
Distribution of the exponents of primitive
circulant matrices in the first four boxes of

Zn.

M.I. Bueno
Mathematics Department and College of Creative Studies,

University of California Santa Barbara ∗,

K. Y. Fang
Department of Mathematics

Northwestern University †

S. Fuller
Department of Mathematics

Pennsylvania State University ‡

S. Furtado
Faculdade de Economia do Porto, Portugal §

September 21, 2011

Abstract

In this paper we consider the problem of describing the possible
exponents of n-by-n Boolean primitive circulant matrices. It is well

∗Supported by Dirección General de Investigación (Ministerio de Ciencia y Tecnoloǵıa)
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known that this set is a subset of [1, n − 1] and not all integers in
[1, n − 1] are attainable exponents. In the literature, some attention
has been paid to the gaps in the set of exponents. The first three gaps
have been proven, that is, the integers in the intervals [bn/2c+1, n−2],
[bn/3c + 2, bn/2c − 2] and [bn/4c + 3, bn/3c − 2] are not attainable
exponents. Here we study the distribution of exponents in between
those gaps by giving the exact exponents attained there by primitive
circulant matrices. We also study the distribution of exponents in
between the third gap and our conjectured fourth gap. It is interesting
to point out that the exponents attained in between the (i− 1)th and
the ith gap depend on the value of n mod i.

Keywords: Exponent, primitive circulant matrix, basis of a cyclic
group, order, box.

AMS Subject Classification: 11P70, 05C25, 05C50.

1 Introduction

A Boolean matrix is a matrix over the binary Boolean algebra {0, 1}. An n-
by-n Boolean matrix C is said to be circulant if each row of C (except the first
one) is obtained from the preceding row by shifting the elements cyclically
1 column to the right. In other words, the entries of a circulant matrix
C = (cij) are related in the manner: ci+1,j = ci,j−1, where 0 ≤ i ≤ n − 2,
0 ≤ j ≤ n− 1, and the subscripts are computed modulo n. The first row of
C is called the generating vector. Here and throughout we number the rows
and columns of an n-by-n matrix from 0 to n− 1.

The set of all n-by-n Boolean circulant matrices forms a multiplicative
commutative semigroup Cn with |Cn| = 2n [5, 9]. In 1974, K. H. Kim-
Buttler and J.R. Krabill [7], and S. Schwarz [10] investigated this semigroup
thoroughly.

An n-by-n Boolean matrix C is said to be primitive if there exists a
positive integer k such that Ck = J , where J is the n-by-n matrix whose
entries are all ones and the product is computed in the algebra {0, 1}. The
smallest such k is called the exponent of C, and we denote it by exp(C). Let
us denote En = {exp(C) : C ∈ Cn, C is primitive}.

In [1] we stated the following question: Given a positive integer n, what
is the set En?
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The previous question can easily be restated in terms of circulant graphs
or bases for finite cyclic groups, as we explain next.

Let C be a Boolean primitive circulant matrix and let S be the set of
positions corresponding to the nonzero entries in the generating vector of
C (where the columns are counted starting with zero). C is the adjacency
matrix of the circulant digraph Cay(Zn, S). The vertex set of this graph is
Zn and there is an arc from u to u + a (mod n) for every u ∈ Zn and every
a ∈ S. A digraph D is called primitive if there exists a positive integer k
such that for each ordered pair a, b of vertices there is a directed walk from
a to b of length k in D. The smallest such integer k is called the exponent
of the primitive digraph D. Thus, a circulant digraph G is primitive if and
only if its adjacency matrix is. Moreover, if they are primitive, they have
the same exponent. Therefore, finding the set En is equivalent to finding the
possible exponents of circulant digraphs of order n.

Let n be a positive integer and let S be a nonempty subset of the additive
group Zn. For a positive integer k we denote by kS the set given by

kS = {s1 + · · ·+ sk mod n : si ∈ S} ⊂ Zn.

The set kS is called the k-fold sumset of S.
The set S is said to be a basis for Zn if there exists a positive integer k

such that kS = Zn. The smallest such k is called the order of S, denoted by
order(S). It is well known [7, 10] that the set S = {s0, s1, ..., sr} ⊂ Zn is a
basis if and only if gcd(s1−s0, ..., sr−s0, n) = 1. In [1] we proved that, given
a matrix C in Cn, if S is the set of positions corresponding to the nonzero
entries in the generating vector of C, then C is primitive if and only if S is a
basis for Zn. Moreover, if C is primitive, then exp(C) = order(S). Therefore,
finding the set En is equivalent to finding the possible orders of bases for the
cyclic group Zn. This question is quite interesting by itself. We note that
all the results in this paper will be given in terms of bases for Zn, as the
techniques we can use following this approach result more convenient.

The problem we study in this paper has applications in different areas. In
particular, circulant matrices appear as transition matrices in Markov pro-
cesses [3]. Also, the problem stated in terms of bases for Zn has applications
in coding theory and quantum information [8].

In the literature, the problem of computing all possible exponents at-
tained by circulant primitive matrices or, equivalently, by circulant digraphs,
has been considered. In particular, the following results were obtained. Here
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and throughout, [a, b] denotes the set of positive integers in the real interval
[a, b]. If a > b then [a, b] = ∅.

Lemma 1 [4, 11] If C is a primitive circulant matrix, then its exponent
is either n − 1, bn/2c, bn/2c − 1 or does not exceed bn/3c + 1. Moreover,
exp(C) = n−1 if and only if the number of nonzero entries in the generating
vector of C is exactly 2.

Lemma 2 [6] For every n ≥ 3, [bn/4c+ 3, bn/3c − 2] ∩ En = ∅.

All these results can be immediately translated into results about the
possible orders of bases for a finite cyclic group.

Note that the only primitive matrix in C2 is J2, so E2 = {1}. From now
on, we assume that n ≥ 3. In [1] we presented a conjecture concerning the
possible exponents attained by n-by-n Boolean primitive circulant matrices
which we restate here in a more precise way. We start with a definition.

Definition Let j be a positive integer. We call the jth box of Zn, and denote
it by Bj, the set of positive integers[⌊

n

j

⌋
− 1,

⌊
n

j

⌋
+ j − 2

]
.

