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I am an Algebraic Geometer. I am mainly interested in the study of the birational geometry of
moduli spaces of sheaves via variation of stability conditions.

Complex Algebraic Geometry is concerned with the study of solution sets of homogeneous (com-
plex) polynomial equations, each of which is called a projective algebraic variety or variety for short.
Two varieties X and Y are said to be birationally equivalent if their fields of functions C(X) and
C(Y ) are isomorphic, or equivalently if there is an isomorphism φ : U ∼= V between open sets U ⊆ X
and V ⊆ Y . My research focusses in identifying varieties that have the same fields of functions
as varieties that parametrize compactified families of vector spaces over a fixed base, henceforth
coherent sheaves. It turns out that in order to get a parameter space for coherent sheaves that is
a variety we have to fix the topological type (Chern classes) and get rid of some coherent sheaves:
those that violate a numerical condition called stability. The technique to get new varieties that
are birationally equivalent to the parameter variety (moduli space) of stable sheaves is to vary
the notion of stability not only numerically but also categorically, allowing not only sheaves but
complexes of sheaves.

1. Background and past research

Let X be a smooth projective variety over C and choose an embedding of X into a projective
space, i.e., choose a positive line bundle H ∈ Amp(X). We say that a coherent sheaf E is H-
Gieseker semistable if for all subsheaves A ↪→ E one has

(1)
pH(A)(n)

r(A)
≤ pH(E)(n)

r(E)

where pH( · )(n) is the Hilbert polynomial with respect to the embedding given by H, which can
be computed from the Riemann-Roch Theorem as

pH( · )(n) =

∫
X
enH ch( · ) td(X).

The resultant moduli space MH(v) is a projective variety and is our main object of study, mainly
when X is a surface or a threefold.

One thing to observe is that H-Gieseker stability depends on the choice of the positive class H.
In the 90’s many papers were devoted to study how the moduli spaces MH(v) relate as H varies. It
turns out that for a fixed Chern character v the ample cone has a wall and chamber decomposition
such that the moduli spaces MH(v) are constant on each chamber. For a generic choice of v it
was also known that the moduli spaces MH(v) would be birational for polarizations in different
chambers. Thus, by varying the definition of stability one could get different birational models of
MH(v).

Stability conditions were introduced by Bridgeland in [Bri07] in an effort to understand math-
ematically Douglas’ notion of Π-stability for D-branes [Dou02]. A (numerical) pre-stability con-
dition on a smooth variety X is a pair σ = (Zσ,Aσ) consisting of a full abelian subcategory
Aσ ⊂ Db(Coh(X)) (which is the heart of a bounded t-structure), and a linear map Zσ : H2∗

alg(X)→ C
(the central charge) such that

Zσ(ch(E)) ∈ {reφπi| r > 0, φ ∈ (0, 1]} for all E ∈ Aσ,
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i.e., Zσ should satisfy the positivity property that for every E ∈ Aσ, Im(Zσ(ch(E))) ≥ 0, and
Im(Zσ(ch(E))) = 0 only when Re(Zσ(ch(E))) < 0.

An object E ∈ Aσ is called σ-semistable if for every subobject A ↪→ E in Aσ one has

µσ(A) ≤ µσ(E),

where µσ(E) = −Re(Zσ(ch(E)))/Im(Zσ(ch(E))). The pre-stability condition σ is a stability con-
dition if every element in Aσ has a unique Harder-Narasimhan filtration with respect to µσ, and if
there is a quadratic form Qσ on ch(Aσ) ⊂ H2∗

alg(X) that is positive definite on stable objects.
Even though the definition of a stability condition may seem obscure, the defining conditions

seek to generalize the notion of stable bundle on a curve to complexes on arbitrary varieties. On a
smooth curve C there is essentially only one stability condition, namely

σ = (Z = − ch1 +
√
−1 ch0, Coh(C)).

On an arbitrary surface X tons of examples have been constructed by Bridgeland [Bri08], and
Arcara-Bertram [AB13]. These examples have proven to be especially useful to study the birational
geometry of MH(v) (see [ABCH13], [BM14], [BMW14], [Nue16], [LZ16]). For instance, we can
consider the 1-parameter family of linear maps

Zαt(ch(E)) = −
∫
X

ch(E)αt +
√
−1

∫
X

ch(E)αtH,

where αt = etHtd(X) − Γt and Γt ∈ H4(X) ⊗ Q. As proven by Bertram in [Ber14], Zαt is the
central charge of a stability condition σαt = (Zαt ,Aαt) as long as χ(OS)− Γt < K2/8.

