Simplification of metric spaces
Metric graph approximations

Osman Berat Okutan1

1Department of Mathematics
The Ohio State University

04/27/2019

\begin{itemize}
\item This is a joint work with Facundo Mémoli
\item https://arxiv.org/abs/1809.05566. This work was partially supported by grants NSF AF 1526513, NSF DMS 1723003, NSF CCF 1740761.
\end{itemize}
A standard result in metric geometry is that every compact geodesic metric space can be approximated arbitrarily well by finite metric graphs in the Gromov-Hausdorff sense.
A standard result in metric geometry is that every compact geodesic metric space can be approximated arbitrarily well by finite metric graphs in the Gromov-Hausdorff sense.

The first Betti number of the approximating graphs may blow up as the approximation gets finer.
A standard result in metric geometry is that every compact geodesic metric space can be approximated arbitrarily well by finite metric graphs in the Gromov-Hausdorff sense.

The first Betti number of the approximating graphs may blow up as the approximation gets finer.

What can we say about the approximation if we put an upper bound the first Betti number of the approximating graphs?
A standard result in metric geometry is that every compact geodesic metric space can be approximated arbitrarily well by finite metric graphs in the Gromov-Hausdorff sense.

The first Betti number of the approximating graphs may blow up as the approximation gets finer.

What can we say about the approximation if we put an upper bound the first Betti number of the approximating graphs?

Given a compact geodesic space X, we define the sequence $(\delta_n^X)_{n \geq 0}$ as follows:

$$\delta_n^X := \inf \{ d_{GH}(X, G) : G \text{ a finite metric graph, } \beta_1(G) \leq n \}.$$
Approximation by the Reeb graph

Given a function \(f : X \to \mathbb{R} \), the Reeb graph \(X_f \) is the quotient space \(X/\sim \) where \(x \sim y \) if there is a continuous path between \(x \) and \(y \) on which \(f \) is constant. This is a graph under certain conditions and it can be given a length structure pulled back by \(f \). If \(f = d(p, \cdot) \) for some \(p \) in \(X \), then we denote \(X_f \) by \(X_p \). It is known that \(\beta_1(X_p) \leq \beta_1(X) \).
Given a function $f : X \rightarrow \mathbb{R}$, the Reeb graph X_f is the quotient space X/ \sim where $x \sim y$ if there is a continuous path between x and y on which f is constant. This is a graph under certain conditions and it can be given a length structure pulled back by f. If $f = d(p, \cdot)$ for some p in X, then we denote X_f by X_p. It is known that $\beta_1(X_p) \leq \beta_1(X)$.
Approximation by the Reeb graph

Given a function $f : X \to \mathbb{R}$, the Reeb graph X_f is the quotient space X / \sim where $x \sim y$ if there is a continuous path between x and y on which f is constant. This is a graph under certain conditions and it can be given a length structure pulled back by f. If $f = d(p, \cdot)$ for some p in X, then we denote X_f by X_p. It is known that $\beta_1(X_p) \leq \beta_1(X)$.

Theorem

Let X be a compact geodesic space such that $\beta = \beta_1(X)$ is finite and p be a point in X. Then,
Approximation by the Reeb graph

Given a function \(f : X \rightarrow \mathbb{R} \), the Reeb graph \(X_f \) is the quotient space \(X/\sim \) where \(x \sim y \) if there is a continuous path between \(x \) and \(y \) on which \(f \) is constant. This is a graph under certain conditions and it can be given a length structure pulled back by \(f \). If \(f = d(p, \cdot) \) for some \(p \) in \(X \), then we denote \(X_f \) by \(X_p \). It is known that \(\beta_1(X_p) \leq \beta_1(X) \).

Theorem

*Let \(X \) be a compact geodesic space such that \(\beta = \beta_1(X) \) is finite and \(p \) be a point in \(X \). Then,

1. For \(n \geq \beta \),

\[
\frac{d_{GH}(X, X_p)}{16n + 13} \leq \delta_n^X \leq d_{GH}(X, X_p).
\]
Approximation by the Reeb graph

Given a function \(f : X \to \mathbb{R} \), the Reeb graph \(X_f \) is the quotient space \(X/\sim \) where \(x \sim y \) if there is a continuous path between \(x \) and \(y \) on which \(f \) is constant. This is a graph under certain conditions and it can be given a length structure pulled back by \(f \). If \(f = d(p, \cdot) \) for some \(p \) in \(X \), then we denote \(X_f \) by \(X_p \). It is known that \(\beta_1(X_p) \leq \beta_1(X) \).

Theorem

Let \(X \) be a compact geodesic space such that \(\beta = \beta_1(X) \) is finite and \(p \) be a point in \(X \). Then,

i) For \(n \geq \beta \),

\[
\frac{d_{GH}(X, X_p)}{16n + 13} \leq \delta_n^X \leq d_{GH}(X, X_p).
\]

ii) Let \(a_1^X \geq a_2^X \geq \ldots \) be the lengths of the intervals in the first persistent barcode of the open Vietoris-Rips filtration of \(X \). For \(n < \beta \),

\[
\frac{d_{GH}(X, X_p)}{16 \beta + 13} \leq \delta_n^X \leq d_{GH}(X, X_p) + (6 \beta + 6) a_{n+1}^X.
\]