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Abstract The standard way of solving numerically a polynomial eigenvalue prob-
lem (PEP) is to use a linearization and solve the corresponding generalized eigen-
value problem (GEP). In addition, if the PEP possesses one of the structures aris-
ing very often in applications, then the use of a linearization that preserves such
structure combined with a structured algorithm for the GEP presents considerable
numerical advantages. Block-symmetric linearizations have proven to be very use-
ful for constructing structured linearizations of structured matrix polynomials. In
this scenario, we analyze the eigenvalue condition numbers and backward errors of
approximated eigenpairs of a block symmetric linearization that was introduced
by Fiedler in 2003 for scalar polynomials and generalized to matrix polynomials by
Antoniou and Vologiannidis in 2004. This analysis reveals that such linearization
has much better numerical properties than any other block-symmetric lineariza-
tion analyzed so far in the literature, including those in the well known vector
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space DL(P ) of block-symmetric linearizations. The main drawback of the ana-
lyzed linearization is that it can be constructed only for matrix polynomials of
odd degree, but we believe that it will be possible to extend its use to even degree
polynomials via some strategies in the near future.

Keywords backward error of an approximate eigenpair · block-symmetric lin-
earization · conditioning of an eigenvalue · eigenvalue · eigenvector · linearization ·
matrix polynomial · strong linearization.

Mathematics Subject Classification (2000) 65F15 · 65F35.

1 Introduction

This paper deals with the polynomial eigenvalue problem (PEP), that is, with the
problem of computing scalars λ0 ∈ C and nonzero vectors x ∈ Cn and y ∈ Cn
such that P (λ0)x = 0 and y∗P (λ0) = 0, where

P (λ) =
k∑
i=0

Aiλ
i, Ai ∈ Cn×n, (1.1)

is a matrix polynomial. We assume throughout the paper that P (λ) is regular (that
is, det(P (λ)) 6≡ 0), Ak 6= 0 (thus P (λ) has degree k), and, in addition, that A0 6= 0
in order to avoid trivialities. The vectors x and y are said to be right and left eigen-
vectors of P (λ) associated with the eigenvalue λ0 of P (λ). A matrix polynomial
as in (1.1) may have also an eigenvalue at infinity, which, by definition, happens
when zero is an eigenvalue of the reversal polynomial revP (λ) := λkP (1/λ).

PEPs arise in many applications, either directly or as approximations of other
nonlinear eigenvalue problems [4,20,21,32,36,41]. However, the numerical algo-
rithms currently available for the solution of PEPs are not completely satisfac-
tory, despite of recent impressive advances in this area, both for small to medium
size dense PEPs as well as for large-scale sparse PEPs [6,12,22,27,30,42,43,45].
The key drawback of current algorithms is that they do not guarantee a priori
that the computed eigenvalues and eigenvectors are the exact eigenvalues and
eigenvectors of a nearby matrix polynomial P (λ) + ∆P (λ) =

∑k
i=0(Ai + ∆Ai)λ

i

that satisfies ‖∆Ai‖2/‖Ai‖2 = O(u) for i = 0, 1, . . . , k, where ‖ · ‖2 denotes
the spectral matrix norm and u is the unit roundoff of the computer or some
tolerance fixed by the user. In contrast, current algorithms only guarantee that
‖∆Ai‖2/maxi{‖Ai‖2} = O(u), for i = 0, 1, . . . , k, holds, which is not satisfactory
for PEPs having matrix coefficients with very different norms. A remarkable ex-
ception is the algorithm for small to medium size quadratic PEPs in [45], which
is heavily influenced by [22], and which guarantees ‖∆Ai‖2/‖Ai‖2 = O(u) for
i = 0, 1, 2 under some nontrivial assumptions on the computed eigenvectors and
at the cost of solving the problem twice in two different ways. As a consequence of
this discussion, the PEP is nowadays a very active area of research.

The standard way of solving the PEP is to construct a linear matrix polyno-
mial, or matrix pencil, L(λ) with the same eigenvalues (including multiplicities)
as P (λ), and solve the generalized eigenproblem for L(λ), which is done with the
QZ algorithm for moderate size problems [37] or with Krylov projection methods



An optimal block-symmetric linearization 3

that take advantage of the particular structure of the considered L(λ) for large-
scale sparse problems [12,30,43]. That L(λ) has the same finite eigenvalues and
multiplicities as P (λ) is guaranteed [19,20] if there exist two unimodular matrix
polynomials (i.e., matrix polynomials with constant nonzero determinant), U(λ)
and V (λ), such that U(λ)L(λ)V (λ) = diag(I(k−1)n, P (λ)), where Im denotes the
m×m identity matrix. Such L(λ) is called a linearization of P (λ). If, in addition,
revL(λ) is a linearization of revP (λ), it is said that L(λ) is a strong linearization
of P (λ) and, in this case, L(λ) has the same finite and infinite eigenvalues and
multiplicities as P (λ) [13].

The importance of linearizations in solving PEPs numerically, the drawbacks
of the numerical algorithms for PEPs, and the convenience of preserving in the
linearizations the structures that the PEPs arising in applications often possess,
have motivated in the last years an intense research on linearizations of matrix
polynomials that can be constructed very easily, that allow an easy recovery of the
eigenvectors of the polynomial from those of the linearization, and that preserve
interesting structures. Among the references that triggered such recent research,
we highlight [3,18,25,31,32]. For the sake of brevity, we omit a detailed list of
the many references published recently on linearizations of matrix polynomials
and, instead, we invite the reader to check the references included in [10,14,43].
Unfortunately, this explosion of new classes of linearizations has not been followed
by the corresponding analyses of their numerical properties, i.e., by the study of
the errors they produce when they are used for solving numerically a PEP, and
the number of papers analyzing this question is still low [1,44,14,15,23,24,39,45].

