
A more accurate algorithm for computing the

Christoffel transformation ?

Maŕıa I. Bueno and Froilán M. Dopico a,b

aDepartment of Mathematics, The College of William and Mary
P.O. Box 8795, Williamsburg, VA 23187-8795, USA. mbueno@math.uc3m.es

bDepartamento de Matemáticas, Universidad Carlos III de Madrid,
Avda. de la Universidad, 30. 28911 Leganés, Spain. dopico@math.uc3m.es

Abstract

A monic Jacobi matrix is a tridiagonal matrix which contains the parameters of
the three-term recurrence relation satisfied by the sequence of monic polynomials
orthogonal with respect to a measure. The basic Christoffel transformation with
shift α transforms the monic Jacobi matrix associated with a measure dµ into the
monic Jacobi matrix associated with (x − α)dµ. This transformation is known for
its numerous applications to quantum mechanics, integrable systems, and other
areas of mathematics and mathematical physics. From a numerical point of view,
the Christoffel transformation is essentially computed by performing one step of
the LR algorithm with shift, but this algorithm is not stable. We propose a more
accurate algorithm, estimate its forward errors, and prove that it is forward stable,
i.e., that the obtained forward errors are of similar magnitude to those produced by
a backward stable algorithm. This means that the magnitude of the errors is the best
one can expect, because it reflects the sensitivity of the problem to perturbations
in the input data.

Key words: Christoffel transformation, forward stability, roundoff error analysis,
LR algorithm.
PACS: 65G50, 65F30, 65F35, 42C05

? This research has been partially supported by the Ministerio de Educación y
Ciencia of Spain through grants BFM2003-06335-C03-02 (M. I. Bueno) and BFM
2003-00223(F. M. Dopico), and by the PRICIT Program of the Comunidad de
Madrid through SIMUMAT Project (grant S-0505/ESP/0158). The first author
has also received financial support from the Postdoctoral Fellowship EX2004-0658
provided by Ministerio de Educación y Ciencia of Spain.

Preprint submitted to Elsevier Science 24 August 2006

1 Introduction

Let dµ be a real measure with finite moments. We say that a sequence of
polynomials {Pn}∞n=0 is orthogonal with respect to dµ [5] if

(1) degree(Pn) = n for all n ≥ 0.
(2)

∫
R PnPmdµ = Knδn,m, where Kn 6= 0.

In particular, {Pn}∞n=0 is said to be a monic sequence of orthogonal polynomials
if the coefficient of the term with higher degree of each polynomial is one. Every
sequence of monic orthogonal polynomials satisfies a three-term recurrence
relation

xPn(x) = Pn+1(x) + Bn+1Pn(x) + GnPn−1(x),

P−1(x) ≡ 0, P0(x) ≡ 1, Gn 6= 0 for all n.

The previous set of equations can be written in matrix notation in the following
way

xp = Jp,

where p = [P0(x) P1(x) P2(x) . . .]T and

J =

B1 1 0 ...

G1 B2 1 ...

0 G2 B3 ...
...

...
...

. . .

.

The semi-infinite tridiagonal matrix J is called the monic Jacobi matrix asso-
ciated with {Pn}. Although it is very unusual to denote the entries of a matrix
by capital letters, since we will deal with an algorithm involving two monic
Jacobi matrices, for the sake of clarity, we denote by capital letters the entries
in the input matrix and we denote by the same lowercase letters the entries
in the output matrix.

If the measure dµ is positive the parameters Gi are positive, and the sequence
of orthonormal polynomials can be considered instead of the monic one. In
such a case, the corresponding Jacobi matrix is symmetric. Both Jacobi ma-
trices, the monic and the symmetric, are related through a diagonal similarity.
To keep the paper as concise as possible, we only consider monic Jacobi ma-
trices because they cover the more general case of signed measures. Notice
that in this case the Jacobi matrices may have complex eigenvalues. Parallel
results hold for symmetric Jacobi matrices.

In the literature, numerous results studying the connection between the recur-
rence relations of polynomials orthogonal with respect to two allied measures

2

can be found [1,3,8,14]. This relationship can be extended to the correspond-
ing Jacobi matrices. If dµ(x) denotes a measure and p(x) denotes a polyno-
mial, the measure given by p(x)dµ(x) is called a polynomial perturbation of
dµ(x). The transformation that gives the monic Jacobi matrix associated with
p(x)dµ(x) in terms of the monic Jacobi matrix associated with dµ(x) is called
Christoffel or Darboux transformation. This transformation was first studied
by Christoffel in 1858 [6] and by Geronimus in 1940 [12,13]. In the last two
decades, this transformation has attracted the interest of various specialists
in different branches of mathematics and mathematical physics for its appli-
cations to discrete integrable systems [21,26], quantum mechanics, bispectral
transformation in orthogonal polynomials [16–18], and, in the context of Nu-
merical Analysis, to the computation of quadrature rules [14,20].

Consider a monic Jacobi matrix J associated with a real measure dµ and let
α be a real number. If J − αI = LU denotes the LU factorization without
pivoting of J − αI, where L is unit lower triangular, then the matrix version
of the basic Christoffel or Darboux transformation with shift α [8,10,11,14,20]
is given by

J − αI = LU, J̃ = UL + αI, (1)

where J̃ is the monic Jacobi matrix associated with the measure (x−α)dµ(x),
and the factors L and U have the following structure

L =

1 0 0 0 ...

l1 1 0 0 ...

0 l2 1 0 ...

0 0 l3 1 ...
...

...
...

. . .

, U =

u1 1 0 0 ...

0 u2 1 0 ...

0 0 u3 1 ...

0 0 0 u4 ...
...

...
...

...
. . .

.

From now on, we refer to the transformation given in (1) as Christoffel trans-
formation with shift α.

Those readers familiar with Numerical Linear Algebra algorithms will rec-
ognize equation (1) as one step of the famous Rutishauser’s LR algorithm
to compute eigenvalues of matrices [24,25], whenever they disregard that the
matrices appearing in (1) are semi-infinite. A finite version of (1) appears in
equation (2) of Section 2, and it involves the leading principal submatrices of
order n and n−1 of J and J̃ , respectively. The transformation in equation (2)
is the one we analyze from a numerical point of view. At a first glance, the re-
lationship of (1-2) with one step of the LR algorithm discourages us of finding
a numerical stable algorithm for the Christoffel transformation, because the

3

LR algorithm is unstable. In fact, it is well-known that the LR algorithm has
been replaced by the powerful and stable QR algorithm in most eigenvalue
computations [15]. One of the reasons why the LR algorithm is not stable, is
that the LU factorization in (1-2) is computed without pivoting. This cannot
be avoided in our case, because any pivoting strategy would destroy the tridi-
agonal structure needed in the Christoffel transformation. Recently, a close
counterpart of the LR algorithm, the qd algorithm [23], was cleverly stabilized
in the case of positive definite tridiagonal matrices [7]. However, the ideas in
[7] cannot be directly applied to the Christoffel transformation, because in
the qd algorithm it is assumed that the factors L and U are known. These
ideas, though, give some hope to find a stable numerical algorithm for com-
puting the Christoffel transformation. A key point in this search is that the
Christoffel transformation corresponds to only one step of LR, and, therefore,
it is not needed to stabilize the whole LR algorithm. Notice, however, that
there exist some relevant differences between the Christoffel transformation
and the LR algorithm: 1) the matrices J(B, G) and J(b, g) appearing in (2)
are not similar and therefore, do not have the same eigenvalues, while the
LR algorithm preserves the eigenvalues in all the steps; 2) the objective of
the LR algorithm is computing the eigenvalues of the initial matrix, while
the objective of the Christoffel transformation is computing the coefficients of
the three-term recurrence relation corresponding to the modified sequence of
orthogonal polynomials.

