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1. INTRODUCTION 

This paper continues the study, initiated in [l], of understanding surfaces immersed 
transverse to the suspension flow in a hyperbolic surface bundle over the circle. Briefly, our 
context is the following. Suppose that 8 : F + F is an orientation-preserving pseudo-Anosov 
homeomorphism of a closed surface. Then we may form the mapping torus M = M(0) 
which results of Thurston show is hyperbolic. This mapping torus is equipped with an 
obvious one-dimensional foliation, denoted throughout as 9. We shall consider surfaces 
g : .%+A4 which are immersed into M so as to be transverse to 9. It is shown by Mangum in 
[2] that such surfaces are automatically incompressible. It follows that g.+(rci(S)) is 
a surface subgroup of x1(M); this Kleinian group may be geometrically finite in which case 
we refer to g : S-M as a geometrically finite immersion. Although this is not used in an 
essential way here, we note that a combination of deep results due to Marden [3] 
and Bonahon [4] shows that in this context, the geometrically finite case is precisely the 
case when the surface group is quasi-fuchsian, that is to say its limit set is a topological 
circle. 

Since the map 6 is pseudo-Anosov, it preserves a pair of singular foliations, 9 f of F and 
these give rise to a pair of codimension one singular foliations of M which we denote by 
RF *. The fact that g(S) is transverse to dp means that these foliations pull back to give 
a pair of singular foliations F’ of S. In these terms we have: 

THEOREM 1.1. (Cooper et al. Cl]). The immersion g: SwM is geometrically finite if and 

only if one (and hence both) of 9’ is ajnite foliation. 

We shall use the termfoliation of a surface F to mean the integral curves of a singular 
line field with a finite number of singularities, all of prong type and recall that such 
a foliation is said to bejnite if it contains a finite number of closed leaves and both ends of 
every nonclosed leaf spiral onto one of these closed leaves. In the context of general 
foliations, this could also be called depth one. Understanding whether a given foliation is 
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finite or not seems to be a subtle problem. We shall show: 

THEOREM 1.2. It is a decidable question if a surface immersed transverse to a suspension 
flow is geometrically $nite or not. 

We shall use this result to exhibit what is apparently the first nontrival example of an 
immersed geometrically infinite surface. It is in fact already known that, in principle, the 
question resolved by Theorem 1.2 is decidable for any incompressible surface at all [S]; 
however, that algorithm is impractical, relying as it does on an enumeration of finite 
coverings of the ambient hyperbolic manifold. Moreover, our proof in this case has the 
benefit of additional theoretic insight as well as providing a convenient tool for computing 
the associated dilatation and invariant measure. 

The tool we introduce arises as follows. We sketch the main ingredients here, deferring 
some of the details until later. If one fixes an arc c1 c S transverse to one of the foliations Fs, 
which for convenience we assume orientable, then we can consider the first return map 
q : CI -+ M which this foliation induces. It is in fact a possibility at this stage that some leaf 
never returns to a, in which case we are in the situation of a finite foliation, since we know 
the dichotomy provided by Theorem 1.1 (see Cl] for the proof that this is in fact a dichot- 
omy) is that either Fs has all leaves dense or it is finite. We can suppose then that q is 
a well-defined map away from a finite number of points corresponding to where the 
separatrices of 9s meet c1 for the first time. Thus, we obtain a map which is closely related to 
an interval exchange map, the only difference being that some intervals may be stretched or 
contracted. We define such a map to be a (geometric) similarity interval exchange map. In 
contrast to the more usual notion of interval exchange map, Lebesgue measure is not 
typically invariant for q; indeed, if the foliation is finite the only invariant probability 
measures will involve a finite number of atoms. One can also define similarity exchange 
maps in a completely general setting. They seem to be of interest both as dynamical systems 
and for the connections such understanding offers to the theory of affine foliations (see [6]). 

In Section 3 we construct a bundle and use the idea of [l] to make an immersed 
incompressible surface transverse to the flow, then use our methods to prove that this 
surface is geometrically infinite. This appears to be the first explicitly constructed example 
of an immersion of a geometrically infinite surface. Moreover, part of the power of our 
method is that one can calculate dilatations and measures associated with the immersion. 

