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We consider the question of deciding whether or not certain
subgroups of certain cocompact Kleinian groups are geometri­
cally finite or infinite. This is reduced to a question about sim­
ilarity interval exchange maps. The concept of trimming pro­
duces an practical algorithm to settle the latterquestion . This
algorithm has been implemented on a computer and the re­
sults are perplexing.

In [Cooper et al. 1997J , we described an algo­
rithm to determine whether a certain kind of sur­
face in a three-manifold is quasifuchsian or a vir­
tual fibre. The surface in question is required to
be transverse to the suspension flow in a closed hy­
perbolic three-manifold which fibres, but need not
be embedded. One of the reasons that this ques­
tion is interesting is that it is connected to show­
ing that hyperbolic surface bundles have infinite
virtual Betti number.

Although the algorithm of [Cooper et al. 1997J is
practical in the sense that one can implement it on
a variety of examples, such implementations were
rather ad hoc. In this paper we improve the algo­
rithm somewhat so that it may be more uniformly
implemented on a computer. As a consequence we
obtain a method which is sufficiently efficient and
practical that one can deal with a broader range of
examples.

The first step of [Cooper et al. 1997J is to re­
duce the question to one about similarity interval
exchange (SIE) maps; we recall what is relevant of
the definition below. To expedite the algorithm,
we introduce a concept called trimming. This pro­
duces from a given geometric SIE , a sequence of
SIE's which has the property that after a finite
number of trims, either the SIE has a fixed point
(from which it follows that the surface is quasi-
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326 Experimental Mathematics, Vol. 7 (1998), No .4

Fuchsian) , or else the sequence is eventually peri­
odic (and the surface is a virtual fibre) .

We conclude with examples to which this algo­
rithm was applied; the results suggest that "most"
simple immersed surfaces are quasifuchsian. How­
ever , any general understanding which would en­
able one to predict ahead of time which case occurs
seems elusive.

1. TRIMMING

The precise definition of an SIE is contained in
[Cooper et al. 1997J; roughly speaking it is a gen­
eralisation of the more well known notion of an in­
terval exchange map [Masur 1982]' except that one
fixes a certain number A and is allowed to stret ch
and expand intervals by powers of A.

We may bypass most of the technical considera­
tions here. To this end , we uniquely define a map
o: [0, aJ ---t [0, aJ by the following data:

• A partition of the domain and range into n
closed intervals D I, . .. , D n and R 1 , • •• , R n .

• A biject ion a from the set of domain intervals
to the set of range intervals.

• For each domain interval D i , a sign s, = ±1.

This data determines 0 by the requirement that 0
map a domain interval D, to the range interval a D,
by a linear bijection which is orientation preserving
or reversing depending on whether e, = ±1.

A special subclass of this type of map arises
in the following way. Let S be a closed sur face
equipped with a pair of oriented transverse singular
affinely-measured foliations ~ and 9 (see [Hatcher
and Oertel 1992J for definitions) with finitely many
singularities of prong type. Let I be a closed in­
terval lying inside a leaf of 9. (In particular this
means that it is transverse to ~.) We require that
both endpoints of I lie on separatrices of~. (This
is a technical requirement which is used later.)

Suppose that I is so long that every infinite seg­
ment of every leaf of ~ hits I. Given a point x on I
there is a leaf A of ~ containing x . Then start at x
and move along A in the direction given by the ori-

entation until either A returns to I at some point
y , or else the leaf A runs into a prong singularity
before returning to hit I. In the latter case we say
that x is a break point of O. The break points of 0
partition the domain into subintervals. The break
points of 0- 1 (obtained by moving backwards along
leaves of ~) partition the range. If x is not a break
point of 0, define O(x) = y. This defines a map 0
on I minus the break points. There is one break
point for each separatrix which is oriented to point
towards a singularity. Exactly half the separatri­
ces point towards a singularity and half point away
from a singularity. We thus see that

# of domain intervals = 1 + ~ (# of separatrices).

We parametrise the interval I as [0, aJ using the
transverse affine-measure. This means that in the
universal cover of S the parametrization of every
lift of I induces a measure on I which is a scalar
multiple of the transverse measure on I given by
the measured foliation j. Then the map 0 : I ---t I
const ruct ed above is an SIE. In what follows we
restrict attention to maps constructed in this way.

