The War of Codemakers \& Codebreakers

Çetin Kaya Koç koc@cs.ucsb.edu

Since the time of Caesar or even earlier, people are interested in "secret communications"

Enemy
To hide the content of his messages from the enemy, Caesar developed "an encryption method" = Caesar Cipher

Caesar Cipher

For every letter in the word, replace the letter with the letter 3 locations ahead in the alphabet
abcdefghijklmnopqrstuvwxyz
For example, if Caesar wants to send the order "attack", he encrypts it as:
attack -> dwwdfn
and sends it to his General.
The enemy also captures the message and sees "dwwdfn". But the enemy does not know what that means!! ©

The General decrypts "dwwdfn" by replacing every letter with the letter 3 locations back in the alphabet. ©
dwwdfn -> attack

Encryption

A transformation of the message such that
\checkmark your enemy captures the encrypted message
\diamond your enemy should not be able to decrypt
\diamond your friend receives the encrypted message
\triangleleft your friend decrypts and obtains the message
\triangleleft cryptography: science of making encryption methods
cryptanalysis: science of breaking encryption methods
\triangleleft cryptology: cryptography + cryptanalysis
\checkmark to encrypt, to decrypt; to encipher, to decipher
\diamond cipher: cryptographic (crypto) algorithm
\diamond message: meaningful text you are sending
s ciphertext: encrypted text
\diamond There is "a civilized war" between cryptographers \& cryptanalysts ... codemakers \& codebreakers

Exercises:

1. Encrypt "wait" using Caesar cipher
2. Encrypt "yield" using Caesar cipher
3. Encrypt "return now" using Caesar cipher
4. Decrypt "uxq iru brxu olih" using Caesar cipher

Representation

a	b	c	d	e	f	g	h	i	j	k	l	m	n	o	p
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

q	r	s	t	u	v	w	x	y	z
16	17	18	19	20	21	22	23	24	25

Every letter is represented as a number between 0 and 25 Instead of working with letters we work with numbers

Affine Cipher

Affine cipher encrypts or decrypts a number-represented letter using the formula
$\begin{array}{ll}\text { Encrypt using } & \alpha=\alpha+k \bmod 26 \\ \text { Decrypt using } & \alpha=\alpha-k \bmod 26\end{array}$
Here k is known to you and your friend
The enemy does not (should not) know k
k is called the secret key

Caesar cipher is an affine Cipher with $\mathrm{k}=3$
Encrypt using

$$
\alpha=\alpha+3 \bmod 26
$$

Decrypt using

$$
\alpha=\alpha-3 \bmod 26
$$

Affine Cipher Example
$\mathrm{k}=11$
Represent "dinner" using numbers "3 813134 17"
Then encrypt "dinner" = "3 813134 17" using k=11

$$
\begin{array}{ll}
3+11=14 \bmod 26 & \rightarrow> \\
8+11=19 \bmod 26 & \\
13+11=24 \bmod 26 & \rightarrow y \\
13+11=24 \bmod 26 & \rightarrow y \\
4+11=15 \bmod 26 & \rightarrow p \\
17+11=28=2 \bmod 26 & \rightarrow>
\end{array}
$$

"dinner" is encrypted as "otyypc"

Affine Cipher

Decryption of "otyypc" = "14 19242415 2"
Decryption method: $\alpha=\alpha-k \bmod 26$

The decrypted text is "dinner"

Exercises:

5. Encrypt "avatar" using the affine cipher with $k=0$
6. Encrypt "rain" using the affine cipher with $k=10$
7. Decrypt "wtaad" using the affine cipher with $\mathrm{k}=15$
8. Decrypt "cxeeh" using affine cipher with $\mathrm{k}=19$

Breaking Ciphers!!! ©

Breaking or cryptanalysis of a cipher means
\checkmark either: decrypting without knowing the unknown key ヶ or: discovering the unknown key

Method 1: Try all possible keys
This encrypted message is given: "httpnj" and we don't know k (key) ... i.e., we are the enemy!! ©
"httpnj" = "7 19191513 9"
Remember, decryption rule: $\alpha=\alpha-\mathrm{k} \bmod 26$
But we don't know k... so we will try all possible values for it
All possible values of k are $0,1,2,3, \ldots, 25$
PS: No need to try $k=0$, since $k=0$ doesn't hide the message

Method 1: Try all possible keys

```
"httpnj" = "7 19 19 15 13 9"
Decryption rule: }\alpha=\alpha-k\operatorname{mod}2
Try k=1,2,3,\ldots,25
k=1 ... "6 18 181412 8" = "gssomi" ??
k=2 ... "5 171713117" = "frrnlh" ??
k=3 ... "41616 12 106" = "eqqmkg" ??
k=4 ... "31515119 5" = "dppljf" ??
k=5 ..."2141410 84" = "cookie" ©(
k=6 ... "1131397 3" = "bnnjhd" ??
k=7 ... "0121286 2" = "ammigc" ??
k=8 ... "25111175 1" = "zllhfb" ??
```

Fortunately, there are only 25 keys ... ©)

Method 2: Frequency of Letters

In an arbitrary English text, some letters appear more often than others: letter e appears the most, then letter t, then letter a,... , letter z appears the least

Method 2: Frequency of Letters

Suppose the following encrypted sentence is given
"tbxqebo fp dobxq ebob"
and we are trying to find the key
In the encrypted text, the letter " b " appears the most often!! Very likely " b " is the encryption of " e "

$$
\begin{aligned}
& \text { "b" }=\text { "e" }+k \bmod 26 \\
& 1=4+k \bmod 26
\end{aligned}
$$

This means $k=23$ because $4+23=27=1 \bmod 26$.
Using $k=23$ in the above text, we decrypt it at once: "tbxqebo fp dnbxq ebnb" -> "weather is great here"

Method 2 is better ... we did not have to try all possible keys \odot

Exercises:

9. Break the encryption of "xurq ue nqmgfurgx"
10. Break the encryption of "vhytqoi qhu jxu ruij"
11. Break the encryption of "tboub cbscbsb j† b gvo upxo"
12. Break the encryption of "cn hypyl luchm ch wufczilhcu"