More specifically, we recall from [l] that given any pseudo-Anosov map as above, there 
is always some finite sheeted covering and a lift of the map 8: P -+ F” so that some simple 
closed curve C c P is carried disjoint from its image by &. We can use this to construct 
a surface immersed transverse to the flow, denoted S(C, &Cc), F) = S; namely remove 
annular neighbourhoods of C and &Cc) and reglue them in a carefully chosen way (see 
Section 3 for details) The example of Section 3 is of this type. One of the surprising features 
(somewhat concealed here) is that it seems to be extremely difficult to produce geometrically 
infinite surfaces in this simple-minded way and it is of some interest to understand this 
difficulty, both for its own sake and because of the following theorem (notation as in 
Section 3). 

THEOREM 1.3. Suppose that 0: F -+ F is a pseudo-Anosov map for which we can find 
a simple closed curve C with (a) Cue(C) is nonseparating, and (b) C, 0(C) and g2(C) are all 
disjoint. Then either 

(1) the immersion g: S = S(C, g(C), F)%M(B) cannot be lifted to become an embedding in 
anyfinite covering of M(8), 
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or 
(2) there is a finite sheeted covering p : FI + F, a map O1 covering 8 and a lift C1 of C so 

that the immersion S = S(C1, e,(C,), F,) c M(B) is geometrically injnite. 

In particular, with our current lack of understanding, it does not seem impossible that 
for sufficiently complicated monodromies, it might be that one can never obtain a geomet- 

rically infinite surface by a single operation of cut and cross join. Such a bundle would 
therefore contain a nonseparable geometrically finite surface group. 

2. SIMILARITY INTERVAL EXCHANGES AND THE ALGORITHM 

We begin with some preliminary observations. The first of these is the definition of 
a similarity interval exchange map. Recall that an interval exchange map can be informally 
described as cutting up the unit interval into a finite number of half open intervals and 
permuting them. Our notion is a generalisation of this in that we also allow intervals to be 

expanded or contracted by powers of a fixed real number s. Here is the formal definition 
(cf. [7] or [S]). 

Dejnition 2.1. Suppose that (aI, . . . , a,,) is a vector of real numbers with ai > 0 and 
Cy=iOZi = 1. SUpp ose further that s > 1 is some fixed real number with the property that 
there are integers k1 , . . . , k, SO that xZlsk’ai = 1. Set fro = 0 and pi = C;=laj. 

Then given a permutation cr on { 1, . . . , n} we set au = (sk--‘(L)ab-I(lJ, . . . , skO-‘@la,-+)). Our 
hypothesis guarantees that this is a probability vector and we form a corresponding 
vector /3p. 

We define the similarity interval exchange map q: I + I associated with this data by 

The effect of this definition is to map the interval [pi_ 1, fli) to the interval [fib”(i)_ 1, fiz(i,); 

this has involved a scaling by factor s kZ. Of course, when all the kls are zero, this reduces to 
the more usual notion of interval exchange map. 

These arise naturally in our context in the following way. In the notation established in 
the introduction, let a c S be a short arc lying inside a leaf of the foliation Fs-. Temporarily, 
we assume that the foliations Fs* are globally orientable, that is, each is the integral curve 
of a vector field with zeroes. Further, we assume that a has been chosen so that it contains 
no singularity. In particular, the vector field has no zeroes on a. 

The arc a is transverse to 9+ so that, given p E a, we may flow along the leaf of Fs’ in 
the direction given by the vector field until the first return to (the other side of) a. It is 
possible that there are points for which the leaf never returns to a, but Theorem 1.1 implies 
that this can only happen in the presence of a closed leaf, so we shall assume that this is not 
the case and that we have defined a map q : a + a. Strictly speaking, the map is not quite well 
defined; exactly as in the case of an interval exchange map, there are a finite number of 
points corresponding to where the separatrices first meet a where q is potentially multi- 
valued, but (exactly as in the interval exchange case) we adopt some convention so that the 
map becomes well defined and only discontinuous at those points. 

There is also another map which arises by flowing in the opposite direction along the 
vector field and similar considerations apply, so that we may as well assume that q is 
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surjective. We claim: 

LEMMA 2.2. The map q : CI -+ c1 is a similarity interval exchange map. 

Proof: The foliations (9 *, p ‘) induce on F a metric, pP, which is flat away from the 
singularities (see [9]). We have supposed that the arc a is very short; in particular, we can 
assume that it is actually a subset of a leaf of Ys- and that the metric induces a length along 
c( which is just the measure CL+. Then the flow map is piecewise linear, as in the case of 
measured foliations, the difference being that if this arc flows around the monodromy factor 
a nonzero number of times algebraically, its p’+-measure changes by some power of the 
stretching factor. Q.E.D 

Definition 2.3. A similarity interval exchange map which arises in this way will be called 
geometric. 