A generalization of the idea of break point will
be used later. We say that a point x on I is a
potential end point if moving either forwards or
backwards along the leaf A starting at x one gets
to a singularity before hitting any point on the left
hand subinterval [0,xJ of I . Thus break points of
both 0 and 0- 1 are potential end points of I.

Suppose that one now shrinks the interval I by
decreasing a a small amount to obtain a subinterval
J in such a way that leaf rays always return to
J. Then the SIE OJ obtained for J is said to be
induced from 0 by restriction to the subinterval J.
In fact the map OJ is determined solely by 0 and
does not depend on which foliation ~ produces O.
(A referee pointed out that the passage 0 to OJ is
a special case of Rauzy induction; see [Veech 1982J
or [Masur 1982J.)

We will call an SIE finite if there is a periodic
point, and infinite if there is a linear map

~ : [0, aJ ---t [0, ~(a)J
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where ';(a) < a and for which einduces an SIE ii on
[0 ,';(a)] which is conjugate via'; to e. In [Cooper
et al. 1997], we showed:

Theorem 1.1. If e is an SIE coming from an im­
mersed surface S then e is finite or infinite de­
pending on whether the surface S is geometrically
finite or infinite.

We will now describe a process called trimming
which produces from e a new SIE ii defined on
a subinterval [0,a] of [0,a]. This new SIE is the
SIE induced on the subinterval [0,a] bye. The
partitions of the domain and range of e are

a= do < dl < d2 < ... < dn = a

and

a= ro < rl < r2 < ... < rn = a.

The inverse of an SIE is also an SIE, so that after
replacing e by its inverse if necessary, we may as­
sume that dn - l :::; rn-l ' If cr(Dn ) = lin then e is
finite so we may suppose that cr(Dn ) = R.n with
m < n . We define a= rn-l, and the new SIE ii as
follows.

Case 1: dn - l < rn-l (see Figure 1, left). The par­
tition DI , . • • , Dn of the new domain [0,a] consists
of the intersections of the domain intervals D, with
[0, a]. Thus for i < n we have Di = D, and
b; = [dn - l , a]. The partition of the new range
consists of the intervals R I , ... ,R~, R;" ... ,lin-l
which are the same as intervals in the range of eex­
cept that the last interval has been ommitted and
the m-th interval R m has been subdivided into two
subintervals R~, R;, where R~ = e(Dn ) and R;, is
the (closure of) the rest of R.n. The induced SIE
ii equals eeverywhere except on Dp = cr-l(lin) on
which it equals eo e.
Case 2: dn - l = rn-l (see Figure 1, right). In this
case , the induced SIE has one fewer interval in the
domain and range partitions. This may be viewed
as a degenerate example of the previous case where
the new domain interval Dn and new range interval
R~ have zero length. The partition DI , . . . , b;.,
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of the new domain [0, a] consists of the all the do­
main intervals D, except the last one. Similarly,
the partition RI , ... , Rn-l of the new range con­
sists of the all the range intervals R; except the
last one. The induced SIE ii equals e everywhere
except on cr-l(lin) on which it equals eo e.
Theorem 1.2. If e is an SIE coming from an im­
mersed surface S, then after a finite number N(e)
of trims, one obtains an induced SIE ii such that
either ii has a fixed point , or else after rescaling the
domain of ii to equal the domain of e then e= ii.

Proof. First suppose that e is infinite. Thus there is
a pseudo-Anosov cp of the surface S which preserves
a pair of transverse foliations J"and 9. By iterating
the map cp we may suppose that cp fixes all the
singularities and separatrices of both foliations.

By choice the interval I is contained in some
leaf of 9 and if we also arrange (as we may) that
the lefthand endpoint is a singularity of 9, we may
assume that cp maps I into a subinterval of itself.