A direct application of (1) leads to the standard algorithm to compute Christof-
fel transformation. This algorithm is described in Section 2. Some authors
guessed the numerical stability properties of this algorithm to compute J̃
based on some numerical experiments [8–10,14,20] without doing a formal er-
ror analysis. They suggested that the algorithm should be “quite stable” when
the initial measure is positive and the shift does not belong to the support
of the measure, i.e., all the eigenvalues of J − αI are real and have the same
sign. A formal analysis of the stability of this algorithm was developed in [2]
when α = 0. There, it was proven that the algorithm is forward stable in
this particular case. We say that an algorithm is forward stable if the forward
errors are of similar magnitude to those produced by a backward stable algo-
rithm [19]. However, we will show that this is not the case when α 6= 0. The
algorithm to compute Christoffel transformation based on a direct application
of (1-2) is unstable, and the good results obtained in [8], [10] or [14] in the
numerical experiments can be explained by the fact that the shifts used for
classical families of orthogonal polynomials were close to the support of the
measure associated with the Jacobi matrices.

In this work, we propose a new algorithm for computing the Christoffel trans-
formation with shift and prove that it is more accurate than the previous one.
We also estimate its forward errors with O(n) cost, and prove that it is compo-
nentwise forward stable. No need to say that forward stability does not imply

4

small forward errors, however we will prove that the new algorithm produces
componentwise relative errors of order the machine precision for large enough
shifts. The forward stability result for the new algorithm holds for any type
of measure –positive or signed–, and for any value of the shift for which the
transformation exists. Notice that the eigenvalues of the initial Jacobi matrix
may be negative or even non real numbers. It should be remarked that the
new algorithm is not componentwise backward stable, even when considering
positive measures supported in (0,∞), i.e, Jacobi matrices with real positive
eigenvalues.

The paper is organized as follows: In Section 2 the new algorithm is introduced,
and it is compared with a direct application of (1-2) on some numerical tests.
These numerical experiments show that the new algorithm is more accurate.
A backward error analysis of the new algorithm is presented in Section 3. A
tight first order forward error bound is computed in Section 4, where it is
justified why the new algorithm is more accurate than the direct application
of (1-2). Finally, forward stability issues are discussed in Section 5. We warn
the reader that many of the roundoff error analysis results we present require
long and involved algebraic manipulations. To keep the paper concise we have
only developed some of them.

2 A new algorithm for computing the Christoffel transformation

In this section we present the standard algorithm to compute the Christoffel
transformation (Algorithm 1). We also present a new algorithm (Algorithm
2) for the same transformation. Moreover, we include some numerical exper-
iments that show that the new algorithm is more accurate than the previous
one.

From now on all the results refer to leading principal submatrices of monic
Jacobi matrices. Since we are interested in the numerical analysis of algo-
rithms that implement Christoffel transformation, we can only consider finite
matrices. We denote by J(B, G) the n × n leading principal submatrix of J ,
where B = [B1, ..., Bn]T , G = [G1, ..., Gn−1]

T . Then, the finite version of the
transformation given in (1) is

J(B, G)− αI = LU, J(b, g) = (UL + αI)n−1, (2)

where (M)n−1 denotes the leading principal submatrix of order n − 1 of
any matrix M , and J(b, g) is the n − 1 leading principal submatrix of J̃ ,
being b = [b1, ..., bn−1]

T the elements on the main diagonal of J(b, g), and
g = [g1, ..., gn−2]

T the elements on the first lower subdiagonal, i.e., the en-
tries in the positions (i + 1, i), 1 ≤ i ≤ n − 2. The n × n matrix equation

5

J(B, G)− αI = LU denotes the LU factorization of J(B, G)− αI, and, here,
L and U are the n×n leading principal submatrices of the semi-infinite L and
U matrices appearing in (1). We have not changed the notation for L and U
for the sake of simplicity.

The following pseudocode gives the standard algorithm to compute Christoffel
transform with shift α of an n×n monic Jacobi matrix J(B, G). This algorithm
was explicitly presented by Gautschi in [10], but it also appears in matrix
notation in [8] among other references.

Algorithm 1 Given an n × n monic Jacobi matrix J(B, G), this algorithm
computes its Christoffel transform J(b, g) of order n− 1 with shift α.
u1 = B1 − α
for i = 1 : n− 2

li = Gi/ui

bi = ui + li + α
ui+1 = Bi+1 − α− li
gi = ui+1li

end
ln−1 = Gn−1/un−1

bn−1 = un−1 + ln−1 + α

The computational cost of Algorithm 1 is 6n− 8 flops.

Notice that Algorithm 1 is not the qd algorithm [23], [22, Section 4] since the
inputs and the outputs in both algorithms are different. In the qd algorithm
it is assumed that the factors L and U corresponding to the LU factorization
of the original matrix are known. Therefore, the input data are, precisely, the
nontrivial entries of these two matrices. Then, the qd algorithm compute the
LU factorization of the matrix J(b, g) − αI being the factors L1 and U1 the
output data.

Algorithm 1 may produce inaccurate outputs. Some numerical experiments
will show, for instance, that when the shift α becomes larger in absolute value,
the accuracy in the outputs decreases. Next we propose a slight modification
in Algorithm 1 that produces a surprising improvement in the accuracy. Let
us define new variables {ti}n−1

i=1 as ti := ui + α. Then, the following new algo-
rithm to compute Christoffel transformation with shift can be derived from
Algorithm 1. Notice that the variables u1, ..., un−1 have disappeared since they
have been replaced by t1, ..., tn−1.

Algorithm 2 Given a n × n monic Jacobi matrix J(B, G), this algorithm
computes its Christoffel transform J(b, g) of order n− 1 with shift α.
t1 = B1

for i = 1 : n− 2

6

li = Gi/(ti − α)
bi = ti + li
ti+1 = Bi+1 − li
gi = (ti+1 − α) li

end
ln−1 = Gn−1/(tn−1 − α)
bn−1 = tn−1 + ln−1

The computational cost of Algorithm 2 is 6n − 9 flops. Notice that the cost
of Algorithm 2 is not larger than the cost of Algorithm 1. Moreover, the same
number of divisions are performed in both algorithms.