Remark. (i) This can also be thought of in terms of the affinely measured foliations of 

Cl, 101. 
(ii) The requirement that the foliations be orientable is no real restriction since there is 

always a double branched covering of the surface so that the lifted foliations have this 
property and the presence or otherwise of a closed leaf in Fs will be unaffected by this. 

Theorem 1.1 has the following interpretation in this language. Finite foliations which 
arise in the context of bundles contain a finite number of closed leaves which correspond to 
periodic points of the associated similarity interval exchange. In general, the closed leaves 
may attract on one side and repel on the other, but in the case of globally orientable 
foliations one sees easily that each such periodic point is either attracting or repelling. 

In general, it seems that similarity interval exchanges can have rather complicated 
dynamics; however we easily have: 

LEMMA 2.4. A geometric similarity interval exchange either has an invariant probability 
measure offull support (in which case this measure is unique) or the only invariant probability 

measures are atomic. 

Proof: The given dichotomy corresponds to the geometrically finite and infinite dichot- 
omy provided by Theorem 1.1. 

If the immersion is geometrically infinite, then any q-invariant measure gives rise to an 
invariant measure on one of the measured foliations associated with the monodromy of the 
fibre S. We briefly recall the construction: Any sufficiently short arc a on S transverse to the 
foliation may be isotoped (without changing which leaves are crossed) so it lies in the arc CL 
We use the measure given on a to define the measure of a. Of course, there may be two ways 
of so isotoping the arc, but these give the same answer by rl invariance. The measure of 
a general arc can then be defined by integration; it is built into the construction that this 
yields an invariant measure on the foliation on S and these are well known to be uniquely 
ergodic [9]. 

On the other hand, if the surface is geometrically finite, then the foliation is finite. By 
passing to a power if necessary, we can suppose that the periodic points of the similarity 
exchange are all fixed points. 

In particular, any subarc of CI can be subdivided until each subarc has the property that 
either it contains a fixed point, or it lies entirely in the basin of attraction of some fixed 
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point. If p is one of the arcs of the latter type, it cannot have positive measure, since any 

neighbourhood of the fixed point to which it is attracted contains countably many disjoint 

images of this arc, all of the same measure. It follows that the only possibility is a measure 
supported in the fixed set. Q.E.D. 

Remark. Examples show that a general similarity interval exchange map may have 
periodic orbits which are not attractors and this means that more complicated measures 
may exist. Moreover, it is also known that an interval exchange map may not be uniquely 
ergodic [7,8] so that even if there are no closed orbits, the invariant measure may not be 
projectively unique. To illustrate the dynamics of similarity exchange maps, we offer the 
following simple example. 

Example. Fix real numbers 0 < a, s < 1 so that a + a.s < 1. We define a function 
f: I --f I as follows: 

1 
s’x + (1 - a - s.a), 0 < x < a 

f(x) = (x - a)/s + (1 - a), a $ x < a + a.s 
x - a - a’s a + a.s < x < 1. 

It is easily seen that this is a similarity interval exchange map, with three intervals being 
permuted and with stretching factor s. A systematic study of such maps has not yet been 
made, but we have illustrated some of the dynamics in Figs 1 and 2 for fixed a = 3 and two 
values of the parameter s. These show pictures of the measures pK defined by 

pK(c() = (number of times f’(x) E CI for i f K)/K 

for some fixed x E [0, l] (Figs 1 and 2 have K = 30,000). In particular, we have not 
established that this apparent qualitative difference is in fact genuine. 

We now begin the description of the algorithm alluded to in the introduction. This has 
two ingredients; firstly an algorithm to decide if an affine lamination has a closed leaf and 
secondly an algorithm to decide if there is a certain self-similarity of the dynamical system 
defined by the similarity interval exchange. Both of these parts use the fact that the 
similarity interval exchange is geometric. We do not know how to decide if the general 
similarity interval exchange contains no periodic point. 

Let 0 : F -+ F be a pseudo-Anosov map with associated invariant foliations (F *, p + I 

and for the purposes of describing these we assume that a Markov partition 
.J&’ = Rlu . . . u R, has been constructed (see [9] for a description of Markov partitions and 
their properties). Let M = M(B) be the mapping torus and suppose that g: Ss-1M is 
a surface immersed transverse to the flow. (As a notational convenience, we suppress the 
map g where this will cause no confusion.) It has been shown by Mangum [2] that such 
a surface is automatically incompressible. By lifting to the universal covering, we see that 
the Markov partition induces a dissection of the universal covering of the surface S into 
rectangles. Of course, in general this will not give a flat structure on S since if a bunch of 
leaves crosses over the fibre F, then its measure is multiplied by a factor of 1 or i- ‘; 
however, we do obtain a singular affine structure (see [6]). It will be necessary to do exact 
calculations and to this end we observe the following lemma. 