Conjecture 3 If C ∈ Cn is primitive, then

exp(C) ∈ [1,
⌊√

n
⌋
] ∪
b√nc⋃
j=1

Bj.

In a recent paper [6], it was proven that if C ∈ Cn is primitive and its
exponent is greater than k for some positive integer k, then there exists dk
such that the exponent of C is within dk of n/l for some integer l ∈ [1, k].
Notice that the result we present in Conjecture 3 produces gaps in the set
of exponents which are larger than the ones encountered in [6]. In fact, we
have shown that the gaps in our conjecture should be maximal [2]. We say
that a gap A in En is maximal if A′ ∩ En 6= ∅ for any interval of integers
A′ ⊂ [1, n−1], with A strictly contained in A′. In [2], we proved that for each
positive integer j, there is an integer n, such that Bj,n is a maximal gap in
En. However, as stated in [6], we remain far from a complete characterization
of the possible exponents of n× n primitive circulant matrices.
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Lemmas 1 and 2 above show the gaps between the first and second box,
between the second and third box, and between the third and fourth box
when these boxes do not overlap. Here we present the distribution of orders
of bases within the first three boxes by showing what orders are attained and
which ones are not. The results for the first and second box were already
known [4, 11] and we include them for completeness. We also study the
order of bases in the fourth box by giving orders that are attained and we
conjecture that those are, in fact, the exact orders in that box. In addition,
we also prove that all integers in [1, b

√
nc] are attained by bases of Zn.

This paper is organized as follows. In Section 2 we state our main results
and prove them in Section 4. In section 3 we state and prove several auxiliary
results concerning the order of bases for Zn, which will be used to prove our
main theorems. The order of several bases for Zn with cardinality at most 4
that are relevant to our proofs is studied in the appendix.

2 Main Results

In this section, we give the exact orders attained by bases for Zn in the first
three boxes of Zn. We also give orders attained in the fourth box. Notice
that the results for the first and second box were already known [4, 11] but
we include them for completeness. Finally, we state that all integers up to
b
√
nc are in En.
The result for the first box is an immediate consequence of Lemma 1.

Theorem 4 [4] For all n,
B1 ⊆ En.

Concerning the second box, we have the following result obtained in [4,
11]. In Subsection 4.1 we include a proof of it using the techniques for bases.

Theorem 5 [4, 11] Let n ≥ 17 be a positive integer.

• If n is even, then B2 ⊆ En.

• If n is odd, then B2 ∩ En =
⌊
n
2

⌋
.

The next two theorems are our main results and will be proven in Section
4. In our first result we assume a lower bound n0 for n, which is the smallest
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value of n for which the theorem holds for all n > n0. The possible orders
in En, with n < n0, appear in Tables 1 and 2. We observe that, for any
n for which the box under study does not overlap with adjacent boxes, the
theorem holds. We also notice that, though we have a lower bound for n in
our results, when n ≡ 0 mod j, j = 3, 4, Bj is a subset of En, for all n.

Theorem 6 Let n ≥ 45 be a positive integer.

• If n ≡ 0 (mod 3), then B3 ⊆ En.

• If n ≡ 1 (mod 3), then B3 ∩ En =
{⌊

n
3

⌋
+ 1,

⌊
n
3

⌋}
.

• If n ≡ 2 (mod 3), then B3 ∩ En =
{⌊

n
3

⌋
+ 1
}
.

Theorem 7 Let n ≥ 16 be a positive integer.

• If n ≡ 0 (mod 4), then B4 ⊆ En.

• If n ≡ 1 (mod 4), then
{⌊

n
4

⌋
+ 2,

⌊
n
4

⌋
+ 1,

⌊
n
4

⌋}
⊆ En.

• If n ≡ 2 (mod 4) or n ≡ 3 (mod 4), then
{⌊

n
4

⌋
+ 2,

⌊
n
4

⌋
+ 1
}
⊆ En.

Though we do not prove it, we conjecture that bn/4c − 1 /∈ En when
n ≡ 1 (mod 4) and bn/4c − 1, bn/4c /∈ En when n ≡ 2, 3 (mod 4).

In Tables 1 and 2 we give the exact orders attained by bases for Zn with
n = 2, 3, 4, ..., 104. As the numerical experiments show, for each n there is a
number of consecutive orders that can be attained by bases of Zn. Though
we prove Theorem 8, according to our numerical experiments, we conjecture
that at least all consecutive integers up to 2

√
n− 2 are attainable orders.

Theorem 8 Let n be a positive integer. Then, [1, b
√
nc] ⊆ En.

Though this result is referred in [6], it seems that the paper where its
proof is said to be is not available.
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n En n En n En

2 1 23 1...8,11,22 44 1...13, 15, 21, 22, 43
3 1,2 24 1...9, 11, 12, 23 45 1...16, 22, 44
4 1,2,3 25 1...9, 12, 24 46 1...13, 15, 16, 22, 23, 45
5 1, 2, 4 26 1...9,12, 13, 25 47 1...13, 16, 23, 46
6 1, 2, 3, 5 27 1...10,13,26 48 1...17, 23, 24, 47
7 1,2,3,6 28 1...10, 13, 14, 27 49 1...14, 16, 17, 24, 48
8 1...4,7 29 1...10, 14, 28 50 1...14, 17, 24, 25, 49
9 1...4,8 30 1...11, 14, 15, 29 51 1...14, 16, 17, 18, 25, 50
10 1...5,9 31 1...11, 15, 30 52 1...15, 17, 18, 25, 26, 51
11 1...5, 10 32 1...11, 15, 16, 31 53 1...15, 18, 26, 52
12 1...6, 11 33 1...12, 16, 32 54 1...15, 17, 18, 19, 26, 27, 53
13 1...6, 12 34 1...12, 16, 17, 33 55 1...15, 18,19, 27, 54
14 1...7, 13 35 1...10, 12, 17, 34 56 1...16, 19, 27, 28, 55
15 1...7,14 36 1...13, 17, 18, 35 57 1...16, 18, 19, 20, 28, 56
16 1...8,15 37 1...13, 18, 36 58 1...16, 19, 20, 28, 29, 57
17 1...6,8,16 38 1...11, 13, 18, 19, 37 59 1...16, 20, 29, 58
18 1...9, 17 39 1...14, 19, 38 60 1...17, 19,20,21, 29, 30, 59
19 1...7, 9,18 40 1...14, 19, 20, 39 61 1...17, 20, 21, 30, 60
20 1...7, 9,10,19 41 1...12, 14, 20, 40 62 1...17, 21, 30, 31, 61
21 1...8,10,20 42 1...14, 15, 20, 21, 41 63 1...17, 20, 21, 22, 31, 62
22 1...8, 10, 11, 21 43 1...12, 14, 15, 21, 42 64 1...18, 21, 22, 31, 32, 63