We will show that the modifications introduced in Algorithm 1 to get Algo-
rithm 2 have an essential influence on stability and accuracy issues. Although,
we will develop a rigorous roundoff error and stability analysis of Algorithm
2 in the next sections, let us explain very briefly one of the main reasons why
the new algorithm has a much better numerical behavior than the standard
one. One should observe that some harmful cancellations in the computation
of the outputs bi by Algorithm 1 may arise. A significative situation where this
problem can be clearly understood appears when the shift α is large: it can
be easily shown that lim|α|→∞ lk = 0 –see Lemma 9 in Section 4.2–, therefore
ui = Bi−α− li−1 ∼ −α when |α| → ∞, and then bi = ui + li + α ∼ (−α) + α
when |α| → ∞. The reader should notice that this cancellation is avoided in
Algorithm 2.

In matrix notation, Algorithm 2 is equivalent to

J(B, G)− αI = L (T − αI), J(b, g) = ((T − αI) L + αI)n−1 ,

where L is an n×n unit lower bidiagonal matrix with l1, ..., ln−1 in the positions
(2, 1), (3, 2), ..., (n, n − 1), and T is an n × n upper bidiagonal matrix with
t1, ..., tn on the main diagonal and 1’s in the positions (1, 2), (2, 3), ..., (n−1, n).
Notice that, in practice, tn is not computed because it is not used in the
computation of b and g.

Next we include some numerical experiments to show that Algorithm 2 is more
accurate than Algorithm 1. We compare the forward errors produced by both
algorithms for different Jacobi matrices and for different values of α. We have
tested the following types of monic Jacobi matrices:

(1) A 3 × 3 monic Jacobi matrix with B = [10−6, −3 · 10−6, −1] and G =
[2 · 10−6, 10−6].

(2) Monic Jacobi matrices of dimension 30 × 30 associated with Laguerre
polynomials with parameter a = −19/10 + k, where k = 1 : 20.

(3) Monic Jacobi matrices of dimension 30× 30 associated with Jacobi poly-

7

nomials with parameters a = −19/10 + k, b = (−9 + k)/10, where
k = 1 : 20.

(4) Monic Jacobi matrices of dimension 30× 30 associated with Bessel poly-
nomials with parameter a = −101/7 + k2, where k = 1 : 20.

(5) Monic Jacobi matrix of dimension 30× 30 associated with Hermite poly-
nomials.

For each of these matrices we have computed the following componentwise
forward error:

max

{
max

k=1...n−1

{∣∣∣∣∣bk − b̂k

bk

∣∣∣∣∣
}

, max
k=1...n−2

{∣∣∣∣∣gk − ĝk

gk

∣∣∣∣∣
}}

, (3)

where b̂k and ĝk denote the outputs computed by Algorithm 1 or 2 in stan-
dard double precision, i.e., ε ≈ 1.11 × 10−16 is the unit roundoff of the finite
arithmetic, while bk and gk denote the outputs obtained by running the algo-
rithms with 64 decimal digits of precision. The experiments have been done
using MATLAB 5.3, and we have used the variable precision arithmetic of the
Symbolic Math Toolbox of MATLAB. In all our tests, theoretical error bounds
guarantee that the outputs obtained by running Algorithm 1 and 2 with 64
decimal digits of precision have more than 50 significant decimal digits.

For the different types of Jacobi matrices considered, vm1 and vm2 are vectors
whose components are the componentwise forward errors obtained for each
matrix by applying Algorithm 1 and 2, respectively. The results we have got
are presented in Table 1, where for the sake of brevity only max(vm1) and
max(vm2) are shown. Notice that the examples relative to the 3 × 3 matrix
and the Hermite polynomials only consider one matrix for each value of α
and, therefore vm1 and vm2 are just numbers. However, in Table 1 we keep
the notation max(vm1) and max(vm2) for simplicity.

Notice that in most of the examples presented in Table 1 (Bessel polynomials
are an exception), and for every selected value of the shift, while the forward
errors from Algorithm 1 increase as the absolute value of α increases, the
forward errors from Algorithm 2 decrease as |α| grows. Although for most of
the classical families of orthogonal polynomials we have only shown results for
non positive values of the shift α, the same kind of results are obtained when
positive shifts are considered.

The numerical experiments we have performed indicate that the new algorithm
is more accurate than Algorithm 1. In the next sections we will deduce a tight
first order bound for the forward errors produced by Algorithm 2, and we
will show that this bound is always smaller than a corresponding bound for
Algorithm 1. The bound for Algorithm 2 is given in terms of the condition
number of the problem taking into account the proper backward errors. We

8

3x3 Matrix α = 1 α = 0.3 α = 0 α = −1

max(vm1) 1.3 · 10−10 1.5 · 10−10 2.2 · 10−16 10−11

max(vm2) 2.1 · 10−16 1.6 · 10−15 2.2 · 10−16 1.4 · 10−16

Laguerre α = 0 α = −100 α = −104 α = −106

max(vm1) 3.4 · 10−16 4.7 · 10−14 6.6 · 10−13 2.2 · 10−10

max(vm2) 3.4 · 10−16 4.3 · 10−16 3.7 · 10−16 3.1 · 10−16

Jacobi α = 0 α = −10 α = −100 α = −104

max(vm1) 7 · 10−13 3.4 · 10−11 2.4 · 10−10 1.5 · 10−8

max(vm2) 7 · 10−13 6 · 10−14 4.2 · 10−15 3 · 10−16

Bessel α = 0 α = −10 α = −100 α = −103

max(vm1) 3.1 · 10−2 1.2 · 10−12 1.2 · 10−11 1.3 · 10−10

max(vm2) 3.1 · 10−2 1.2 · 10−15 4.3 · 10−16 4.2 · 10−16

Hermite α = 106 α = 10 α = −10−4 α = −100

max(vm1) 2.3 · 10−4 2.6 · 10−14 7.5 · 10−16 2.7 · 10−12

max(vm2) 2.2 · 10−15 3.9 · 10−15 7.5 · 10−16 6.2 · 10−15

Table 1 Errors of Algorithms 1 and 2.

will also prove that when |α| is large enough Algorithm 2 becomes stable
and accurate. Finally, we will show that the errors produced by Algorithm 2
are the best one can expect, because they reflect the sensitivity of Christoffel
transformation to componentwise relative perturbations of O(ε) in the data.

