directly, using an explicit representation of A, that A∗/k∗ < Comm(Γ). For
one merely shows that choosing u0 ∈ A∗, one can find a congruence subgroup Γ(I)
of Γ (dependent on the terms in the denominators of the matrix entries of u0) which
is conjugated under u0 to a subgroup of finite index in Γ.

Remark. By the work of Margulis [5], when Γ is non-arithmetic, Comm(Γ) is
the maximal discrete subgroup of PGL(2,R) containing Γ. However, the argument
given in the first part of the proof of Theorem 2.1 still shows that Comm(Γ) <
AΓ∗/kΓ∗.

2.5. Throughout this subsection, Γ will always be a finitely generated Fuchsian
group of the first kind. Define Σ(Γ) = {γ ∈ PGL(2,R) | γ(ax(Γ)) = ax(Γ)}. The
following lemma is an elementary observation.

Lemma 2.2. Σ(Γ) is a subgroup of PGL(2,R).

If Γ is a Fuchsian group and γ ∈ Γ is a hyperbolic element, then γn has the same
axis as γ for all non-zero integers n. With this, and the definition of Comm(Γ) given
above, we have the following.

Corollary 2.3. Comm(Γ) < Σ(Γ).

Proof. If Γ1 and Γ2 are commensurable Fuchsian groups, then they contain
a finite index subgroup ∆. By the remarks prior to the corollary, we see that
ax(Γ1) = ax(∆) = ax(Γ2).

Thus, if x ∈ Comm(Γ), then xΓx−1 is commensurable with Γ, and so x preserves
the set ax(Γ).
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The important technical result of this note is the following theorem, to be proved
in Section 4. It provides a ‘geometric’ picture of what Comm(Γ) looks like in the
case when Γ is arithmetic.

Theorem 2.4. Let Γ be an arithmetic Fuchsian group. Then Comm(Γ) = Σ(Γ).

3. Jørgensen involutions

We briefly recall the association of an involution to a pair of non-commuting
(hyperbolic) elements of SL(2,C), following Jørgensen [4].

For our purposes, let g and h be a pair of non-commuting hyperbolic elements
in SL(2,R), with fixed points {ag, rg} and {ah, rh}, respectively. Since g and h do not
commute, they have distinct axes. Define the element ι(g, h) of GL(2,R) by the Lie
bracket gh− hg. It has the following properties:

• ι(g, h) · g · ι(g, h)−1 = g−1;

• ι(g, h) · h · ι(g, h)−1 = h−1;

• ι(g, h) interchanges the fix-points ag and rg (respectively ah and rh).

The following lemma will be useful.

Lemma 3.1. Let g1 and h1 be a pair of non-commuting hyperbolic elements, and
let g2 (respectively h2) be a hyperbolic element commuting with g1 (respectively h1).
Then ι(g1, h1) differs from ι(g2, h2) by an element of the centre of GL(2,R).

Proof. Since g1 and g2 (respectively h1 and h2) commute, they have the same
fixed points. By the properties listed above, we see that the element ι(g1, h1) · ι(g2, h2)
fixes all the fixed points of g1 and h1—of which there are at least three. By standard
properties of Möbius transformations, it follows that ι(g1, h1) · ι(g2, h2) must be a
multiple of the identity, and hence in the centre.

4. Proof of Theorem 2.4

Before commencing the proof, we make some preliminary comments. Throughout
this section, we fix a totally real field k and a quaternion algebra A over k which
satisfies the hypothesis in the definition of an arithmetic Fuchsian group given in
Subsection 2.1.

We shall make use of the following, which is essentially a consequence of the
Skolem–Noether Theorem (see [10, Chapter 1]).

Theorem 4.1. Let A be a quaternion algebra over a field k ⊂ R, and let ρ : A→
M(2,R) be an embedding. Then Pρ(A∗) is self-normalizing in PGL(2,R).

Proof. Let g ∈ GL(2,R) satisfy gρ(A∗)g−1 = ρ(A∗). Then gρ(A)g−1 = ρ(A), and
so by the Skolem–Noether Theorem, this automorphism is inner with respect to an
element of A. Arguing as in the proof of Theorem 2.1 completes the proof.