Table 1: Orders of bases for Zn

3 Order of Bases for Zn

Computing the order of bases for Zn is, in general, a challenging task. In this
section we introduce some results relative to the order of bases of Zn that
will be helpful when proving our main results.

To start with, let us notice that the order of a basis S is invariant under
shifts and multiplication by a unit of Zn, that is, for a ∈ Zn and b a unit of
Zn

order(S) = order(S + a), and order(S) = order(b ∗ S) (1)

where b ∗ S = {bs mod n : s ∈ S}. In particular, this result implies that the
set of orders attained by bases of Zn is the same as the set of orders attained
by bases of Zn containing 0.

We now state some known results about the order of a basis for Zn. The
following lemma gives an upper bound on the cardinality of a basis when a

7



n En n En

65 1,...,14,16,17,18,22,32,64 85 1,...,18,20,21,22,23,28,29,42,84
66 1,...,18, 21,22,23,32,33,65 86 1,...,18,20,21,22,23,29,42,43,85
67 1,...,18, 22, 23, 33, 66 87 1,...,18,20,22,23,28,29,30,43,86
68 1,...,19,23,33,34,67 88 1,...,24,29,30,43,44,87
69 1,...,19,22,23,24,34,68 89 1,...,20,22,23,24,30,44,88
70 1,...,15, 17,18,19,23,24,34,35,69 90 1,...19,21,22,23,24,29,30,31,44,45,89
71 1,...,19, 24, 35, 70 91 1,...,21,23,24,30,31,45,90
72 1,...,20, 23,24,25,35,36,71 92 1,...19,21,22,23,24,25,31,45,46,91
73 1,...,20, 24, 25, 36, 72 93 1,...,21,23,24,25,30,31,32,46,92
74 1,...,20, 25, 36, 37, 73 94 1,...,21,23,24,25,31,32,46,47,93
75 1,...,16, 18,19,20,24,25,26,37,74 95 1,...,20,22,24,25,32,47,94
76 1,...,21,25,26,37,38,75 96 1,...,26,31,32,33,47,48,95
77 1,...,16,18,19,20,21,26,38,76 97 1,...,18,20,22,24,25,26,32,33,48,96
78 1,...,21,25,26,27,38,39,77 98 1,...,22,24,25,26,33,48,49,97
79 1,...,18, 20,21,26,27,39,78 99 1,...,22, 25,26,32, 33,34, 49, 98
80 1,...,17,19,20,21,22,27,39,40,79 100 1,...,21, 23, 24, 25, 26, 27, 33, 34, 49, 50, 99
81 1,...,22,26,27,28,40,80 101 1,...,23, 25, 26, 27, 34, 50,100
82 1,...,17,19,20,21,22,27,28,40,41,81 102 1,...,21,23,25,26,27,33,34,35,50,51,101
83 1,...,19,21,22,28,41,82 103 1,...,19, 21, 22, 23, 26, 27, 34, 35, 51, 102
84 1,...,23,27,28,29,41,42,83 104 1,...,19, 21,22,23,25,26,27,28,35,51,52,103

Table 2: Orders of bases for Zn

lower bound on its order is known.

Lemma 9 [8] Let n ∈ N and ρ ∈ [2, n − 1]. Let S be a basis for Zn such
that order(S) ≥ ρ. Then,

|S| ≤ max
{
n
d

(⌊
d−2
ρ−1

⌋
+ 1
)

: d|n, d ≥ ρ+ 1
}

.

In particular, for each fixed k ∈ N, if order(S) ≥ n
k

and n � 0, then
|S| ≤ 2k.

The next lemma gives an upper and a lower bound on the order of some
bases for Zn with cardinality 3.

Lemma 10 [2] Let 2 ≤ b ≤ n− 1. Then,⌊n
b

⌋
≤ order({0, 1, b}) ≤

⌊n
b

⌋
+ b− 2.
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We now give the exact order of some particular bases for Zn that will be
needed later. The next lemma shows, in particular, that the largest element
of the jth box, j ≤

√
n, belongs to En for all n.

Lemma 11 [1] For j ∈ {1, 2, . . . , b
√
nc},

order{0, 1, j}) =

⌊
n

j

⌋
+ j − 2.

Lemma 12 [2] Let 2 ≤ j ≤
√
n be a positive integer. Then,

order

({
0, 1,

⌊
n

j

⌋
+ 1

})
=

⌊
n

j

⌋
+ j − 2.

Lemma 13 [1] Let 2 ≤ r ≤ n− 1 and t = n− r bn/rc. Then,

order({0, 1, 2, ..., r − 1, r}) =

{
bn/rc , if t ≤ 1
bn/rc+ 1, if t > 1

.

Lemma 14 Let 2 ≤ r ≤ n− 2. Then,

order({0, 1, 2, ..., r − 1, r + 1}) =

⌊
n

r + 1

⌋
+ 1.

Proof Let S = {0, 1, 2, ..., r − 1, r + 1}. It can be shown by induction on k
that, for k ≥ 1, kS = [0, · · · , k(r + 1)− 2] ∪ {k(r + 1)}. Thus, order(S) = k
if and only if k is the minimum integer such that k(r+ 1)− 2 ≥ n− 1, which
implies the result.

Lemma 15 Suppose that m is a divisor of n and let 1 ≤ q < m ≤ n. Then,

order

(
q⋃
i=0

(i+ 〈m〉)

)
=

⌈
m− 1

q

⌉
.