Also, if v = ch(E) is the Chern character of an H-Gieseker semistable sheaf, then after choosing
Γt = pH(E)(t)/r(E), one obtains∫

X ch(A)αtH

ch0(A)
µσαt (A) =

1

ch0(A)

∫
X

ch(A)αt =
pH(A)(t)

r(A)
− pH(E)(t)

r(E)
.

Thus the sign of µσαt (A) on subsheaves A ↪→ E for t� 0 determines the H-Gieseker semistability
of E. Moreover, one can show the existence of t0 > 0 such that the only σαt-semistable objects for
t > t0 are the H-Gieseker semistable sheaves of type v. In this direction, together with Bertram
and Wang, we obtained the following:

Theorem 1 ([BMW14]). Let X = P2 and let H be the hyperplane class. If v is primitive then every
birational model of MH(v) can be obtained as a component of the moduli space of σαt-semistable
objects of Chern character v for some t > 0.

Stability conditions have proven to be a source of very interesting geometry. For instance, in
[Mar17] I proved that if νd−3(P2) ⊂ PN is the image of the Veronese embedding of degree d − 3
(d > 5), then one can obtain an explicit sequence of birational transformations of PN flipping the
first bd−12 c secant varieties of νd−3(P2) by restricting an MMP for a moduli space of torsion sheaves

on P2 to the main component of the fixed locus of a particular involution. More precisely, let
vd = (0, d, sd) where sd equals −3d/2 for d odd, and equals −d/2 for d even. The moduli space of
stable torsion sheaves on P2 supported on a curve of degree d and with Chern character vector vd
can be thought as a compactified Jacobian via the support map.

Theorem 2 ([Mar17]). By restricting an MMP for the Mori dream space MH(vd) to the main
component of the fixed locus of the −1 involution, we obtain a diagram

P(H0(OP2(d− 3))∨)

�� ''

M0

~~   

M1

~~   

· · · Mb d−1
2 c

||
pt N0 N1 · · ·
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where M0 is the blowup of P(H0(OP2(d − 3))∨) along νd−3(P2) and Mk
// Mk+1 flips the

(k + 1)-secant variety of νd−3(P2).

Theorem 2 was proven studying the wall-crossing for the family of stability conditions σαt with
Γt = t. Given the stability condition σαt we can define its dual σDαt as the stability condition with
central charge

Zα̃t(ch(E)) = −
∫
X

ch(E)α̃t +
√
−1

∫
X

ch(E)α̃tH,

where α̃t = e−tHtd(X) − (Γt −K2). An important intermediate step that leads to the results in
Theorem 2 was to establish the following duality theorem:

Theorem 3 ([Mar17]). E is σαt-semistable if and only if ED = RHom(E,ωX)[1] is σDαt-semistable.

Moreover, the functor E 7→ ED induces an isomorphism between the moduli spaces Mσαt
(v) and

MσDαt
(vD) provided these moduli spaces exist. In particular, E 7→ E xt1(E , ωX) induces an isomor-

phism between the Gieseker moduli spaces MH(0, c1, χ) and MH(0, c1,−χ).

The first version of the duality theorem is due to Maican in [Mai10] who proved it for moduli
spaces of Gieseker semistable 1-dimensional sheaves on the projective space. It was later proven by
Saccà, in her thesis [Sac13], that Maican’s result holds for moduli spaces of 1-dimensional Gieseker
semistable sheaves on arbitrary smooth projective surfaces.

Our duality theorem was used by Arcara and Miles [AM16] to obtain the destabilizing walls for
O[1] from the destabilizing walls for O, and by Nuer [Nue16] to describe a bouncing wall when
studying the geometry of the Hilbert scheme of points on an Enriques surface.

Also, our way of computing flipping loci based on the Maican stratifications of moduli spaces of
1-dimensional sheaves, introduced in a paper with Bertram and Wang [BMW14] and generalized
in [Mar17], was used by Choi and Chung [CC15] to compute the Poincare polynomial for M6,
the moduli space of 1-dimensional semistable sheaves on P2 supported on a sextic and with Euler
characteristic 1.

