Geometry of Random Surfaces

Sahana Vasudevan

Massachusetts Institute of Technology

April 27, 2019
Random surfaces in moduli space

- $\mathcal{M}_g = \text{moduli space of compact Riemann surfaces of genus } g$
- Fenchel-Nielsen coordinates on \mathcal{M}_g: given by length of curves in a pair of pants decomposition $\ell_1, \ldots, \ell_{3g-3}$, and twist parameters $\tau_1, \ldots, \tau_{3g-3}$ that indicate how to glue along the boundaries of the pairs of pants

Question: If we pick a random surface from \mathcal{M}_g according to the WP volume, what does it look like geometrically?

- shortest geodesic $\geq C$ with high probability asymptotically
- diameter $\leq C \log g$ with probability 1 asymptotically
- Cheeger constant $\geq C$ with probability 1 asymptotically

[Mirzakhani]
Random surfaces in moduli space

- $\mathcal{M}_g =$ moduli space of compact Riemann surfaces of genus g
- Fenchel-Nielsen coordinates on \mathcal{M}_g: given by length of curves in a pair of pants decomposition $\ell_1, ..., \ell_{3g-3}$, and twist parameters $\tau_1, ..., \tau_{3g-3}$ that indicate how to glue along the boundaries of the pairs of pants
- Weil-Petersson (WP) metric on \mathcal{M}_g: Kahler metric, volume form given by $d\ell_1 \wedge d\tau_1 \wedge ... \wedge d\ell_{3g-3} \wedge d\tau_{3g-3}$

Question: if we pick a random surface from \mathcal{M}_g according to the WP volume, what does it look like geometrically?

- shortest geodesic $\geq C$ with high probability asymptotically
- diameter $\leq C \log g$ with probability 1 asymptotically
- Cheeger constant $\geq C$ with probability 1 asymptotically

[Mirzakhani]
Random surfaces in moduli space

- $\mathcal{M}_g = \text{moduli space of compact Riemann surfaces of genus } g$
- Fenchel-Nielsen coordinates on \mathcal{M}_g: given by length of curves in a pair of pants decomposition $\ell_1, ..., \ell_{3g-3}$, and twist parameters $\tau_1, ..., \tau_{3g-3}$ that indicate how to glue along the boundaries of the pairs of pants
- Weil-Petersson (WP) metric on \mathcal{M}_g: Kahler metric, volume form given by $d\ell_1 \wedge d\tau_1 \wedge ... \wedge d\ell_{3g-3} \wedge d\tau_{3g-3}$
- Question: if we pick a random surface from \mathcal{M}_g according to the WP volume, what does it look like geometrically?
 - shortest geodesic?
 - diameter?
 - Cheeger constant?
Random surfaces in moduli space

- $\mathcal{M}_g =$ moduli space of compact Riemann surfaces of genus g
- Fenchel-Nielsen coordinates on \mathcal{M}_g: given by length of curves in a pair of pants decomposition $\ell_1, \ldots, \ell_{3g-3}$, and twist parameters $\tau_1, \ldots, \tau_{3g-3}$ that indicate how to glue along the boundaries of the pairs of pants
- Weil-Petersson (WP) metric on \mathcal{M}_g: Kahler metric, volume form given by $d\ell_1 \wedge d\tau_1 \wedge \ldots \wedge d\ell_{3g-3} \wedge d\tau_{3g-3}$
- Question: if we pick a random surface from \mathcal{M}_g according to the WP volume, what does it look like geometrically?
 - shortest geodesic? $\geq C$ with high probability asymptotically
 - diameter? $\leq C \log g$ with probability 1 asymptotically
 - Cheeger constant? $\geq C$ with probability 1 asymptotically [Mirzakhani]
Random triangulated surfaces

- Triangulated surface: genus g surface S built out of T equilateral triangles, comes with a canonical complex structure

Question: if we pick a random triangulated surface with genus g and T triangles, what does it look like geometrically?

- shortest geodesic $\geq C$ with probability 1 asymptotically
- diameter $\leq C \log g$ with probability 1 asymptotically
- Cheeger constant $\geq C$ with probability 1 asymptotically

Conjecture [Brooks-Makover, Mirzakhani, Guth-Parlier-Young]: discrete measure is a good asymptotic approximation for the WP volume on M_g
Random triangulated surfaces

- Triangulated surface: genus g surface S built out of T equilateral triangles, comes with a canonical complex structure
- if $T \sim 4g$, then the flat metric on S is roughly similar to the hyperbolic metric
Random triangulated surfaces

- Triangulated surface: genus g surface S built out of T equilateral triangles, comes with a canonical complex structure
- if $T \sim 4g$, then the flat metric on S is roughly similar to the hyperbolic metric
- Question: if we pick a random triangulated surface with genus g and T triangles, what does it look like geometrically?
 - shortest geodesic?
 - diameter?
 - Cheeger constant?
Random triangulated surfaces

- Triangulated surface: genus g surface S built out of T equilateral triangles, comes with a canonical complex structure
- if $T \sim 4g$, then the flat metric on S is roughly similar to the hyperbolic metric
- Question: if we pick a random triangulated surface with genus g and T triangles, what does it look like geometrically?
 - shortest geodesic? $\geq C$ with probability 1 asymptotically
 - diameter? $\leq C \log g$ with probability 1 asymptotically
 - Cheeger constant? $\geq C$ with probability 1 asymptotically
[Brooks-Makover]
Random triangulated surfaces

- Triangulated surface: genus g surface S built out of T equilateral triangles, comes with a canonical complex structure.

- If $T \sim 4g$, then the flat metric on S is roughly similar to the hyperbolic metric.

- Question: if we pick a random triangulated surface with genus g and T triangles, what does it look like geometrically?
 - Shortest geodesic? $\geq C$ with probability 1 asymptotically.
 - Diameter? $\leq C \log g$ with probability 1 asymptotically.
 - Cheeger constant? $\geq C$ with probability 1 asymptotically. [Brooks-Makover]

- Conjecture [Brooks-Makover, Mirzakhani, Guth-Parlier-Young]: discrete measure is a good asymptotic approximation for the WP volume on \mathcal{M}_g.
References

R. Brooks, E. Makover
Random constructions of Riemann surfaces

L. Guth, H. Parlier, R. Young
Pants decompositions of random surfaces

M. Mirzakhani
Growth of Weil-Petersson volumes and random hyperbolic surfaces of large genus