Proof Let S be the basis in the statement. Note that kS =
⋃kq
i=0(i + 〈m〉)

for all k ≥ 1. Therefore, the order of S equals the minimum k such that
kq ≥ m− 1 and the result follows.
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As a consequence of the previous result, we obtain that, if j is a di-
visor of n, the smallest element of the jth box is an element of En, as
order (〈n/j〉 ∪ (1 + 〈n/j〉)) = n/j − 1.

Using canonical projections we can bound the order of some bases in a
convenient way. Given Zn and a proper divisor m of n, we denote by φ the
canonical quotient map φ : Zn → Zn/m. We denote by ordern(S) the order
of the basis S as a subset of Zn. The next result is well known. For that
reason, we include it without proof.

Lemma 16 Let m be a proper divisor of n. If S is a basis for Zn that
contains zero and an element of order m, then φ(S) is a basis for Zn/m and

ordern/m(φ(S)) ≤ ordern(S) ≤ ordern/m(φ(S)) +m− 1.

The next corollaries are immediate consequences of the previous lemma
and Lemma 1.

Corollary 1 [4] Suppose m is a proper divisor of n and S is a basis for Zn

that contains zero and an element of order m. Then,

order(S) ≤ n
m

+m− 2.

Corollary 2 Let S be a basis for Zn and assume that S contains zero and
an element of order 2. Then,

order(S) ≤
⌊n

4

⌋
+ 1 or order(S) ≥

⌊n
2

⌋
− 1.

Corollary 3 Let S be a basis for Zn and assume that S contains zero and
an element of order 3. Then,

order(S) ≤
⌊n

6

⌋
+ 2 or order(S) ≥

⌊n
3

⌋
− 1.

The next technical lemma allows us to prove Corollary 4, which is a key
result in the proof of our main theorems.

Lemma 17 Let j ≥ 2 be an integer and assume that b ∈ Ij =
[⌊

n
j+1

⌋
+ 2,

⌊
n
j

⌋
− 1
]
.

Then,

order({0, 1, b}) ≤
⌊

n

j + 2

⌋
+ j.
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Proof Let S = {0, 1, b}. First we observe that j + 1 < (j + 1)b− n < b. We
divide the proof into three cases.

Case 1: Assume b is even and (j + 1)b − n = b/2. This implies that
(2j + 1)b/2 = n and, therefore, b is not a divisor of n. Since (2j + 1)b = 2n,
then b is an element of Zn of order 2j + 1. Then,

order(S) ≤ n

2j + 1
+ 2j − 1 ≤

⌊
n

j + 2

⌋
+ j.

The inequality on the left follows from Corollary 1 while the right inequality
follows after a few computations. Thus,⌊

n

j + 2

⌋
+ j =

⌊
(2j + 1)(j + 2 + k)

j + 2

⌋
+ j ≥ 3j + 1 + k =

n

2j + 1
+ 2j − 1.

Case 2: Assume (j + 1)b− n < b/2. Let k = j + 1 and p = (j + 1)b− n.
Clearly, [0, k] ∪ {p} ∪ [b, b+ k − 1] ⊆ kS. It can be shown by induction on q
that

q⋃
i=0

[ip, ip+ (q − i)k] ∪ [b, b+ qk − 1] ⊂ qkS (2)

and

q−1⋃
i=0

[ip+ (k − 1)b, ip+ (k − 1)b+ (q − (i+ 1))k] ⊂ (qk − 1)S. (3)

Now assume that q is the largest integer such that qp < b, that is, q = bb/pc
and let l = max{b − pq, p − k}. Note that q ≥ 2. Also, the gaps between
consecutive intervals in the unions in (2) and (3) have at most l−1 elements.
Thus, we have

[0, b+ j] ∪ [jb, jb+ (q − 1)p+ l] ⊆ (qk + l − 1)S.

Moreover, [0, jb + (q − 1)p + l + j − 1] ⊆ (qk + l − 1 + (j − 1))S. Since
n − jb = b − p, we get that (q − 1)p + l + j ≥ n − jb is equivalent to
l + j ≥ b− qp, which is true because of the definition of l. This implies

order(S) ≤ qk + max{b− pq, p− k}+ j − 2. (4)

Let b = pq + r, 0 ≤ r < p and q1 = brk/pc. It is easy to show that

max{b− pq, p− k} ≤ q1 + p− k (5)

11



which implies

order(S) ≤
⌊
bk

p

⌋
+ p− k + j − 2. (6)

Taking into account (6), to complete the proof it is sufficient to show that⌊
bk

p

⌋
+ p− k + j − 2 ≤

⌊
n

j + 2

⌋
+ j. (7)

Let g be the function given by

g(b) =
bk

p
+ p− 3 =

n

p
+ p− 2.

To see that (7) holds it is enough to note that g(b) ≤ n
j+2

+ j, or, equiva-
lently,

b ∈
[
n+ j + 2

j + 1
,
n+ n

j+2

j + 1

]
.

Case 3: Assume (j+1)b−n > b/2. Note that j = bn/bc. Let n = jb+r3,
0 ≤ r3 < b. Thus, (j + 1)b− n = b− r3. Clearly, [0, j + 1]∪ {b− r3} ∪ [b, b+
j] ∪ [jb, jb+ 1] ⊆ (j + 1)S. It can be shown by induction on j that

[0, qj + 1] ∪
q−1⋃
i=0

[b− (q − i)r3, b− (q − i)r3 + ij] ∪ [b, b+ qj] ⊂ (qj + 1)S (8)

Denote by q the largest integer such that qj+2 ≤ b−qr3, that is, q =
⌊
b−2
j+r3

⌋
.

An argument similar to Case 2 implies that

order(S) ≤ qj + max{r3, b− q(j + r3)− 1}+ j − 1. (9)

Let l = max{r3, b− q(j + r3)− 1}. Now we show that

qj + l + j − 1 ≤
⌊
j(b− 1)

j + r3

⌋
+ j + r3 − 1 ≤

⌊
n

j + 2

⌋
+ j. (10)

To see the first inequality in (10), it is enough to note that, by definition of
q, q(j + r3) < b− 1 and b− 1 ≤ (q + 1)(j + r3). To see the second inequality
in (10), let h be the function given by

h(b) =
j(b− 1)

j + r3
+ j + r3 − 1 =

n

j + n− jb
+ j + n− jb− 2.
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Then, we see that

h(b) ≤ n

j + 2
+ (j + 2)− 2 if and only if j + n− jb ∈

[
j + 2,

n

j + 2

]
.