LEMMA 2.5. Suppose that a and j? are algebraic over Q whose minimal polynomials are 
known. Then one can compute the minimum polynomial of c1+ /I and a./?. 
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Fig. 1 

Proof: It will become clear from the proof that one can actually compute the irreducible 
polynomial of Ci,jUi,j, or’/?j for any rationals Ui,j. Letf(X) be the irreducible polynomial for 
a and g(Y) be the irreducible polynomial for j?. Form P(Z,X, Y) = Z - Ci,jai,jXiY’; by 
taking resultants (see [ll]) we can construct a polynomial with integer coefficients Q(Z) 
which can be factorised into Z-irreducible polynomials, one of which is the irreducible 
polynomial for z = Ci,jUi.jClipj, It is well known that factorisation can be done algorithmi- 
cally. One then computes the number xi,jai,j~ij?j with sufficient accuracy that one can 
decide which irreducible polynomial is the relevant factor. Q.E.D. 
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Fig. 2. 

We note that the side lengths in the Markov parition ~,4! are the positive eigenvector of 
an integer matrix where the relevant eigenvalue is an algebraic integer, i.e. the dilatation. 
Thus, by taking a large number of resultants, we can compute the irreducible polynomials of 
all side lengths. In this sense, we know all side lengths exactly. 

Moreover, the defining property of the Markov partition is that when the map is 
applied, the image rectangles either run over a rectangle in the set 4 completely or not at 
all. We refer to Fig. 3(a), which shows how rectangles may meet in F. By taking a large 
power of the map, we see that arcs of the type /I and y of the figure are each the unions of 
arcs each of which has measure Lk.ri, where ri runs over measures of rectangles Ri. For 
example, this situation is illustrated in Fig. 3(b), which exhibits the measure fi as the sum of 
3 algebraic numbers. In particular, the measure of any such arc is algebraic and exactly 

computable. 
Our objective is to track the paths of leaves in S; we do this by “shadowing the path” 

down in F, using measure as our parametrisation of height in any rectangle. Thus, we may 
regard the bundle M as F x [0, l] with top and bottom levels identified via the monodromy 
and a cut-apart version of S embedded transverse to the I fibres. A typical leaf in S shadows 
a leaf which runs from rectangle to rectangle in F (we refer again to Fig. 3(a)) but 
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a 

I a+P-y 

(b) 

Fig. 3 

occasionally it will be necessary to cross the levels F x (0) or F x (l), and this entails an 
application of the monodromy; this kind of jump is illustrated in Figs 4(a) and (b) which 
exhibits a leaf-shadow in F which in S is crossing from a rectangle to its image. As the arc 
crosses from top to bottom, it may enter the image rectangle in the middle of some R,; 
however this shift is accounted for by the image measures kl and kz of other rectangles. 
Now we note that, as we observed above, the measures kl and k2 are algebraic, so that if the 
leaf-shadow in F is at a height which is algebraic (in the notation of Fig. 4(a), this is the 
statement c( + c,fl, is algebraic) then its height in the new rectangle (exhibited in Fig. 4(b) as 
k, + k2 + J.(tt + zipi)) in F is also algebraic. This observation suffices for the following 
lemma. 
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(a) 

(b) 

lk2 
Fig. 4. 

PROPOSITION 2.6. Suppose that C is a closed leaf on S passing through rectangle 
height (in the sense of measure) CL Then tl is an algebraic number. 

RcFat 

ProoJ Suppose that we are given a path of a leaf in S which closes up. Then as we 
remarked above, the path of the leaf in question shadows the path of some leaf in F as this 
leaf moves from rectangle to rectangle in F, except when the leaf crosses the 0 or 1 levels, 
when there is an application of the monodromy whose effect on the coordinates is 
multiplication by 2 or its reciprocal. Given a point p E R which is at some height a (in the 
sense of measure) as shown, the height transitions from rectangle to rectangle in F are as 
shown in Figs 3 and 4. Using this description, we can follow the path of the leaf in S, and we 
see that the condition that it closes up is a linear equation in a,fil, . . . , B,,, with integer 
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coefficients of the formf(A)cc + g(& pi, . . . , Pm) = ct. The coefficientf(ll) cannot be 1 as this 
would imply that the closed leaf ran over the fibre algebraically zero times. This is 
impossible as it is shown in [l] the closed leaf can never be freely homotoped into the fibre 
group. Q.E.D. 