3 Backward error analysis of Algorithm 2

We use the standard model of floating point arithmetic [19]:

fl(x op y) = (x op y)(1 + δ) =
x op y

1 + η
, |δ|, |η| ≤ ε,

where x and y are floating point numbers, op = +,−, ∗, /, and ε is the unit
roundoff of the machine. From now on, given a vector v, |v| denotes the vector
whose entries are the absolute values of the entries of v.

We develop our error analysis in the most general setting. For this pur-
pose, we assume that the shift α is a real number, and we denote by α̂
the nearest floating point number to α. Moreover, we assume that the in-

9

put parameters B1, ..., Bn−1 and G1, ..., Gn−1 are, respectively, affected by
small relative errors (1 + εB1), ..., (1 + εBn−1), (1 + εG1), ..., (1 + εGn−1), where
max1≤i≤n−1{|εBi

|, |εGi
|} ≤ Cε

1−Cε
, being C a moderate constant. These errors in

the inputs may come from the rounding process when storing them in the com-
puter. In the case of the Jacobi matrices associated with families of classical
orthogonal polynomials, the inputs are computed using well-known formulae
which may cause additional errors.

Theorem 1 Let J(B, G) be a monic Jacobi matrix of order n, α be a real
number, and α̂ be the nearest floating point number to α. Let J(b, g) be the
Christoffel transform of order n − 1 with shift α of J(B, G). Let us apply
Algorithm 2 to the matrix with floating point entries J(B̂, Ĝ) where

B̂i = Bi(1 + εBi
), Ĝi = Gi(1 + εGi

), 1 ≤ i ≤ n− 1,

and

max
1≤i≤n−1

{|εBi
|, |εGi

|} ≤ Cε

1− Cε
,

for a positive integer number C such that Cε � 1. If J(b̂, ĝ) is the matrix
computed by Algorithm 2, and L̂, T̂ are the computed intermediate matrices
appearing in Algorithm 2, then

J(B + ∆B, G + ∆G)− α̂I = L̂(T̂ − α̂I),

J(b̂ + ∆b̂, ĝ + ∆ĝ) =
(
(T̂ − α̂I)L̂ + α̂I

)
n−1

,

where

|α̂− α| ≤ ε|α|,

|∆Bi| ≤
(C + 1)ε

1− Cε
(|Bi|+ |l̂i−1|), 1 ≤ i ≤ n− 1,

|∆Gi| ≤
(C + 2)ε + ε2

1− Cε
|Gi|, 1 ≤ i ≤ n− 1,

|∆b̂| ≤ ε|b̂|, |∆ĝ| ≤ (2ε + ε2)|ĝ|.

PROOF. For the computed quantities in the first step,

l̂i =
Gi(1 + εGi

)(1 + δli)(1 + εli)

t̂i − α̂
, |δli|, |εli| ≤ ε.

Therefore,

|∆Gi| = |Gi − l̂i(t̂i − α̂)| ≤
(

(C + 2)ε + ε2

1− Cε

)
|Gi|.

10

On the other hand,

t̂i+1 = [Bi+1(1 + εBi+1
)− l̂i](1 + εti+1

), |εti+1
| ≤ ε,

that is,

|∆Bi+1| ≤
(C + 1)ε

1− Cε
(|Bi+1|+ |l̂i|).

Finally,
b̂i(1 + εbi

) = t̂i + l̂i, |εbi
| ≤ ε.

ĝi(1 + εgi
)(1 + δgi

) = (t̂i+1 − α̂)l̂i, |εgi
|, |δgi

| ≤ ε,

and the results follow in a straightforward way. 2

In plain words Theorem 1 says that the computed Christoffel transform J(b̂, ĝ)
with shift α is almost the exact Christoffel transform of J(B + ∆B, G + ∆G)
with shift α̂. However the following problem arises: |∆Bi|/|Bi| can be much
larger than ε if |l̂i−1| is much larger than |Bi|. We conclude that Algorithm
2 is componentwise stable in a mixed forward-backward sense [19] if |l̂i| =
O(|Bi+1|), for 1 ≤ i ≤ n− 2. Unfortunately, we cannot assure that this is the
case as the following numerical experiment shows. Consider the sequence of
Jacobi polynomials with parameters 1, 1/10, and the shift α = −1. Taking
into account Theorem 1, we compute a bound for the backward error as (ε ·
errback), where errback = maxi=2:n−1

{
1 +

∣∣∣∣ l̂i−1

Bi

∣∣∣∣} , and we get

n = 10 n = 100 n = 1000

errback 1.92 · 102 2 · 104 2 · 106

The previous table shows that the upper bound of the backward error we have
got is not always small. Therefore, we cannot assure mixed forward-backward
stability.

4 Forward errors in Algorithm 2

The main goal of this section is to develop a bound that allows us to estimate
the forward errors of Algorithm 2 in O(n) operations. We will also present
a result that shows that the bound for the forward errors of Algorithm 2 is
always smaller than the bound for Algorithm 1. Taking this into account as
well as the numerical tests in Table 1, we deduce that Algorithm 2 is more
accurate than Algorithm 1. Besides, we will prove that Algorithm 2 is stable
and accurate for large shifts.

11

To bound the errors in Algorithm 2, we study the sensitivity of Christoffel
transformation with shift with respect to perturbations of the initial data,
i.e., the parameters of the monic Jacobi matrix J(B, G), and the shift α. We
consider perturbations associated with the backward errors found in Theo-
rem 1 and we measure the sensitivity of the problem by using the notion of
componentwise relative condition number. This condition number, together
with Theorem 1, allows us to get a tight upper bound on the forward errors
obtained by the application of Algorithm 2 to a Jacobi matrix. This bound is
presented in Theorem 3.

In the following definition the variables l1, l2, . . . , ln−1 correspond to the sub-
diagonal entries of the L factor in the LU factorization of J(B, G) − αI. It
should be remembered that l0 := 0.

Definition 2 Let J(b, g) be the Christoffel transform of order (n − 1) with
shift α of the n×n monic Jacobi matrix J(B, G). Let J(b+∆b, g +∆g) be the
Christoffel transform of order (n − 1) with shift α + ∆α of the n × n monic
Jacobi matrix J(B + ∆B, G + ∆G). Let us define

DB := max

{
max

1≤i≤(n−1)

{
|∆Bi|

|Bi|+ |li−1|

}
, max
1≤i≤(n−1)

{
|∆Gi|
|Gi|

}
,
|∆α|
|α|

}
,

where the quotients |∆Bi|
|Bi|+|li−1| ,

|∆Gi|
|Gi| , or |∆α|

|α| have to be understood as zero if

the denominators are equal to zero. Then the relative componentwise condition
number of Christoffel transformation with shift α with respect to perturbations
associated with the backward errors in Theorem 1 is defined as

condB(J(B, G), α) := lim
δ→0

sup
0≤DB≤δ

max

{
max

1≤i≤(n−1)

{
|∆bi|
|bi|

}
, max
1≤i≤(n−2)

{
|∆gi|
|gi|

}}
DB

.