Moreover, for j + n − jb =
⌊

n
j+2

⌋
+ 1, we get bh(b)c =

⌊
n
j+2

⌋
+ j, since by

Theorem 5.7 in [2], and taking into account that j <
√
n, n⌊

n
j+2

⌋
+ 1

 = j + 1.

Therefore, if j + n− jb ∈
[
j + 2, n

j+2
+ 1
]
, or equivalently, if

b ∈
[
n+ j − 1− n

j+2

j
,
n− 2

j

]
(11)

then the second inequality in (10) holds. We finish the proof by showing
that any b satisfying our assumptions is such that (11) holds. Note that, as
(j+ 1)b−n > b

2
, we have 2n/(2j+ 1) < b ≤ bn/jc− 1. Thus, because j ≥ 2,

it follows that b ≤ n
j
− 1 ≤ n−2

j
. First we note that if |Ij| ≥ 2, then

n+ j − 1− n
j+2

j
≤ 2n

2j + 1
< b. (12)

If |Ij| = 1, then b =
⌊
n
j

⌋
− 1. If (12) holds, we are done. Otherwise, it

can be proven that

n+ j − 1− n
j+2

j
≤ b =

⌊
n

j

⌋
− 1.

From the previous lemma we obtain the next corollary which includes
some results presented in [6] without proof.

Corollary 4 Let n ≥ 16. Suppose that 2 ≤ b ≤ bn/2c+ 1.

i) If either b /∈
{

2, 3,
⌊
n
3

⌋
,
⌊
n
3

⌋
+ 1,

⌊
n
2

⌋
,
⌊
n
2

⌋
+ 1
}

, or b =
⌊
n
3

⌋
and n 6= 0

mod 3 then
order({0, 1, b}) ≤

⌊n
4

⌋
+ 2.
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ii) If either b ∈ {3,
⌊
n
3

⌋
+ 1}, or b =

⌊
n
3

⌋
and n ≡ 0 mod 3, or b =

⌊
n
2

⌋
with n odd, then

order({0, 1, b}) =
⌊n

3

⌋
+ 1.

iii) If either b ∈ {2,
⌊
n
2

⌋
+ 1}, or b =

⌊
n
2

⌋
and n is even, then

order({0, 1, b}) =
⌊n

2

⌋
.

Proof By Lemma 17, if b ∈
[⌊

n
4

⌋
+ 2,

⌊
n
3

⌋
− 1
]
∪
[⌊

n
3

⌋
+ 2,

⌊
n
2

⌋
− 1]

]
, then

order({0, 1, b}) ≤
⌊
n
4

⌋
+2. By Lemma 10, if 4 ≤ b ≤ n/4, then order({0, 1, b}) ≤⌊

n
4

⌋
+ 2. By Lemma 12, order{0, 1,

⌊
n
4

⌋
+ 1} =

⌊
n
4

⌋
+ 2. If b =

⌊
n
3

⌋
and n 6= 0

mod 3 then

order({0, 1, b}) =

{
order(1 + 3 ∗ {0, 1, b}) = order({0, 1, 4}), if n ≡ 1 mod 3
order(2 + 3 ∗ {0, 1, b}) = order({0, 2, 5}), if n ≡ 2 mod 3

,

and the result follows from Lemmas 19 and 20. Thus, i) follows. If b ∈
{3, bn/3c + 1} the result follows from Lemmas 12 and 14. If n is odd, then
order({0, 1, bn/2c}) = order(1+2∗{0, 1, b}) = {0, 1, 3} and the result follows
from Lemma 14. If n ≡ 0 mod 3 and b = n/3, then, for k ≥ 1, kS =
[0, k]∪ [n/3, n/3 + k− 1]∪ [2n/3, 2n/3 + k− 2] (in Z). The order of S is the
smallest positive integer k such that k−2+2n/3 ≥ n−1, that is, k = 1+n/3,
which completes the proof of ii). To prove iii), note that, if n is even and
b = n/2, then, for k ≥ 1, kS = [0, k] ∪ [n/2, n/2 + k − 1] (in Z). Thus, the
order of S is the smallest positive integer k such that k−1+n/2 ≥ n−1, that
is, order(S) = n/2. If b ∈ {2, bn/2c+ 1}, the result follows from Lemmas 12
and 13.

4 Proofs of the Main Results

In this section we prove Theorems 5, 6, 7, and 8. To prove the first three
results, we initially show that certain orders in each box are attained by
giving examples of bases with such orders. Then, regarding the first two
theorems, we prove that the remaining orders are not attained.

14



4.1 Proof of Theorem 5

In the next table, we give examples of bases attaining the orders in the second
box according to Theorem 5. The results follow from Lemmas 13 and 15.

Second Box for Zn

n ≡ 0 mod 2 n ≡ 1 mod 2 Order(S)
S = 〈n/2〉 ∪ (1 + 〈n/2〉) — bn/2c − 1

S = {0, 1, 2} S = {0, 1, 2} bn/2c

We now assume that n ≥ 17 and n is odd, and show that there is no basis
S ⊆ Zn such that order(S) = bn/2c − 1.

Assume that S ⊂ Zn is a basis such that order(S) = bn/2c − 1. By
Lemma 9, |S| ≤ 3. Note that, by definition of basis, |S| ≥ 2 and, by Lemma
1, |S| 6= 2 if order(S) 6= n − 1. Thus |S| = 3. Suppose S = {0, a, b} where
a, b ∈ Zn. If a had order m 6= n, then 3 ≤ m < bn/2c, since n is odd. By
Corollary 1, this would imply that order(S) ≤ m + n/m − 2 < bn/2c − 1,
as n ≥ 17. Therefore, a must have order n. Then, S has the same order as
a−1S = {0, 1, c} for some c ∈ Zn. If c > bn/2c + 1, then S has the same
order as 1 − a−1S = {0, 1, d} with d ≤ bn/2c + 1. Thus, we can assume
that c ≤ bn/2c+ 1. Now using Corollary 4, we get order(S) 6= bn/2c − 1, a
contradiction.