COROLLARY 2.7. Zf the foliation Fs contains a closed leaf then this is decidable. 

ProoJ In purely formal terms, one proceeds as follows: For each rectangle enumerate 
the algebraic heights. Fix one such height, c(. The above considerations show that we can 
follow the path of the leaf at that height exactly. We then examine each return to the 
rectangle in question and see whether the associated linear equation has the number CI as 
a solution. It does if and only if there is a closed leaf at this height. If 9s has a closed leaf, 
this process will eventually find it. 

Remark. It seems worthwhile to point out that, in practice, the process is simpler and 
faster than this. Theorem 1.1 shows that any leaf in S spirals onto one of the closed leaves in 
_Ps. Accordingly, we choose any leaf and move forward and wait until this leaf comes very 
close to itself, say some computer calculation repeats a height to a large number of decimal 
places. This yields a segment of leaf and thus a candidate path for the closed leaf, which in 
turn yields a linear equation of the type promised by the above proposition. One then 
verifies that the exact solution to this equation follows the purported path. This technique is 
particularly powerful in the presence of the branched flat structures of [12]. See Section 3 
where we construct the closed leaf in this fashion. 

The second part of the algorithm involves establishing if there is no closed leaf. Here 
again we shall strongly use the geometric nature of our situation. The key fact here is that if 
the surface is to be geometrically infinite, it is embeddable in some finite sheeted covering 
where it is transverse to the lift of the flow 55’ (see [4]). It follows from the results of Fried 
[133 that the monodromy of 5’ comes from the first return map of 9 on S in this finite 
sheeted covering. Let p be a closed flowline in 9; this corresponds to a periodic point of the 
monodromy 19, by passing to a finite sheeted cover (and taking the preimage of S) we may 
suppose that p meets F once, that is to say that pnF is a fixed point of 8. 

Fix some point of intersection q E pnS and choose an arc I lying in 5- containing q in 
its interior. Application of powers of the monodromy 8 to this arc maps it inside itself and 
the observation of the above paragraph implies that if the surface S is geometrically infinite, 
then some power of the monodromy % is the restriction of the monodromy associated with 
S applied to the arc a. This has the consequence that if the surface S is geometrically infinite, 
the similarity interval exchange map associated with the first return of 9,s’ on the arc I is 
isomorphic to the similarity interval exchange associated with the first return on ok(Z) for 
some k > 0. Our notion of isomorphism here is the obvious one: Two similarity exchanges 
c~i and c(~ are isomorphic if there is a homeomorphism h :I + I so that c(i = hcc,hK’. 

In fact, the above argument shows more than just isomorphism; the interval ok(Z) c Z 
and there is an algebraic number so that the homothety centred at q which maps e”(Z) + Z 
conjugates one similarity exchange to the other. We refer to such an isomorphism as an 
algebraic homothety. 

Moreover, we claim that once such an algebraic homothety is established, this also 
proves the surface must in fact be geometrically infinite. The reason is that by Theorem 1.1, 
the alternative is that the similarity exchange has a finite number of periodic points, 
corresponding to where the closed leaves meet I. However, the existence of an algebraic 
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homothety means that the presence of any periodic point other than q will force infinitely 

many periodic points, a contradiction. However, q cannot be a periodic point for the 

similarity exchange, as [l] shows that (in the terms of the description that we use here) the 
closed leaf on S contains no point on F which is B-periodic. Therefore, the final ingredient in 
our algorithm is: 

PROPOSITION 2.8. In the above notation, it is possible to compute the geometric similarity 
interval exchange map exactly. Moreover, given two geometric similarity interval exchanges, 

one can decide if they are conjugate by an algebraic homothety. 

Proof The proof of Proposition 2.6 actually shows a little more: If a leaf is at algebraic 
height in some rectangle, the entire forwards and backwards history of the leaf is at 
algebraic heights in every rectangle. Since singularities of the foliation lie in the frontiers of 
the rectangles of .,4! (i.e. at height zero or algebraic) this implies that all separatrices of the 
foliation meet every rectangle at algebraic heights. We construct the similarity exchange as 
follows: Fix some small arc Z lying entirely inside one rectangle and follow out each 
separatix until the first hit on I. Note that in our case, every leaf is dense; otherwise there is 
a closed leaf, so we may assume that there is always such a hit. Exactly as in the case of an 
interval exchange map, these hits define the exchange. Moreover, all the hits on Z are at 
algebraic heights so that all the intervals have algebraic widths. As above all computations 
can be made exactly. 