The condition number condB(J(B, G), α) is infinite if some of the denomi-

nators appearing in the relative changes of the outputs bi, i.e, |∆bi|
|bi| , is zero.

However bi = 0 will only happen for extremely particular values of the shift α.
In these cases, other condition numbers have to be considered. For instance,
measuring absolute changes in the corresponding components of b, or mea-
suring relative normwise changes of b. We do not consider these particular
situations in this work. Notice that gi 6= 0 for all i since gi = (ti+1 − α)li and
both factors ti+1 − α and li are nonzero.

The condition number condB(J(B, G), α) allows us to give an upper bound on
the forward errors produced by Algorithm 2, as the following theorem shows.

Theorem 3 Let J(b, g) and J(b̂, ĝ) be, respectively, the exact and the com-

12

puted Christoffel transform with shift α of J(B, G) by Algorithm 2, then

max
k

{∣∣∣∣∣bk − b̂k

bk

∣∣∣∣∣ ,
∣∣∣∣∣gk − ĝk

gk

∣∣∣∣∣
}
≤ (C + 2)ε (1 + condB(J(B, G), α)) + O(ε2),

where the left hand side of the previous inequality is a shorthand expression
for (3).

The proof of this theorem is a straightforward consequence of Theorem 1.
We will provide a way to compute condB(J(B, G), α), and therefore a bound
on the forward errors, with O(n) cost. It is essential to remark that we have
checked on the reliability of the bound on the forward errors running many
numerical experiments, where we have observed that the bound does not over-
estimate significantly the actual errors.

The entries b and g of the Christoffel transform J(b, g) of J(B, G) are rational
functions of the inputs B, G, and α, and, as a consequence, b and g are
differentiable functions of B, G, and α whenever the denominators are different
from zero. Therefore, condB(J(B, G), α) can be expressed in terms of partial
derivatives [4]. More precisely:

condB(J(B, G), α) = max{ max
1≤k≤n−1

{condB(bk)}, max
1≤k≤n−2

{condB(gk)}},(4)

where

condB(bk) =
k∑

i=1

∣∣∣∣∣ |Bi|+ |li−1|
bk

∂bk

∂Bi

∣∣∣∣∣+
k∑

i=1

∣∣∣∣∣Gi

bk

∂bk

∂Gi

∣∣∣∣∣+
∣∣∣∣∣ αbk

∂bk

∂α

∣∣∣∣∣ , (5)

condB(gk) =
k+1∑
i=1

∣∣∣∣∣ |Bi|+ |li−1|
gk

∂gk

∂Bi

∣∣∣∣∣+
k∑

i=1

∣∣∣∣∣Gi

gk

∂gk

∂Gi

∣∣∣∣∣+
∣∣∣∣∣ αgk

∂gk

∂α

∣∣∣∣∣ . (6)

In Theorem 8, we will get recurrence relations for condB(bk) and condB(gk)
that lead to an explicit expression for condB(J(B, G), α). Our first step to
prove Theorem 8 is to express the intermediate variables lk in Algorithm 2,
and the outputs bk and gk as functions of the data B, G and α. Then, we
obtain expressions for the partial derivatives of each of these functions with
respect to their arguments.

From Algorithm 2, we get

lk =
Gk

Bk − α− lk−1

(7)

and, therefore, lk can be seen as a function of B1, ..., Bk, G1, ..., Gk, α.

13

Lemma 4 If α is a real number such that J(B, G)−αI has a unique LU fac-
torization, then lk has the following partial derivatives with respect to B1, ..., Bk,
G1, ..., Gk and α

∂lk
∂Bi

=

lk

tk − α

∂lk−1

∂Bi

, i < k,

− lk
tk − α

, i = k.

∂lk
∂Gi

=

lk

tk − α

∂lk−1

∂Gi

, i < k,

1

tk − α
, i = k.

∂lk
∂α

=

lk

tk − α

(
1 +

∂lk−1

∂α

)
, 1 < k,

l1
t1 − α

, k = 1.

PROOF. For i < k,

∂lk
∂Bi

=
Gk

(Bk − α− lk−1)2

∂lk−1

∂Bi

=
lk(tk − α)

(tk − α)2

∂lk−1

∂Bi

.

For i = k,
∂lk
∂Bk

=
−Gk

(Bk − α− lk−1)2
.

The rest of the formulas are obtained in a similar way. 2

From Algorithm 2, we also get

bk = Bk + lk − lk−1 (8)

and, therefore, bk can be seen as a function of B1, ..., Bk, G1, ..., Gk, α. It also
happens that

gk = (Bk+1 − α− lk)lk. (9)

Notice that gk is a function of B1, ..., Bk+1, G1, ..., Gk, α.

14

Lemma 5 If α is a real number such that J(B, G)−αI has a unique LU fac-
torization, then the partial derivatives of bk with respect to B1, ..., Bk, G1, ..., Gk,
and α are

∂bk

∂Bi

=

(

lk
tk − α

− 1

)
∂lk−1

∂Bi

, i < k,

1− lk
tk − α

, i = k.

∂bk

∂Gi

=

(

lk
tk − α

− 1

)
∂lk−1

∂Gi

, i < k,

1

tk − α
, i = k.

∂bk

∂α
=

lk

tk − α
+

(
lk

tk − α
− 1

)
∂lk−1

∂α
, 1 < k,

l1
t1 − α

, k = 1.

PROOF. From (8), for i ≤ k − 1,

∂bk

∂Bi

=
∂lk
∂Bi

− ∂lk−1

∂Bi

.

Taking into account Lemma 4, the first result follows. For i = k,

∂bk

∂Bk

= 1 +
∂lk
∂Bk

= 1− lk
tk − α

.

The results for ∂bk

∂Gi
and ∂bk

∂α
are obtained in a similar way. 2

Lemma 6 If α is a real number such that J(B, G) − αI has a unique LU
factorization, then the partial derivatives of gk with respect to B1, ..., Bk+1,

15

G1, ..., Gk, and α are

∂gk

∂Bi

=

(tk+1 − α− lk)

∂lk
∂Bi

, i ≤ k,

lk, i = k + 1.

∂gk

∂Gi

= (tk+1 − α− lk)
∂lk
∂Gi

, i ≤ k.

∂gk

∂α
= −lk + (tk+1 − α− lk)

∂lk
∂α

, for k ≥ 1.

PROOF. Taking into account (9), for i ≤ k,

∂gk

∂Bi

=

(
− ∂lk

∂Bi

)
lk + (Bk+1 − α− lk)

∂lk
∂Bi

,

and the first result follows. The results for ∂gk

∂Gi
and ∂gk

∂α
are obtained in the

same way. 2

Next we define some quantities that will be useful to give a recursive formula
for the condition number condB(J(B, G), α). Let us call

condBBG(lk) :=
k∑

i=1

condBBi
(lk) +

k∑
i=1

condGi
(lk), (10)

where

condBBi
(lk) :=

∣∣∣∣∣ |Bi|+ |li−1|
lk

∂lk
∂Bi

∣∣∣∣∣ , and condGi
(lk) :=

∣∣∣∣∣Gi

lk

∂lk
∂Gi

∣∣∣∣∣ . (11)

The quantities condBBG(lk) can be computed recursively as the following
lemma shows.