4.2 Proof of Theorem 6

The next table gives examples of bases attaining the conjectured orders in
the third box according to Theorem 6. The results follow from Lemmas 13,
14, and 15.

Third Box for Zn

n ≡ 0 mod 3 n ≡ 1 mod 3 n ≡ 2 mod 3 Order(S)
S = 〈n/3〉 ∪ (1 + 〈n/3〉) — — bn/3c − 1

S = {0, 1, 2, 3} S = {0, 1, 2, 3} — bn/3c
S = {0, 1, 3} S = {0, 1, 3} S = {0, 1, 3} bn/3c+ 1

The fact that, for n ≥ 45, order(S) 6= bn/3c − 1, if n ≡ 1 mod 3, and
order(S) /∈ {bn/3c− 1,bn/3c}, if n ≡ 2 mod 3, follows from Lemma 18. Just
note that, if order(S) ∈ {bn/3c − 1, bn/3c}, then, by Lemma 9, |S| ≤ 4.
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We note that the statement of the next lemma is stronger than what is
needed to prove Theorem 6. However, the techniques we developed before
allowed us to get this result, which in turn is useful in the proof of Corollary
5.

Lemma 18 Let n ≥ 45 and suppose that 3 is not a divisor of n. Let S be a
basis for Zn. If |S| ≤ 4, then

order(S) ≤
⌊n

4

⌋
+ 2 or order(S) ≥ bn/3c .

Moreover, if order(S) = bn/3c, then n ≡ 1 mod 3.

Proof Without loss of generality, assume 0 ∈ S. Suppose that n 6= 0 mod
3. Since S is a basis, |S| > 1. If |S| = 2, then order(S) = n − 1 > bn/3c .
Suppose that |S| = 3 or |S| = 4. If S has an element whose order is not
1, 2, n/2 nor n, then, by Corollary 1, the result follows since there can’t be
an element of order 3 or n/3. Thus, this element has order ≥ 4 or ≤ n/4.
Suppose that the order of the elements in S is 1, 2, n/2, or n, where 2 and
n/2 only occur when n is even. If S has an element of order 2, then the
result follows from Corollary 2. If S does not contain an element of order
2, then necessarily it contains an element of order n. Moreover, by (1), if
S has an element of order n, the basis S has the same order as some basis
of the form {0, 1, a, b}. If |S| = 3, then we can assume that S = {0, 1, a},
with 1 < a ≤

⌊
n
2

⌋
+ 1. In this case, the result follows from Corollary 4. If

|S| = 4, assume that S = {0, 1, a, b} with a ≤
⌊
n
2

⌋
+ 1. Since for S ′ ⊂ S,

order(S) ≤ order(S ′), we have

order({0, 1, a, b}) ≤ min{order({0, 1, a}), order({0, 1, b})}. (13)

Let
A1 = {2, 3,

⌊n
3

⌋
+ 1,

⌊n
2

⌋
,
⌊n

2

⌋
+ 1}

and

A2 = {2, 3,
⌊n

3

⌋
+ 1,

⌊n
2

⌋
,
⌊n

2

⌋
+ 1, 1−

⌊n
2

⌋
,−
⌊n

3

⌋
,−2,−1}

Note that −
⌊
n
2

⌋
∈ A2. Also, 1 − bn/2c ≡ bn/2c + 1 mod n, for n even. If

a /∈ A1 or b /∈ A2 then, by Corollary 4 and taking into account (13),

order({0, 1, a, b}) ≤ min{order({0, 1, a}), order({0, 1, b})} ≤
⌊n

4

⌋
+ 2.
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Recall that order({0, 1, 1− b}) = order({0, 1, b}). If a ∈ A1 and b ∈ A2, the
result follows from Lemmas 22, 23, 24, 25 and 26.

The following result was presented in [6]. However, the authors leave
most of the details of the proof to the reader and we do not see clearly that
the result follows from their proof. For that reason and for completeness we
are including it in this paper.

Corollary 5 Let S be a basis for Zn. Then,

order(S) /∈
[⌊n

4

⌋
+ 3,

⌊n
3

⌋
− 2
]
.

Proof Note that, for n < 45, the interval in the statement is empty. Assume
that n ≥ 45. Without loss of generality, suppose that 0 ∈ S. If S ⊂ Zn is a
basis such that bn/4c + 3 ≤ order(S), by Lemma 9, |S| ≤ 6. Assume that
n 6= 0 mod 3. If |S| = 5 or |S| = 6, by [1, Theorem 3.7], order(S) ≤ bn/4c+1.
If |S| ≤ 4, by Lemma 18, order(S) ≤ bn/4c+ 2 or order(S) ≥ bn/3c.

Now assume that n ≡ 0 mod 3. If |S| = 3, the result follows from
Corollary 4. Suppose that |S| ∈ {4, 5, 6}. If bn/4c + 3 ≤ order(S), by
Corollary 1, the order of the elements in S must be 1, 2, 3, n/2, n/3, or n.
First note that S contains, or has the same order as a basis which contains,
an element of order 2, 3 or n. In fact, if |S| = 4 and S does not have an
element of order 2, 3 or n, then S has an element of order n/2 and an element
of order n/3. Hence, {0, 2a, 3b} ⊆ S for some a, b ∈ Zn. Since S is a basis,
3b− 2a is not an element of order n/2 nor n/3 as, otherwise, 6 would divide
2a or 3b and all elements of S would be multiples of 2 or multiples of 3. Thus,
S has the same order as S − 2a, which has an element of order 2, 3 or n. A
similar argument can be applied if |S| = 5 or |S| = 6. Thus, assume that S
contains an element of order 2, 3 or n. If S contains an element of order 2 or
3, the result follows from Corollaries 2 and 3. Now suppose that S contains
an element of order n and no elements of order 2 and 3. If either n/3+1 ∈ S
or n is even and n/2+1 ∈ S, then S can be transformed into a basis with the
same order containing zero and an element of order 2 or 3 and we reduce the
problem to the previous case. Let A1 = {2, 3, bn/2c, bn/2c + 1} and A2 =
{2, 3, bn/2c, bn/2c+ 1, 1− bn/2c,−2,−1}. Assume that S = {0, 1, a, b, c, d},
with a ≤ bn/2c + 1 and b = c = d if |S| = 4, and c = d if |S| = 5. Note
that if S ′ ⊂ S then order(S) ≤ order(S ′). If a /∈ A1 or, b,c, or d /∈ A2 the
result follows from Corollary 4. Suppose that a ∈ A1, b, c, d ∈ A2 and if
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a, b, c or d ∈ {bn/2c, bn/2c + 1, 1 − bn/2c} then n is odd. If |S| = 4, the
result follows from Lemmas 22, 23, 24, 25 and 26. If |S| = 5 or |S| = 6 the
result follows from Remark A by noting that S has a subset of cardinality 4
containing 0 and 1 which is not one of the exceptional bases and, therefore,
order(S) ≤ bn/4c+ 2.