The question of whether two given similarity exchanges are conjugate by algebraic 
homothety can also be decided as this is exactly the question of whether one set of algebraic 
numbers is a constant multiple of another set. Q.E.D 

COROLLARY 2.9. Zf Fs contains no closed leaf, then this is decidable. 

Proof Theorem 1.1 shows that this happens if and only if the surface is geometrically 
infinite, so there is a monodromy map and, as explained above, an isomorphism of the 
similarity interval exchange on Z with the similarity interval exchange on @(Z) for some j. 

The procedure to decide this is the following. We compute exactly the similarity 
exchanges on each of the arcs in the descending sequence Z I> O(Z) 1 e2(Z) =) ... and at each 
stage test for isomorphism. The proposition shows that all of these calculations can be done 
exactly. Q.E.D. 

In the case that one constructs an algebraic homothety of the similarity exchange, this in 
fact constructs the monodromy, which is precisely the map which carries rectangles to the 
isomorphic copies of themselves. In particular, we obtain a Markov partition which can be 
used to compute the dilatation and defines the invariant measure. 

3. AN EXAMPLE 

In this section we use the ideas developed earlier to exhibit an example of a surface 
obtained by a single cut and cross join inside a hyperbolic bundle which is geometrically 
infinite. With our current lack of understanding, such examples appear to be rather hard to 
construct. 

We begin with some generalities from [l]. In our standard notation, assume that C is 
a simple closed curve on F which is disjoint from t9C and that C&C does not separate. Let 
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F_ be the surface obtained by cutting F open along C and BC and then compactifying. Thus, 
aF_ has four components C+ , C_ , BC+ ,8C_ where the signs are chosen so that 0 takes the 
+ side of C to the + side of OC. Now define S to be the surface obtained from F_ by 

identifying C, with f3C_ via 8 and similarly identifying C_ with K,. Thus, S is an 
orientable connected surface. Informally, we refer to this construction as a cut and cross 
join. It is easily seen that: 

LEMMA 3.1. There is an immersion g: S%M which is transverse to 9. 

To generate examples, we use the method for constructing pseudo-Anosov maps, 
described in [12], which is a slight generalisation of an idea due to Thurston (see [9]). 

Consider the pair of one submanifolds ‘% and 9 of the surface F depicted in Fig. 5. These 
fill the surface and so define a flat struture with a single singularity, shown in Fig. 6. If X is 
any simple closed curve on this surface, we shall denote the Dehn twist about X by TX. In 
this notation, we define maps T (%) = T,$TC2Tc, and T (9) = TD,T,,T&. If we regard 
each of the rectangles in Fig. 6 as a square, we see that both these maps are affine maps of 
the flat structure, inducing the linear maps 

We construct pseudo-Anosov maps by exhibiting affine maps of the flat structure whose 
local behaviour is given by a 2 x 2-matrix of determinant 1 and trace bigger than 2. To this 
end, we introduce another affine map 5 : F --+ F. Consider Fig. 6; each corner in this picture 
carries a label and if we develop the picture of these corners around the singularity, we see 
the picture given in Fig. 7. In particular, one can check from this picture that the map which 
rotates clockwise around the singularity carrying corner 1 to corner 18 extends to an affine 
map 5: F + F which induces the liner map 

ct1 = _ y :, . ( > 
One also sees that ((C,) = O3 with the orientations shown in Fig. 8. In this notation, we 
consider the family of maps, B(k) = 50 T (9)” which appear in the affine structure as 

Fig. 5. 
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Fig. 6. 

These maps all have the property that they carry Ci to D3 with the orientation shown in 
Fig. 8 and if lkl > 1 they are pseudo-Anosov. Therefore, each bundle M(O(k)) contains 
a surface S(k) obtained from the fibre F by doing a single cut and cross join using the pair 

{C,,W)(C,) = 03). W e c aim 1 that the methods developed above show: 

THEOREM 3.2. (1) The surface S(- 3) is geometrically jinite. 

(2) The surface S(- 2) is geometrically infinite. 

Computer experimentation suggests the following conjecture may be true. Our results 
show that it can be verified on a case by case basis, but no theoretic proof has yet been 

found. 