The definition of the stability conditions σαt can be extended to include the notion of twisted
Gieseker stability. More precisely, for every fixed Chern character v and every two positive line
bundles H,H ′ ∈ Amp(X) one can consider stability conditions σαs,t with central charges

Zαs,t(ch( · )) = −
∫
X

ch( · )αs,t +
√
−1

∫
X

ch( · )αs,tH,

where αs,t = esH
′+tHtd(X)− Γs,t, and

Γs,t =
pH(E ⊗O(sH ′))(t)

r(E)
=
pH′(E ⊗O(tH))(s)

r(E)
with ch(E) = v.

After a detailed study of the wall and chamber decomposition for the family {σαs,t}s,t≥0, in
my joint work with Bertram, we obtained a new proof of a result Matsuki and Wentworth in
[MW97] explaining the relation between moduli spaces of Gieseker semistable sheaves for different
embeddings of the surface. The precise statement is:

Theorem 4 ([BM15]). The moduli spaces MH(v) and MH′(v) on a smooth surface X can be
related by a sequence of “Thaddeus flips” involving only moduli spaces of twisted Gieseker semistable
sheaves and obtained by varying the family {σαs,t}s,t≥0 on the segment from σα0,t with t � 0 to
σαs,0 with s� 0.

Similar techniques can be used to give an alternative proof of a result of Toda [Tod14] realizing
every smooth MMP on a surface by varying a family of stability conditions.

Theorem 5 ([BM15]). Every smooth MMP for a surface X can be obtained by varying a family
of stability conditions on X, after regarding X as the parameter space for ideal sheaves of a point.
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2. Current research and future plans

When X is a threefold, even the question of whether the space of stability conditions is nonempty
is still widely open. Besides the case when X has a full strong exceptional collection [Mac07], sta-
bility conditions have been constructed only in a handful of cases: X is a Fano threefold [BMT14],
[Mac14], [Sch14], [Li15], [BMSZ17]; an abelian threefold [BMS16], [MP15, MP16]; a crepant res-
olution of an abelian threefold [BMS16]; or a product of projective spaces and abelian varieties
[Kos17].

The conjectural construction of stability conditions on threefolds is due to Bayer, Macr̀ı, and
Toda [BMT14]. For every pair of R-line bundles (B,ω) with ω positive, they construct the heart of
a t-structure AB,ω as a double tilt of Coh(X) and assuming the positivity property of their central
charge

ZB,ω(ch(E)) = −
∫
X
e−B−iω ch(E),

they prove that σB,ω = (ZB,ω,AB,ω) is a stability condition.
In each of the cases mentioned above, the positivity property of ZB,ω has been proven. However,

it was first noticed by Schmidt [Sch17] that if E denotes the exceptional divisor of the blow up
X = blpP3, then one can find a pair of R-line bundles (B,ω) on X such that O(E) ∈ AB,ω violates
the positivity property. More generally, in a recent paper with Schmidt [MSD17], we found a
complete new class of counterexamples:

Theorem 6 ([MSD17]). Let X be a smooth projective threefold. Suppose that there is an effective
divisor D and an ample divisor H such that

D3 >
(D ·H2)3

4(H3)2
+

3

4

(D2 ·H)2

D ·H2
.

Then there exists a pair (βH,αH) such that OD violates the positivity property of ZβH,αH .

In particular, we obtain

Theorem 7 ([MSD17]). Let f : X → Y be a birational morphism between projective threefolds,
where X is smooth. Let D ⊂ X be an effective divisor such that −D is f -ample and f(D) is a
point. Then we can choose a polarization H on X such that ZβH,αH does not satisfy the positivity
property for some β, α ∈ R. In particular, ZβH,αH is not the central charge of a stability condition
on AβH,αH on any Weierstraß elliptic Calabi-Yau threefold over a del Pezzo surface.

Even though the conjectural construction of stability conditions in [BMT14] fails in general, one
can still ask if it is possible to modify the central charges ZB,ω a little so that they satisfy the
positivity property. Conjectural approaches to this problem appear in [BMSZ17] and [Piy17], and
consist of a modification in codimension 2. More precisely, we have

Problem 1. Can we find a class Γ ∈ A1(X)⊗ R such that

ZB,ω(ch(E)) = −
∫
X

(e−iω − Γ)e−B ch(E)

satisfies the positivity property on AB,ω?