Lemma 7 Let α be a real number such that J(B, G) − αI has a unique LU
factorization. Then, for k ≥ 1,

condBBG(lk) := 1 +
∣∣∣∣ Bk

tk − α

∣∣∣∣+
∣∣∣∣∣ lk−1

tk − α

∣∣∣∣∣ (1 + condBBG(lk−1)),

where condBBG(l0) := 0.

16

PROOF. If i < k,

condBBi
(lk) =

|Bi|+ |li−1|
|lk|

∣∣∣∣∣ lk
tk − α

∣∣∣∣∣
∣∣∣∣∣∂lk−1

∂Bi

∣∣∣∣∣ =
∣∣∣∣∣ lk−1

tk − α

∣∣∣∣∣ condBBi
(lk−1).

If i = k,

condBBk
(lk) =

|Bk|+ |lk−1|
|lk|

∣∣∣∣∣ lk
tk − α

∣∣∣∣∣ =
∣∣∣∣∣ |Bk|+ |lk−1|

tk − α

∣∣∣∣∣ .

If i < k,

condGi
(lk) =

∣∣∣∣Gi

lk

∣∣∣∣
∣∣∣∣∣ lk
tk − α

∣∣∣∣∣
∣∣∣∣∣∂lk−1

∂Gi

∣∣∣∣∣ =
∣∣∣∣∣ lk−1

tk − α

∣∣∣∣∣ condGi
(lk−1).

If i = k,

condGk
(lk) =

∣∣∣∣Gk

lk

∣∣∣∣ ∣∣∣∣ 1

tk − α

∣∣∣∣ = 1.

These expressions lead us to the recurrence relation for condBBG(lk) in an
straightforward way. 2

Theorem 8 gives recurrence relations that, taking into account (4), allow us
to compute condB(J(B, G), α) in O(n) flops. We gather all the recurrence
relations needed to perform this computation in the statement of Theorem 8.

Theorem 8 Let J(B, G) be any n × n Jacobi matrix, and let α be a real
number such that J(B, G) − αI has a unique LU factorization. Let L be the
lower bidiagonal factor in the LU factorization of J(B, G) − αI and T :=
U + αI, where U is the upper bidiagonal factor in the same factorization. If
l1, l2, ..., ln−1 are the entries of L in positions (2, 1), (3, 2), ..., (n, n − 1) and
t1, t2, ..., tn−1 are the entries of T in positions (1, 1), (2, 2), ..., (n − 1, n − 1),
then

condB(bk) =

∣∣∣∣∣ lkbk

∣∣∣∣∣+
∣∣∣∣∣ lk − tk + α

bk

∣∣∣∣∣
(∣∣∣∣ Bk

tk − α

∣∣∣∣+
∣∣∣∣∣ lk−1

tk − α

∣∣∣∣∣ (1 + condBBG(lk−1))

)

+
∣∣∣∣ α

tk − α

∣∣∣∣
∣∣∣∣∣ lkbk

+

(
lk − tk + α

bk

)
∂lk−1

∂α

∣∣∣∣∣ ,
condB(gk) =

∣∣∣∣∣ lk
tk+1 − α

∣∣∣∣∣+
∣∣∣∣∣ Bk+1

tk+1 − α

∣∣∣∣∣+
∣∣∣∣∣1− lk

tk+1 − α

∣∣∣∣∣ condBBG(lk)

+

∣∣∣∣∣ αgk

∣∣∣∣∣
∣∣∣∣∣−lk + (tk+1 − α− lk)

∂lk
∂α

∣∣∣∣∣ ,

17

where condBBG(l0) := 0,

condBBG(lk) := 1 +
|Bk|

|tk − α|
+

∣∣∣∣∣ lk−1

tk − α

∣∣∣∣∣ (1 + condBBG(lk−1)),

and

∂lk
∂α

=

lk

tk − α

(
1 +

∂lk−1

∂α

)
, 1 < k,

l1
t1 − α

, k = 1.

Notice that the variables appearing in the previous recurrence relations are
the same we introduced in Algorithm 2. Assuming that these variables are
known, the computational cost of computing condB(J(B, G), α) is 33n− 61.
In order to obtain this cost, it is important to realize that some operations
appear more than once in the computation of condBBG(lk), condB(bk) and
condB(gk), and a careful counting of these quantities is necessary to keep the
cost low.

PROOF. Let us call

condBBi
(bk) :=

∣∣∣∣∣ |Bi|+ |li−1|
bk

∂bk

∂Bi

∣∣∣∣∣ ,

condGi
(bk) :=

∣∣∣∣∣Gi

bk

∂bk

∂Gi

∣∣∣∣∣ , condα(bk) :=

∣∣∣∣∣ αbk

∂bk

∂α

∣∣∣∣∣ .
Then, using Lemma 5 and taking into account (11), if i < k

condBBi
(bk) =

∣∣∣∣∣ |Bi|+ |li−1|
bk

∣∣∣∣∣
∣∣∣∣∣ lk
tk − α

− 1

∣∣∣∣∣
∣∣∣∣∣∂lk−1

∂Bi

∣∣∣∣∣
=

∣∣∣∣∣ lk−1

bk

∣∣∣∣∣
∣∣∣∣∣ lk
tk − α

− 1

∣∣∣∣∣ condBBi
(lk−1),

and

condBBk
(bk) =

∣∣∣∣∣ |Bk|+ |lk−1|
bk

∣∣∣∣∣
∣∣∣∣∣ lk
tk − α

− 1

∣∣∣∣∣ .
Similarly, if i < k,

condGi
(bk) =

∣∣∣∣Gi

bk

∣∣∣∣
∣∣∣∣∣ lk
tk − α

− 1

∣∣∣∣∣
∣∣∣∣∣∂lk−1

∂Gi

∣∣∣∣∣ =
∣∣∣∣∣ lk−1

bk

∣∣∣∣∣
∣∣∣∣∣ lk
tk − α

− 1

∣∣∣∣∣ condGi
(lk−1),

18

and condGk
(bk) =

∣∣∣ lk
bk

∣∣∣ . Finally,

condα(bk) =
∣∣∣∣ αbk

∣∣∣∣
∣∣∣∣∣ lk
tk − α

+

(
lk

tk − α
− 1

)
∂lk−1

∂α

∣∣∣∣∣ .
Taking into account (5) and (10), the result follows for condB(bk). The result
for condB(gk) can be obtained in a similar way. 2

4.1 Comparison with error bounds for Algorithm 1

It is possible to develop a roundoff error analysis of Algorithm 1 similar to
the analysis done for Algorithm 2. To begin with, backward error bounds
for Algorithm 1 can be found. Then, it is also possible to deduce recurrence
relations for a relative componentwise condition number, condA(J(B, G), α),
for Christoffel transformation with respect to perturbations in the input data
associated with the backward errors of Algorithm 1. Finally, the condition
number condA(J(B, G), α) can be used in a counterpart version of Theorem
3 for Algorithm 1 to bound the forward errors. We do not include the details
of these results to keep the paper concise. However, we would like to remark
that it is easy to prove that

condB(J(B, G), α) ≤ condA(J(B, G), α),

for all monic Jacobi matrices J(B, G) and all shifts α. This fact, together
with the numerical experiments in Section 2, show that Algorithm 2 is more
accurate than Algorithm 1.