CONJECTURE 1. With the notation established above, ifI kl > 1, the surface S(k) is geomet- 

rically $nite when k is odd. 

It is in fact easy to verify for low values of odd k that this conjecture is true. By contrast, 
the geometrically infinite case is much more difficult to deal with and only the case k = - 2 

has been thoroughly checked. Nonetheless, we conjecture (with somewhat less confidence): 

CONJECTURE 2. The surface S(k) is geometrically injnite when k is even. 

The proof of Theorem 3.2 goes as follows. One computes that if k = - 3, then the 

invariant foliations for 0( - 3) have slopes 3 + ,,&. One can work with either of these 
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Fig. I. 

slopes; if we choose the positive sign, then as indicated above, one easily finds an approxi- 
mation to the closed leaf. 

The candidate path is shown in Fig. 9. In this context, one quickly shows by linear 
algebra and trigonometry that the solution is an exact one. This uses the fact that all the 
squares have side length one. We indicate how this can be done. For brevity, we denote the 
slope of the foliation by l/s and measure lengths along each horizontal edge. Denote the 
starting point 1 by length a. The point 2 then has coordinate c( + 2s, the point 3 has 
coordinate a + 4s. Then some trigonometry reveals that point 4 has horizontal coordinate 
1 - (1 - CI - 4s)/s = 5 - l/s + E/S. Continuing in this way we see that the other end of the 
leaf has coordinate - 1 + 4s + X’S + 16s’ + 2s3 so that the condition that the leaf is closed 

becomes - 1 + 4s + N’S + 16s’ + 2s3 = CI. After simplifying with s = 3 - &, this is a lin- 
ear equation for CI which one readily checks has a solution. 

The case k = - 2 involves a more complicated calculation; however, matters are 
simplified by the presence of a point L fixed by the monodromy 0( - 2) = 8. In this case, the 

foliations have slopes 2 + $ = 9 * and Fig. 10 shows an arc a c F- lying between 
points a and b, which are defined as the first points of intersection of the Y+-singular arcs 
shown with a short F-arc through L. 
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Fig. 8. 

One then computes the first return map for the d G-’ foliation on the arc a; this is the 
similarity interval exchange shown in Fig. 11. (As a convenience, the edge M is parametrised 

by the hits of the arcs ui and Ui on the horizontal edge just below or; here s = 2 - ,,6 is the 
reciprocal of the slope of ti o-’ This is the table on the left.) The monodromy 8 acts as a five . 

cycle on the separatrices, so this suggests that one computes the first return maps for the 
images 8”(cr). If i = 1 there is no algebraic homothety, but if i = 2, one finds that the 
similarity interval exchange coming from #‘(a) is isomorphic to that on CC, with parameters 
shown in the right-hand table. This shows that the surface S(-2) is geometrically infinite 
and gives a complete description of the monodromy map. This completes the proof of 

Theorem 3.2. Q.E.D. 

We conclude with some remarks of a general nature. If we base all fundamental groups 
at L and let the closed flowline through L be the element t, this shows that (n,(S( - 2)), t”) 
is a subgroup of finite index (in fact, the index is 10) inside nl(M(0)) and if we pass to the 
covering corresponding to this subgroup, the surface S(- 2) lifts to an embedding. An easy 
computation shows that Hi (M (- 2); CI) r a; in particular, the surface S( - 2) shows that 
rank of the rational homology of M(-2) can be increased by passing to a finite sheeted 
covering. It is also easily shown that the subgroup (r~i(S(-2)),t~~) is not normal, so that 
the associated covering is an irregular lo-fold covering of M(-2). 

Some of the power of this method comes from the fact that once the similarity exchange 
map has been computed, this can be used to compute data associated with the monodromy 
of the fibration S(-2). Such computations seem to be the first such of their type for closed 
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Fig. 9. 

hyperbolic manifolds. Indeed, although there is an example of a non-Haken hyperbolic 
3-manifold which is known to contain an immersion of a geometrically infinite surface [14], 
the immersion constructed there is far from explicit, relying on certain arithmetic coincid- 
ences. One pleasing aspect of the above construction is that it does give the first explicit 
immersion of a geometrically infinite surface into a hyperbolic 3-manifold distinct from 
a fibration. 

Moreover, for the example above, further calculation shows that the dilatation of the 
monodromy of the fibration S(-2) is the largest root of the equation 

1 - 1110416t - 1285122t* - 1110416t3 + t4 = 0. 