We now commence the proof of Theorem 2.4.
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Proof of Theorem 2.4. Without loss of generality, we can assume that Γ = ρ(O1),
where O is an order of A. Let

I = {ι(g, h) | g, h any pair of non-commuting hyperbolic elements ∈ Γ},
and let G(I) be the subgroup of GL(2,R) generated by the elements in I.

We record the following facts about G(I).

Lemma 4.2. PG(I) is a normal subgroup of Σ(Γ).

Proof. First, to see that PG(I) is a subgroup of Σ(Γ), observe that ι(g, h) =
gh− hg ∈ AΓ∗, so that G(I) < AΓ∗. From Corollary 2.3 together with Theorem 2.1,
we deduce that PAΓ∗ < Σ(Γ). Hence PG(I) < Σ(Γ).

Now if Pγ ∈ Σ(Γ), then for all ι ∈ I we have PγPιPγ−1 ∈ I. To see this,
let ι = ι(g, h). By definition, γ preserves ax(Γ), and so γ maps the axes of g and
h to the axes of hyperbolic elements g′ and h′ in Γ. Lemma 3.1 implies that
the involutions ι(γgγ−1, γhγ−1) and i(g′, h′) differ by a scalar. Hence, in PGL(2,R),
PγPι(g, h)Pγ−1 = Pι(g′, h′). The advertised normality now follows from this.

Lemma 4.3. G(I) contains infinitely many non-commuting hyperbolic elements.

Proof. Note that the limit set of Σ(Γ) coincides with R∪{∞}, since, as observed
above, Σ(Γ) contains PAΓ∗ = Comm(Γ). Since PG(I) is a normal subgroup of Σ(Γ),
they have the same limit set, hence PG(I) contains a non-elementary subgroup of
PSL(2,R).

The proof of Theorem 2.4 will be completed by showing that PAΓ∗ is normalized
by Σ(Γ). For then, by Theorem 4.1, we have Σ(Γ) = PAΓ∗ as required.

To establish this claim, we argue as follows.
By Lemma 4.3, G(I) contains a pair of non-commuting elements of infinite

order, say a and b. Then B = {1, a, b, ab} serves as a k-basis for A. If x = Px ∈ Σ(Γ),
then by Lemma 4.2, xAΓ∗x−1 contains G(I), and hence continues to contain B.
xAΓx−1 is therefore also a quaternion algebra over k with k-basis B. Hence xAΓx−1

and AΓ are quaternion algebras over k with the same basis, therefore AΓ = xAΓx−1,
and as conjugation preserves determinant, we deduce that AΓ∗ = xAΓ∗x−1.

5. Proof of Theorem 1.1 and final remarks

5.1. We now complete the proof of the main theorem.

Theorem 1.1. Let Γ1 and Γ2 be isoaxial arithmetic Fuchsian groups. Then Γ1

and Γ2 are commensurable.

Proof. If Γ1 and Γ2 are isoaxial Fuchsian groups, then for any γ ∈ Γ2, ax(Γ1) =
ax(γΓ1γ

−1), and therefore γ ∈ Σ(Γ1).
Since Γ1 is arithmetic, by Theorem 2.4 we obtain Γ2 < Comm(Γ1), and so by

Theorem 2.1, Γ2 is a subgroup of AΓ∗1/kΓ
∗
1. Since Γ2 is also arithmetic, we deduce

that Γ2 is commensurable with Γ1 by the definition of an arithmetic Fuchsian group.

The natural question that arises from this is whether Theorem 1.1 holds in the
non-arithmetic case. At present, we have no reason to believe one way or the other.
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5.2. The methods do extend to arithmetic Kleinian groups with the obvious
generalizations of definitions. Thus we simply state (see [3] or [7] for the definition
of an arithmetic Kleinian group) the following.

Theorem 5.1. Let Γ1 and Γ2 be isoaxial arithmetic Kleinian groups. Then Γ1 and
Γ2 are commensurable.
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