We need to show that only finitely many trims
are required to get from I to cp(I). Let XI ,X2 , ' "

be the sequence of right hand end points of inter­
vals obtained by trimming I. We claim that these
are potential end points of I. The proof is by in­
duction. The first trim of I produces Xl which is
an endpoint of either a domain or a range subinter­
val. Thus Xl is a break point of I hence a potential
end point. The argument works for further trims
with the following observation: X is a potential end
point of I if and only if it is a break point of the
subinterval [0,x] with the induced SIE.

This is a decreasing sequence of points on I and
we wish to show that they converge to O. Suppose
that they converge to e > O. There are finitely
many separatrices, therefore there is some separa­
trix A which intersects I in infinitely many of these
potential end points. There is a uniform lower
bound to the distance measured along A between
successive hits with I . Hence the sequence of po­
tential end points which lie on A are not contained
in any compact subset of A. This implies that A
contains no point of [0, e], because if y were such
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FIGURE 1. Trimming. Left: Case 1. Right: Case 2.

a point, then all the potential end points which lie
on>' must be between the singularity and y.

Now every infinite segment of every leaf of ~ is
dense in S because this foliation is invariant under
a pseudo-Anosov, Thus>' hits [0, c] infinitely often,
for each c > O. This is a contradiction.

Notice that we have arranged that the righthand
endpoint of I is a potential end point and that it
follows from the definition that the cp image of a
potential end point is a potential end point. Thus
the righthand endpoint of cp(I) is a potential end
point. Moreover, the argument of the above para­
graph shows that the only accumulation point pos­
sible for potential end points in I is the left hand

endpoint. Since trimming removes one potential
end point at a time, we deduce that after a finite
number of trims we get from I to cp(I).

Now suppose that () is finite . We need to show
that after finitely many trims the induced SIE 0has
a fixed point. The analysis again proceeds by look­
ing at the accumulation points of the potential end
points. However, this time each separatrix >. spi­
rals in towards some closed leaf of ~ (see [Cooper
et al. 1994]). Thus the accumulation points are a
subset of the intersections of the closed leaves of ~
with I.

A closed leaf-y of ~ in general meets I in finitely
many points Zl , .. . ,Zn which we label in increasing
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order along I. We claim that the only point in this
set which is an accumulation point of potential end
points is Zl' This is because if A meets I at a point
w near Zi with i > 1, then as A spirals away from /
towards the singularity, it meets I at a point near
Z l and thus w is not a potential end point. It is also
clear from this description that the intersections of
Asufficiently close to Z l are all potential end points,
and thus Zl is an accumulation point of potential
end points.

Thus trimming shortens I so that the right hand
endpoint y of I converges to a point zI on a closed
leaf / . After finitely many trims, the only point of
intersection of / with I is Z l therefore the induced
SIE on I fixes Z l ' 0

This theorem gives rise to the following algorithm.
Given an SIE , check if it has a fixed point. If not,
then trim it . Rescale the new SIE and check if it
equals the original SIE . If not, check the new SIE
for a fixed point. If it does not have one , then trim
it. Rescale the new SIE and check if it equals the
original SIE . Repeat.

Checking whether an SIE has a fixed point is
tantamount to looking at each of the finitely many
linear maps which make up the SIE , and for each
linear map with dilatation not equal to 1 calcu­
lating the unique fixed point by solving a linear
equation. One must then check if this fixed point
lies in the interval on which this linear map equals
the SIE. This involves comparing the magnitude of
the fixed point with the endpoints of the interval.
All these numbers lie in a number field over Q , so
these checks are algorithmic. See [Cooper et al.
1997].

This algorithm can be implemented on a com­
puter. We give a few comments that will improve
the efficiency. The calculation of the initial SIE
can take some time. This is because if the initial
interval I is short, a leaf of 9=' may wander around
the surface for a long time between hits with I .
Thus it is a good idea to start with a long inter­
val I. In fact the initial interval can be replaced
by a strategically chosen finite collection of initial
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intervals. The initial SIE is then defined on this
finite set of intervals. One then trims until either a
fixed point is found, or else the trimming produces
a subinterval of the first interval. Only after this
point does one start checking for an infinite SIE.