4.3 Proof of Theorem 7

The next table gives examples of bases attaining the orders in the fourth box
of Zn claimed in Theorem 7. The results follow from Lemmas 12, 13, 14, and
15.

Fourth Box for Zn

n ≡ 0 mod 4 n ≡ 1 mod 4 n ≡ 2 mod 4 n ≡ 3 mod 4 Order(S)
〈n/4〉∪ (1+ 〈n/4〉) — — — bn/4c − 1
{0, 1, 2, 3, 4} {0, 1, 2, 3, 4}

⋃2
i=0(i + 〈n/2〉) — bn/4c

{0, 1, 2, 4} {0, 1, 2, 4} {0, 1, 2, 4} {0,1,2,4} bn/4c+ 1
{0, 1, (n/4) + 1} {0, 1, bn/4c+ 1} {0, 1, bn/4c+ 1} {0, 1, bn/4c+ 1} bn/4c+ 2

4.4 Proof of Theorem 8

If n ≤ 4, the result follows from Table 1. Assume n ≥ 5. Notice that Zn

is always a basis for Zn, which implies that 1 ∈ En. Consider the set S =
{0, 1, 2, ..., r−1, r+1} with 2 ≤ r ≤ n−2. By Lemma 14, order(S) =

⌈
n+1
r+1

⌉
.

For all r ≥
√
n− 1

n+ 1

r + 1
− n+ 1

r + 2
=

n+ 1

(r + 1)(r + 2)
=

n+ 1

r2 + 3r + 2
≤ n+ 1

n+
√
n
< 1.

It can be easily seen that, for positive real numbers a and b, dae − dbe ≤
da− be. Thus,

⌈
n+1
r+1

⌉
−
⌈
n+1
r+2

⌉
≤ 1 for all r ≥

√
n− 1, which implies that all

integers from 2 to

⌈
n+1

d√ne−1+1

⌉
are attained orders. But

⌈
n+1

d√ne

⌉
≥
⌈

n

d√ne

⌉
≥

b
√
nc and the result follows.
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A Gallery of bases and their orders

Here we provide the order of some particular bases that are necessary to
prove the main results in this paper. We do not include all the proofs since
many of them are similar.

Lemma 19 For n ≥ 6, order({0, 1, 4}) = bn/4c+ 2.

Proof Let S = {0, 1, 4}. It can be shown by induction on k that in Z, for
all k ≥ 2,

kS = [0, 4k − 6] ∪ [4k − 4, 4k − 3] ∪ {4k}.

Let q = bn/4c . Then,

(q + 1)S = [0, 4q − 2] ∪ [4q, 4q + 1] ∪ {4q + 4} and [0, 4q + 2] ⊆ (q + 2)S.

Note that, as n ≥ 6, 4q+ 4 6= 4q− 1 (mod n). Thus, (q+ 1)S 6= Zn (mod n).
On the other hand, 4q + 2 ≥ n− 1. Thus, the result follows.

Lemma 20 For n ≥ 6, order({0, 2, 5}) ≤ bn/5c+ 3.

Lemma 21 For n ≥ 4, order({0, 2, 3, 4}) = bn/4c+ 1.

Bases of the form {0, 1, 2, a}

Lemma 22 Let n ≥ 21. Let a ∈ {3, bn/3c + 1, bn/2c , bn/2c + 1, 1 −
bn/2c ,−bn/3c ,−2,−1} and S = {0, 1, 2, a}. Then,

order(S) ≤ bn/4c+ 2 or order(S) ≥ bn/3c − 1.

Moreover, if n ≡ 1 mod 3, then order(S) 6= bn/3c − 1 and if n ≡ 2 mod 3,
then order(S) /∈ {bn/3c − 1, bn/3c}.

Proof Case 1: If a ∈ {3,−1}, then the basis S has the same order as
{0, 1, 2, 3} and the result follows by Lemma 13.

Case 2: If a = −2, then S has the same order as 2 + S = {0, 2, 3, 4} and
the result follows from Lemma 21.

Case 3: Suppose that a ∈ {bn/2c , bn/2c + 1, 1 − bn/2c}. Assume n is
even. Note that 1− bn/2c = bn/2c+ 1. In this case, S contains an element
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of order 2 or it has the same order as a basis containing 0 and an element of
order 2. Thus, the result follows from Corollary 2. Assume n is odd. Then,

order({0, 1, 2, bn/2c}) = order({0, 1, 3, 5}) ≤ order({0, 1, 5}),

and

order({0, 1, 2, bn/2c+ 1}) = order({0, 1, 2, 4}) ≤ order({0, 1, 4}).