In [MSD17] we also give a partial answer to Problem 1:

Theorem 8 ([MSD17]). Assume that X is a smooth projective threefold where Problem 1 has an
affirmative answer for some positive line bundle ω and R-divisor B. Then the induced upper half-
plane of stability conditions on X embeds into the space of stability conditions on the blow up of X
at an arbitrary point.

For these stability conditions skyscraper sheaves C(x) on the blow up are all semistable. A
skyscraper sheaf C(x) is stable if and only if x does not lie on the exceptional divisor.
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In the proof of Theorem 8, the class Γ that is used to modify the construction of the central
charges on the blow up is the pullback of the modifying class on the base plus a multiple of the
square of the exceptional divisor. Our argument uses a noncommutative description of the derived
category of the blow up due to Toda [Tod13], which does not apply to case of the Weierstraß elliptic
Calabi-Yau threefold. This leads to the following

Problem 2. Can we find noncommutative descriptions of the derived category of an elliptic Calabi-
Yau threefold? If so, can we use such descriptions to prove inequalities on the third Chern class of
a tilt-semistable object?

On the other hand, in a series of papers by Lo and his collaborators [Lo16, CL16, LZ15, Lo17b,
Lo17a, Lo17c] the authors study the behavior of stability under natural Fourier-Mukai transforms.

Problem 3. Study the behavior of tilt-semistable objects under Fourier-Mukai transforms on
families of abelian surfaces. Can we use translate the inequality on the third Chern character of a
tilt semistable object to an inequality on the second Chern character of its Fourier-Mukai image?

Now, even if we know the existence of stability conditions on a threefold X, it is not clear that
we can construct a stability condition that recovers Gieseker stability.

Problem 4. Let H be a positive line bundle on a smooth projective threefold X. For which classes
Γt ∈ Num≥2(X)⊗ R is there a value t0 > 0 for which

Zαt(ch(E)) = −
∫
X

ch(E)αt +
√
−1

∫
X

ch(E)αtH,

where αt = etHtd(X)− Γt, satisfies the positivity property for all t > t0?

There is an instance when we can identify Bridgeland stability with Gieseker stability. In an
ongoing project with Schmidt, we have stablished the following:

Theorem 9. Given p(m) = dm + χ ∈ Z[m], there exists a two dimensional family of stability
conditions on P3 with a finite wall and chamber structure, and a distinguished chamber such that
the only σ-semistable objects on this chamber are sheaves supported on a curve of degree d with
Euler characteristic χ and that are semistable in the Gieseker sense.

However, the walls are not easy to compute and the challenge is that there are more numerical
walls than actual walls.

Problem 5. Develop an optimal algorithm to compute the walls where sheaves get destabilized.
What types of wall-crossing affect the component of the Hilbert scheme parametrizing structure
sheaves of curves OC of Hilbert polynomial p(m) in MH(v)?

Now, in the same spirit of the construction of flips for secant varieties of Veronese surfaces, one
can attempt to construct flips for k-uple embeddings of P3 by varying stability conditions. For
simplicity, suppose that k ≥ 4 is even. Write k = d−1, the k-uple embedding of P3 naturally lands
on P(Ext1(O((d+ 3)/2),O(−(d+ 3)/2)[2])). This projective space parametrizes extensions

(2) 0→ O(−(d+ 3)/2)[2]→ E → O((d+ 3)/2)→ 0.

We have v = ch(E) = (2, 0, ((d + 3)/2)2H2, 0), which is not the Chern character of any sheaf.
However, just as in Theorem 9, there is a two-parameter family of stability conditions and a
chamber for the class v where the complexes E are all stable. Some of the walls are produced
by ideal sheaves Ip, Ip+q, . . . , corresponding to the image of P3 by the k-uple embedding, and its
secant varieties.

Problem 6. Describe the stable objects for stability conditions in the last chamber (ω = αH with
0 < α � 1). What type of objects (besides ideal sheaves of points) can destabilize extensions of
the form (2)? Is the wall-crossing in this case produced by variation of a GIT parameter?
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