A similar calculation gives an explicit description of the measure. Notice that the fields 

Q(d) and Q(t) d o not seem to be related in any obvious way. 
One of the reasons such an example is interesting is that it seems to be a rare 

phenomenon that a surface obtained from a fibre by a single cut and cross join is 
geometrically infinite. Indeed, we may geEalise as follows. Let F1 be any covering of F to 
which we can find a lift z( of C and a lift 0(C) of O(C). (Note that we do not require that the 
map 0 lifts.) Then we can immerse the covering space Fr inside M(8) transverse to the flow 
and do a single cut and cross join on Fi using the curves e and @). This surface which we 
denote by S = S(e), OF), Fr), is transverse to the flow. We ask: 

Question. Is there always a covering Fi as above for which S = S(c, OF), F, ) is geomet- 
rically infinite? 
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Fig. 10. 

We conjecture the answer is yes; however, to emphasise further our interest in construct- 
ing geometrically infinite surfaces by a single cut and cross join, we have shown: 

THEOREM 3.3. Suppose that 8: F + F is a pseudo-Anosov map for which we can find 

a simple closed curve C with (a) Cue(C) is non separating, and (b) C, e(C) and O*(C) are all 

disjoint. Then either 

(1) the immersion g : S(C, g(C), F)%M(g) cannot be lifted to become an embedding in any 

jinite covering of M(8), 

or 

(2) there is a finite sheeted covering p : F1 + F, a map O1 covering 8 and a lift C1 of C so 

that the immersion S = S(Cl,gl(C1), F,) c M(B) is geometrically injinite. 

Proof: Without loss of generality, there is a point p E F fixed by the monodromy 8, and 
fundamental groups referred to will be assumed to be based at p. 

Let F _ be the complement in F of open regular neighbourhoods of C and e(C). As usual, 
we regard g(S) as built out of F- together with a pair of annuli embedded in M(g) 

transverse to the flow. 
Suppose that the immersion g(S) can be lifted to an embedding in a finite cover which we 

denote by MO, which we regard as the mapping torus of 8: FO + FO. Since x,(F_) is 
a subgroup of rti (S) it lifts to M,, and gives an embedded subsurface X of the lifted fibre FO. 
F _ has two boundary components c, and c, which cover two components of dF _ , and 
two boundary components @h and OF)* which cover the remaining two components of 
aF_ . Since g(S) lifts to MO this lift is recovered by adjoining two annuli to X. It follows that 
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v2= -1184823+4421821s 

v3= -358017 + 1336139s 

v4 = -206701 + 771420s 

vs = -620104 + 2314261s 

b 

a(c,,c,j_= {0z),, 6@&}. After renumbering if necessary, we can assume that 

P(Ci) = 0(C)i for i = 1,2. 
Let Y be the closure of the complement of X in F,,; this may be disconnected. We form 

a new surface S(Y) by attaching a pair of annuli to Y in the obvious way. Notice that S(Y) is 
transverse to the flow and is therefore incompressible. We claim S(Y) is geometrically 
infinite. It is well-known that it suffices to show that S(Y) meets every flowline (see Cl, 
Theorem 3.141). Now S(Y) meets every flowline except possibly those that meet X. On the 
other hand, it follows from hypothesis (b) that preimages of C, e(C) and P(C), are all 
disjoint, which in turn implies e(X) c Y, so that S(Y) meets every flowline, justifying the 
claim. 

If p0 is the covering projection of M. over M(B), then the restriction of p,, to Y can be 
perturbed slightly so that the image is immersed transverse to the flow which two of the 



FINITE FOLIATIONS AND SIMILARITY INTERVAL EXCHANGE MAPS 221 

boundary components are close to, and either side of C c F x {f}, and similarly the other 

two boundary components are copies of e(C). Working in F x I as opposed to M(0) we now 

define a surface F1 in F x I by attaching two annuli, one between p(c,) and p(c,) and the 
other between p(OT),) and Pi). S’ mce F1 is immersed transverse to the Z-direction it is 
a covering of F. Moreover by construction, the surface S = S(CI,OI(C1), F,) lifts to the 
surface S(Y) and is therefore geometrically infinite. Q.E.D. 

Remark. (i) Condition (b) is not a serious restriction, since it can always be arranged in 
a finite sheeted covering of F to which the monodromy 8 lifts. 

(ii) It seems possible that for sufficiently complicated monodromies, condition (2) might 
fail. This would give hyperbolic manifolds whose fundamental groups are not subgroup 
separable, even on a geometrically finite surface group. 
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