The check for a fixed point is slow compared to
doing a trim. Thus one does many trims between
checks for a fixed point. This is justified, for if an
SIE has a fixed point, then doing a trim produces a
new SIE with a fixed point. Similarly, rescaling an
SIE to check for the infinite situation is also slow.
However if one first checks to see if the permutation
associated to the SIE 's are equal, and only rescales
in this situation, then much time is saved.

The basic process of doing one trim is a number
of computer operations which depends only on the
magnitudes of the integers involved in describing
the elements in the algebraic number field which
determine the SIE . It does not depend on the topo­
logical complexity of the surface. In particular, it
is especially easy for quadratic fields and we have
implemented this algorithm on a micro-computer
for surfaces of genus up to a hundred in this case.

2. SOME EXAMPLES

We briefly describe two families of examples based
on the simple construction of [Cooper et al. 1994],
to which we refer for more details. We recall briefly
that the polygon of Figure 2 with the identifica­
tions shown, defines a genus two surface. If we
regard each square in the picture as having unit
side length, we may then define a branched cover­
ing of this surface to a torus. Then we may define
maps TM covering ( ~ ~) and Tr., covering C~ ~) on
this torus.

In this way, we obtain a family Ok of pseudo­
Anosov maps which carry the curve C shown below
to the curve Ol(C) = Ok(C) given by

Ok = TZIT~ ,

which covers the product

2k )
1 +4k .
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330 Experimental Mathematics, Vol. 7 (1998), No.4

Our convention is that (}l = (). The slopes of the
invariant foliations in these examples is given by
1 ± Jk2 + k/k.

The surfaces in these examples are constructed
by taking several copies of this basic surface and
crossjoining various levels along annuli in a pat­
tern described by a picture. (See Figure 3.) We
recall that a crossjoin involves removing a pair of
annuli from the surface and regluing the resulting
boundary components in a certain way so as to give
an immersion of the surface into each of the map­
ping tori M((}k) which is transverse to the foliation
by lines coming from the mondromy. Such an im­
mersion is incompressible; see [Mangum 1998J or
[Cooper et al. 1994J.

The annuli carry labels to indicate which curve
is involved; usually C or B(C). However, for rea­
sons to do with the way the trimming program
handles triangulations, it 's necessary to use curves
which are parallel to these; for example the curve
labelled (}(C) II is the obvious curve in the flat struc­
ture parallel to (}(C). See Figure 2.

To encode the series of examples with this sur­
face we need to describe the surface; this is done
by specifying curves and the levels which they join.
If a pair of curves is specified, one will be the ()

Gil

G

FIGURE 2. The fibre surface.

image of the other and this crossjoin runs around
the circle direction. (In the context of these sim­
ple examples we only use the annulus joining C to
(}k(C) = ()(C).) To explain our notation consider
the surface presented schematically in Figure 3.

5 () G)I ' ~(G)

4 G () G)II

3 G () G)

2

1

0 Q

FIGURE 3. Schematic for cross-joined surfaces.

Each horizontal line represents a copy of the
surface, in this case there are six copies, labelled
0, . .. , 5. Each vertical line represents a crossjoin
along an annulus, where the curve in question is
given by the label on the line. The symbol. is re­
served for the crossjoin around the circle direction.
The surface above will be coded thus:

Curve(s) Crossjoin

(}(C)II (0,4), (2,5)
C (1,4) , (2,3)

(}(C) (1,3)
(C, (}(C)) (0,5)

Using the program, we examined all values of
1 ::; k ::; 64; such surfaces are geometrically infinite
precisely for k = 4, 30, 34, 60, 64.

Various examples of this nature, together with
the values of k when they are geometrically finite,
are recorded below.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

ex
as

 L
ib

ra
ri

es
] 

at
 1

0:
39

 1
0 

D
ec

em
be

r 
20

14
 



Example 2: Number of sheets =7.

Curve(s) Crossjoin

O(G)II (0,5)
Gil (0,1)
G (1,5), (2,4), (3,6)

O(G) (1,4) , (2,3)
(G,O(G)) (0,6)

For 1 ~ k ~ 45, the surfaces are geometrically
infinite precisely when k is even.