4.2 Stability and accuracy for large shifts

There are some interesting results that we can prove related to the stability
and accuracy of Algorithm 2 beyond the fact of being more accurate than Al-
gorithm 1. It can be proven that, for large enough absolute values of the shift,
Algorithm 2 is accurate, i.e., it produces outputs with componentwise forward
errors of order O(ε). To prove this, we will show that condB(J(B, G), α) tends
to 3 when |α| tends to ∞. Therefore, Theorem 3 guarantees accuracy in this
situation. The numerical experiments in Section 2 show that this is not the
case for Algorithm 1. In fact, it can be proven that Algorithm 1 decreases its
accuracy as |α| grows.

Let us remember that, according to Theorem 1, if |l̂i−1| = O(|Bi|) for 1 ≤ i ≤
n− 1, then Algorithm 2 is mixed forward-backward stable, which is the usual

19

requirement for a numerical algorithm to be considered stable [19, p. 7]. More
precisely, in this case, it can be said that the computed Christoffel transform
J(b̂, ĝ) with shift α of J(B, G) is an O(ε) relative componentwise perturbation
of the exact Christoffel transform with shift α̂ of J(B + ∆B, G + ∆G), where
∆B and ∆G are O(ε) relative componentwise perturbations of the exact inputs
B and G. In this context, another goal of this subsection is to prove that for
large enough values of the shift, |li−1| � |Bi| and then Algorithm 2 is stable.
We have to admit that this will be proven for the exact values of |li−1| and not
for the computed values |l̂i−1|, thus we are only proving stability up to O(ε2)
terms.

Accuracy and stability are both based on the following simple Lemma.

Lemma 9 Let lk, 1 ≤ k ≤ n − 1, be the variables appearing in Algorithm
2, i.e., the subdiagonal elements in the L factor of the LU factorization of
J(B, G)− αI. Then

lim
|α|→∞

|lk| = 0.

As a consequence Algorithm 2 is stable for |α| large enough.

PROOF. Notice that |l1| =
∣∣∣ G1

B1−α

∣∣∣ and lim|α|→∞ |l1| = 0. Let us proceed by

using induction. Assume that lim|α|→∞ |lk−1| = 0, then

lim
|α|→∞

|lk| = lim
|α|→∞

∣∣∣∣∣ Gk

Bk − α− lk−1

∣∣∣∣∣ = 0.

2

Theorem 10 Let condB(J(B, G), α) be the condition number for Christoffel
transformation with shift introduced in Definition 2. Then

lim
|α|→∞

condB(J(B, G), α) = 3.

This implies that Algorithm 2 is accurate for |α| large enough.

PROOF. Let us remember that tk = Bk − lk−1. Lemma 9 implies

lim
|α|→∞

∣∣∣∣ Bk

tk − α

∣∣∣∣ = 0, and lim
|α|→∞

∣∣∣∣∣ lk−1

tk − α

∣∣∣∣∣ = 0, k ≥ 1.

Then, taking into account Lemma 7,

lim
|α|→∞

condBBG(lk) = 1, k ≥ 1.

20

Consider now the following limits

lim
|α|→∞

∣∣∣∣∣ lkbk

∣∣∣∣∣ = lim
|α|→∞

∣∣∣∣∣ Gk

(Bk − α− lk−1)(Bk + lk − lk−1)

∣∣∣∣∣ = 0,

lim
|α|→∞

∣∣∣∣∣ lk − tk + α

bk

· Bk

tk − α

∣∣∣∣∣ = lim
|α|→∞

∣∣∣∣∣ Gk − (tk − α)2

(tk − α)(Bk − lk−1) + Gk

· Bk

tk − α

∣∣∣∣∣ = 1,

lim
|α|→∞

∣∣∣∣∣ lk − tk + α

bk

· lk−1

tk − α

∣∣∣∣∣ =
= lim
|α|→∞

∣∣∣∣∣ Gk − (tk − α)2

(tk − α)(Bk − lk−1) + Gk

· Gk−1

(tk−1 − α)(tk − α)

∣∣∣∣∣ = 0,

lim
|α|→∞

∣∣∣∣∣ lk − tk + α

bk

· ∂lk−1

∂α

∣∣∣∣∣ = lim
|α|→∞

∣∣∣∣∣ lk − tk + α

bk

· lk−1

tk−1 − α

(
1 +

∂lk−2

∂α

)∣∣∣∣∣ .
Applying induction and Lemma 4, it is easy to show that lim|α|→∞

∂li
∂α

= 0, for
all i. Moreover,

lk − tk + α

bk

· lk−1

tk−1 − α

Gk − (tk − α)2

(tk − α)(Bk − lk−1) + Gk

· Gk−1

(tk−1 − α)2
.

Therefore,

lim
|α|→∞

∣∣∣∣∣ lk − tk + α

bk

· ∂lk−1

∂α

∣∣∣∣∣ = 0.

Taking into account Theorem 8 and the previous limits we see that

lim
|α|→∞

condB(bk) = 1, k ≥ 1. (12)

Finally, we consider the following limits

lim
|α|→∞

∣∣∣∣∣α · lkgk

∣∣∣∣∣ = lim
|α|→∞

∣∣∣∣∣ α

tk+1 − α

∣∣∣∣∣ = 1,

lim
|α|→∞

∣∣∣∣∣ α

tk+1 − α
· tk+1 − α− lk

lk
· ∂lk
∂α

∣∣∣∣∣ =
lim
|α|→∞

∣∣∣∣∣ α

tk+1 − α
· tk+1 − α− lk

tk − α
·
(

1 +
∂lk−1

∂α

)∣∣∣∣∣ = 1.

Taking into account Theorem 8 and the previous limits, we get

lim
|α|→∞

condB(gk) = 3, k ≥ 1 (13)

21

Therefore, considering (12), (13), and (4), the result follows. 2

Similarly, it can be proven that condA(J(B, G), α) tends to infinity when |α|
grows.