In both cases, order(S) ≤ bn/4c+ 2 by Corollary 4. Also,

order({0, 1, 2, bn/2c+ 2}) = order({0, 2, 3, 4}) ≤ bn/4c+ 2

by Lemma 21. Note that 1− bn/2c = bn/2c+ 2.
Case 4: Suppose that a ∈ {−bn/3c , bn/3c + 1}. If n ≡ 0 mod 3, then S

contains an element of order 3 or it has the same order as a basis containing
0 and an element of order 3. Thus, the result follows from Corollary 3. Let
n ≡ 1 mod 3. If a = −bn/3c, then 3 ∗ S = {0, 1, 3, 6} and

order(S) = order(3 ∗ S) ≤ order({0, 1, 6});

if a = bn/3c+ 1, then 3 ∗ S − 2 = {0, 1, 4,−2} and

order(S) = order(3 ∗ S − 2) ≤ order({0, 1, 4}).

In both cases, order(S) ≤ bn/4c+ 2 by Corollary 4. If n ≡ 2 mod 3, then

order({0, 1, 2,−bn/3c}) = order({0, 1, 4,−2})

and
order({0, 1, 2, bn/3c+ 1}) = order({0, 1, 3, 6}),

and the result follows as before.

Bases of the form {0, 1, 3, a}

Lemma 23 Let n ≥ 30. Let a ∈ {bn/3c+1, bn/2c , bn/2c+1, 1−bn/2c ,−bn/3c ,−2,−1}
and S = {0, 1, 3, a}. Then,

order(S) ≤
⌊n

4

⌋
+ 2 or order(S) ≥

⌊n
3

⌋
− 1.

Moreover, if n ≡ 1 mod 3, then order(S) 6= bn/3c − 1 and if n ≡ 2 mod 3,
then order(S) /∈ {bn/3c − 1, bn/3c}.
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Bases of the form {0, 1,
⌊
n
3

⌋
+ 1, a}

Lemma 24 Let n ≥ 30. Let a ∈
{⌊

n
2

⌋
,
⌊
n
2

⌋
+ 1, 1−

⌊
n
2

⌋
,−
⌊
n
3

⌋
,−2,−1

}
and S = {0, 1,

⌊
n
3

⌋
+ 1, a}. Then,

order(S) ≤
⌊n

4

⌋
+ 2 or order(S) ≥

⌊n
3

⌋
− 1.

Moreover, if n ≡ 1 mod 3, then order(S) 6= bn/3c − 1 and if n ≡ 2 mod 3,
then order(S) /∈ {bn/3c − 1, bn/3c}.

Bases of the form {0, 1,
⌊
n
2

⌋
, a}

Lemma 25 Let n ≥ 22. Let a ∈ {bn/2c + 1, 1 − bn/2c ,−bn/3c ,−2,−1}
and S = {0, 1, bn/2c , a}. Then,

order(S) ≤
⌊n

4

⌋
+ 2 or order(S) ≥ bn/3c − 1.

Moreover, if n ≡ 1 mod 3, then order(S) 6= bn/3c − 1 and if n ≡ 2 mod 3,
then order(S) /∈ {bn/3c − 1, bn/3c}.

Proof If n is even, then S contains an element of order 2 and the result
follows from Corollary 2. Now suppose that n is odd. Note that 2 ∗ S + 1 =
{0, 1, 3, 2a+ 1}.

For a = −1, order(S) = order({0, 1, 3,−1}) = order({0, 1, 2, 4}) ≤
bn/4c+ 2, by Corollary 4.

For a = −bn/3c and n ≡ 0 mod 3, S contains an element of order 3 and
the result follows from Corollary 4.

For a = bn/2c + 1, order(S) = order(2 ∗ S + 1) = {0, 1, 2, 3} and the
result follows from Lemma 13.

Now suppose that a does not satisfy the previous cases. We have
order(S) = order({0, 1, 3, b}), with b ∈ {4, bn/3c+ t+ 1,−3}, where 0 < t =
n− 3 bn/3c ≤ 2. Thus,

order(S) ≤ order({0, 1, b}) ≤ bn/4c+ 2

by Corollary 4.

Bases of the form {0, 1,
⌊
n
2

⌋
+ 1, a}
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Lemma 26 Let n ≥ 21. Let a ∈ {1 − bn/2c ,−bn/3c ,−2,−1} and S =
{0, 1, bn/2c+ 1, a}. Then,

order(S) ≤
⌊n

4

⌋
+ 2 or order(S) ≥ bn/3c − 1.

Moreover, if n ≡ 1 mod 3, then order(S) 6= bn/3c − 1 and if n ≡ 2 mod 3,
then order(S) /∈ {bn/3c − 1, bn/3c}.

Proof If n is even, then S has the same order as S − 1, which contains 0
and an element of order 2. Thus, the result follows from Corollary 2. Now
suppose that n is odd. Then, order(S) = order({0, 1, 2, 2a}).

If a = 1 − bn/2c = bn/2c + 2, then 2a = 3 and the result follows from
Lemma 13.

If a = −2, then 2a = −4 and, by Corollary 4,

order(S) ≤ order({0, 1,−4}) = order({0, 1, 5}) ≤ bn/4c+ 2.

If a = −1, then 2a = −2 and, by Lemma 21, order(S) = order({0, 2, 3, 4}) ≤
bn/4c+ 2.

Suppose that a = −bn/3c. If n ≡ 0 mod 3, then S contains 0 and an
element of order 3 and the result follows from Corollary 3. If n ≡ 1 mod 3,
then S = {0, 1, 2, bn/3c+ 1} and the result follows from Lemma 22. If n ≡ 2
mod 3, then, by Corollary 4,

order(S) = order({0, 1, 2, bn/3c+2}) ≤ order({0, 1, bn/3c+2}) ≤ bn/4c+2.

Remark Suppose that S = {0, 1, a, b}, with a ∈ {2, 3, bn/2c, bn/2c + 1}
and b ∈ {2, 3, bn/2c, bn/2c + 1, 1 − bn/2c,−2,−1}, where n is odd if a or
b ∈ {bn/2c, bn/2c + 1,−bn/2c}. From the proofs of Lemmas 22, 23, 24,
25 and 26, we get that order(S) ≤ bn/4c + 2 if S is not one of the next
exceptional bases:

{0, 1, 2, 3}, {0, 1, 2,−1}, {0, 1, bn/2c , bn/2c+1}, {0, 1, bn/2c+1, 1−bn/2c}.

Note that all of them have the same order as {0, 1, 2, 3}.
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