Example 3: Number of sheets =9.

Curve(s) Crossjoin

O(G)II (0,7)
G (1,7), (2,6), (3,5), (4,8)

O(G) (1,6), (2,5), (3,4)
(G,O(G)) (0,8)

For 1 ~ k s 25, the surfaces are geometrically
infinite precisely when k is even.

Example 4: Number of sheets =9.

Curve(s) Crossjoin

O(G)II (0, 7)
Gil (0,1)
G (1,7), (2,6), (3,4), (5,8)

O(G) (1,6) , (2,3) , (4,5)
(G,O(G)) (0,8)

For 1 ~ k ~ 80, the surfaces are geometrically
infinite precisely when k is a multiple of 12.

Example 5: Number of sheets =9.

Curve(s) Crossjoin

O(G)II (0,7)
Gil (0,2)
G (1,7), (2,6), (3,4), (5,8)

O(G) (1,6), (2,3), (4,5)
(G,O(G)) (0,8)

Cooper and Long: Trimming 331

For 1 ~ k ~ 30, the surfaces are geometrically
infinite precisely when k is a multiple of 4.

Example 6: Number of sheets =9.

Curve(s) Crossjoin

O(G)II (0,7)
Gil (0,3)
G (1,7), (2,6), (3,4), (5,8)

O(G) (1,6) , (2,3), (4,5)
(G,O(G)) (0,8)

For 1 ~ k ~ 90, these surfaces are all geometri­
cally finite.

Example 7: Number of sheets =11.

Curve(s) Crossjoin

O(G)II (0,9)
G (1,9), (2,8), (3,7), (4,6) , (5,10)

O(G) (1,8), (2,7), (3,6), (4,5)
(G,O(G)) (0,10)

For 1 ~ k ~ 18, the surfaces are geometrically
infinite precisely when k is even.

Conjecture. The sequence behaviour illustrated by
each example persists as k tends to infinity.

For example, the conjecture implies that in Exam­
ple 4 above, the surface described is geometrically
infinite if and only if k is a multiple of 12.

Assuming the truth of the conjecture just posed,
we may explain these examples as follows. Varying
k amounts to composing the original monodromy
o with powers of some Dehn twists on the one­
dimensional submanifold JY( in the fibre. In turn,
this means that we can view each surface as an
immersed incompressible surface S in the hyper­
bolic manifold with cusps obtained by deleting JY(

from the bundle M(O). The mapping torus M(Ok)
is obtained by doing certain Dehn surgeries on this
manifold with cusps.
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FIGURE 4. Permutation-type cross-joined surface.

3 O(C)
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O(C) II

O(C) II

O(C)

C

The surface S is geometrically finite in the hy­
perbolic structure on M(O) - M, but has acciden­
tal parabolics. The behaviour above (modulo the
conjecture) shows that the geometrically finite rep­
resentation of S is a limit of both geometrically
infinite and quasifuchsian surface groups.

Permutation-Type Surfaces

Using the base surface and monodromies as de­
scribed above we can give a different construction.
In this case surfaces are all crossjoined along an
alternating sequence beginning O(G)II , (}(G) , ... ,
together with a single annulus G, O(G) around the
fibre direction. In addition, another series of annuli
is then added all along curves Gi l according to the
following scheme. In each level remove an annular
neighbourhood of the curve C11 . One then writes
down a permutation to describe how these annuli
are reglued. The permutation is described by map­
ping (rather than cycle) notation. The example in
Figure 4 is coded as (2,3,1 ,0).

Geometrically infinite surfaces occur in this fam­
ily, but seem rarer. In fact for 1 ::; k ::; 30 there are
precisely three geometrically infinite four sheeted
surfaces: All have k = 1 and are (2,0,1,3), (2,0,3,1),
(2,1,0,3).

Using random methods (luck), we found three
geometrically infinite six-sheeted surfaces for k = 2:
(1,0 ,3 ,2,5,4), (1,2,3,0,5,4), (1,3,0,2 ,5,4).
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