So far, we have shown that Algorithm 2 produces smaller forward errors than
Algorithm 1 and we have proven that these forwards errors become O(ε) for
large enough shifts.

5 Algorithm 2 is forward stable

The purpose of this section is to prove that the forward error bound we have
found for Algorithm 2 is the best one can expect, because it reflects the sen-
sitivity of Christoffel transformation to componentwise relative perturbations
in the data. However, we have seen that Algorithm 2 is not backward stable,
then we are forced to use a weaker notion of stability. According to [19, p. 9],
an algorithm is said to be forward stable if it produces answers with forward
errors of similar magnitude to those produced by a backward stable algorithm.
In this section we show that Algorithm 2 is componentwise forward stable. In
order to prove that, we define the relative componentwise condition number of
Christoffel transformation with shift α with respect to small componentwise
relative perturbations of B, G, and α

condC(J(B, G), α) = lim
δ→0

sup
0≤DC≤δ

max

{
max

1≤i≤(n−1)

{
|∆bi|
|bi|

}
, max
1≤i≤(n−2)

{
|∆gi|
|gi|

}}
DC

,(14)

where

DC = max

{
max

1≤i≤(n−1)

{
|∆Bi|
|Bi|

}
, max
1≤i≤(n−1)

{
|∆Gi|
|Gi|

}
,
|∆α|
|α|

}
.

To prove that Algorithm 2 is componentwise forward stable is equivalent to
prove that condC(J(B, G), α) and condB(J(B, G), α) have the same order of
magnitude, by taking into account Theorem 3.

Recurrent expressions for condC(J(B, G), α) can be obtained in a similar way
as we got recurrent expressions for condB(J(B, G), α). By using these expres-
sions, we can prove Theorem 11, after considerably long and delicate alge-
braic manipulations are performed. This theorem states that the condition
numbers, condB(J(B, G), α) and condC(J(B, G), α), we have considered for

22

the Christoffel transformation with shift are of the same order of magnitude,
which implies that Algorithm 2 is forward stable.

Theorem 11 Let condB(J(B, G), α) and condC(J(B, G), α) be the condition
numbers introduced, respectively, in Definition 2 and (14) for the Christoffel
transformation with shift, then

condC(J(B, G), α) ≤ condB(J(B, G), α) ≤ 8 condC(J(B, G), α). (15)

This result together with the fact that condB(J(B, G), α) ≥ 1 implies that
Algorithm 2 is componentwise forward stable.

References

[1] Bueno, M.I. and Marcellán, F. Darboux transformation and perturbation
of linear functionals, Linear Algebra and Applications, 384 215–242(2004).

[2] Bueno, M.I. and Dopico, F.M, Stability and sensitivity of Darboux
transformation without parameter, Electron. Trans. Numer. Anal., 18, 101–
136(2004).

[3] Buhmann, M. and Iserles, A., On orthogonal polynomials transformed by
the QR algorithm, Journal Comp. Appl. Math. 43, 117–134(1992).

[4] Chaitin-Chatelin, and F., Frayssé V., Lectures on finite precision
computations, SIAM, Philadelphia (1996).

[5] Chihara, T.S., An Introduction to Orthogonal Polynomials, Gordon and
Breach, New York, 1978.

[6] Christoffel,E.B., Über die Gaubische Quadratur und eine
Verallgemeinerung derselben, J. Reine Angew. Math., 55, 61–82(1858).

[7] Fernando, K. V., and Parlett B. N., Accurate singular values and
differential qd algorithms, Numer. Math., 67, 191–229(1994).

[8] Galant, D., An implementation of Christoffel’s Theorem in the Theory of
Orthogonal Polynomials, Math. Comput., 25, 111–113(1971).

[9] Galant, D., Algebraic Methods for modified orthogonal polynomials, Math.
Comput., 59, 541–546(1992).

[10] Gautschi, W., An algorithmic implementation of the generalized Christoffel
theorem, Numerical Integration (G. Hämmerlin, ed.), Internat. Ser. Numer.
Math., 57, 89–106(1982).

[11] Gautschi, W., The interplay between classical analysis and (numerical) linear
algebra- A tribute to Gene H. Golub, Electron. Trans. Numer. Anal., 13, 119–
147(2002).

23

[12] Geronimus, Ya. L., On the polynomials orthogonal with respect to a given
number sequence and a theorem, ed W. Hahn, Izv. Akad. Nauk, 4, 215-
228(1940). (in Russian)

[13] Geronimus, Ya. L., On the polynomials orthogonal with respect to a given
number sequence, Zap. Mat. Otdel. Khar’kov. Univers. i NII Mat. i Mehan., 17,
3-18(1940).

[14] Golub, G.H., and Kautsky, J., Calculation of Gauss Quadratures with
Multiple Free and Fixed Knots, Numer. Math., 41, 147–163(1983).

[15] Golub, G. H., and Van Loan, C. F., Matrix Computations, 3rd ed., The
Johns Hopkins University Press, Baltimore, 1996.

[16] Grünbaum, F.A., and Haine, L., Orthogonal Polynomials satisfying
Differential Equations: the Role of the Darboux Transformation, CRM
Proceedings and Lecture Notes, American Mathematical Society. Providence,
Rhode Island. 9, 143–154(1996).

[17] Grünbaum, F.A., and Haine, L., Bispectral Darboux Transformations:An
Extension of the Krall Polynomials, Internat. Math. Res. Notices, 8, 359–
392(1997).

[18] Grünbaum, F.A, Haine, L., and Horozov, E, Some functions that
generalize the Krall-Laguerre polynomials, J. of Comp. Appl. Math., 106, 271–
297 (1999).

[19] Higham, N. J., Accuracy and Stability of Numerical Algorithms, 2nd ed.,
SIAM, Philadelphia, 2002.

[20] Kautsky, J., and Golub, G.H., On the calculation of Jacobi Matrices, Linear
Algebra Appl., 52/53, 439–455(1983).

[21] Matveev, V.B., and Salle, M.A., Differential-Difference Evolution
Equations. II (Darboux Transformation for the Toda Lattice) , Letters in Math.
Physics, 3, 425–429(1979).

[22] Parlett, B.N., The new qd algorithms, Acta Numerica, 459–491(1995).

[23] Rutishauser, H., Der Quotienten-Differenzen-Algorithmus, Z. Angew. Math.
Phys., 5, 233–251(1954).

[24] Rutishauser, H., Solution of eigenvalue problems with the LR transformation,
Nat. Bur. Standards Appl. Math. Ser., 49, 47–81(1958).

[25] Rutishauser, H., Lectures on Numerical Mathematics, Birkhäuser, Boston,
1990.

[26] Spiridonov, V., Vinet, L. and Zhedanov, A., Spectral transformations,
self-similar reductions and orthogonal polynomials, J. Phys. A: Math. & Gen.,
30, 7621–7637(1997).

24

