NAME (please print legibly): ________________________________
Perm Number: ________________________________
Section time: ________________________________

Instructions: Solve the following 5 problems, explaining your answers as clearly as possible.
1. **(10 points)** Find the derivatives of the following functions:

 a) \(f(x) = x \cos x \)

 b) \(g(x) = x \arcsin \frac{1}{x} \)
2. (10 points) The curve described by the equation below is called The Devil’s Curve. Use Implicit differentiation to find y' and use it to find the equation of the line tangent to The Devil’s Curve at the point (0, 2):

$$y^2(y^2 - 4) = x^2(x^2 - 5)$$
3. (10 points) Use The Closed Interval Method to find the absolute maximum and the absolute minimum of the following function in the given interval:

\[f(t) = \cos t - \sin t \]

in \([0, 2\pi]\)
4. **(10 points)** A plane flying horizontally at an altitude of 2 miles and a speed of 600 miles per hour passes directly over a radar station. Find the rate at which the distance from the plane to the station is increasing when it is 3 miles away from the station.
5. (10 points) Consider the following function:

\[f(x) = 2x^4 - 4x^2 + 6 \]

a) Find the intervals of increase and decrease of the function.
b) Find the local maximum and local minimum values.
c) Find the intervals of concavity and the inflection points.