Currently, there exist three complementary ways of measuring how “good” a
linearization is for solving PEPs in terms of the errors produced by its use. The
first one compares the condition numbers of individual (simple) eigenvalues in the
linearization and in the original polynomial [1,24,39,45]. For this purpose (as a
consequence of the discussion above) two types of condition numbers should be
considered according whether the magnitude of the perturbations is measured in
an absolute sense, i.e., as ‖∆Ai‖2/maxi{‖Ai‖2} for i = 0, 1, . . . , k, or in a relative
sense, i.e., as ‖∆Ai‖2/‖Ai‖2 for i = 0, 1, . . . , k. The second way compares the
residual backward errors of approximated individual right (x, λ0), or left (y∗, λ0),
eigenpairs in the polynomial and in the linearization, where again the perturba-
tions can be measured in the absolute and relative senses mentioned above [23,39,
45]. Finally, one can consider global backward error analyses [44,14,15,29], which
try to prove that the whole set of computed eigenvalues is the whole set of exact
eigenvalues of a matrix polynomial very close to the original one, assuming that
this happens for the linearization. The global analyses have the advantage that
they do not involve eigenvectors or any assumption on them, and they are valid
a priori for all the eigenvalues, but have the drawback that, so far, they guaran-
tee small absolute backward errors but do not guarantee small relative backward
errors. Moreover, the bounds that are obtained in this way are less precise than
those obtained with the other approaches.

When the preservation of structures is important for computational efficiency
and/or for preserving the finite arithmetic symmetries in the spectrum, it is well-
known [25,32] that block symmetric linearizations of matrix polynomials are fun-
damental, since they preserve directly the symmetric and Hermitian structures and
can be modified to cope with other structures such as alternating, palindromic, or
skew-symmetric [32].
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In this scenario, this paper studies for the first time condition numbers of
individual eigenvalues and residual backward errors of individual approximated
eigenpairs of a block symmetric strong linearization, that we denote by TP (λ),
and prove that, under the standard mild condition maxi{‖Ai‖2} ≈ 1 [44] (that
can always be obtained by dividing P (λ) by a number), TP (λ) has in these respects
much better properties than any other block symmetric linearization analyzed so
far in the literature. The linearization TP (λ) was originally introduced by Fiedler
for scalar monic polynomials [18, p. 330], extended to regular matrix polynomials
in [3], and slightly modified for dealing with other structured matrix polynomials
apart from Hermitian ones in [33–35]. Its excellent properties with respect to global
backward error analyses follow from the general results in [14,15]. Unfortunately,
the linearization TP (λ) is only valid for matrix polynomials with odd degree, and,
although such polynomials appear in practice [4], this clearly limits the use of
TP (λ). A strategy to overcome this limitation, that has been already used in
[29] for some non-block symmetric linearizations, is to introduce a zero leading
coefficient Ak+1 = 0 in P (λ), construct TP (λ) including such zero coefficient, and
then to deflate exactly the extra eigenvalues introduced at infinity. We plan to
investigate in the future the application of this strategy to TP (λ).

The linearization TP (λ) and its properties are revised in Section 4 and its
eigenvalue condition numbers and backward errors of approximated eigenpairs are
studied in Section 5, which includes the main results of this paper in Theorems
5.1 and 5.2. We emphasize that these results prove that, when the perturbations
are measured in the absolute sense (as explained above) the linearization TP (λ) is
optimal, since its condition numbers and backward errors are “always equal up to
a moderate constant depending on k” to those of the original matrix polynomial
(under some assumptions in the case of backward errors). When the perturbations
are measured in a relative sense, such equality holds, up to a moderate constant,
provided that min{‖Ak‖2, ‖A0‖2} ≈ maxi{‖Ai‖2} ≈ 1. The properties of TP (λ)
described in this paragraph are the same as those of any of the Frobenius compan-
ion forms [20], which are the standard linearizations used for solving numerically
PEPs, but which do not preserve any of the structures of the PEPs arising in ap-
plications. The analysis of the eigenvalue condition numbers and backward errors
of approximated eigenpairs of the Frobenius companion forms for perturbations
measured in a relative sense can be found in [23,24]. We revise this analysis, im-
prove some bounds, and complete it for perturbations measured in an absolute
sense in Section 6.2.

We emphasize that TP (λ) has much better properties concerning eigenvalue
condition numbers and backward errors of approximated eigenpairs than the fa-
mous block symmetric linearizations in the space DL(P ) introduced in [25,31],
and whose condition numbers and backward errors for perturbations measured
in a relative sense have been carefully analyzed in [23,24]. These analyses have
revealed a very inconvenient feature of the linearizations in DL(P ) since, if one
sticks to linearizations in DL(P ), it is needed, in general, to solve the PEP twice
with two linearizations in order to get reliable solutions with the same quality as
those obtained from solving the PEP once with TP (λ) or with the Frobenius com-
panion forms. On the other hand, as far as we know, the linearizations in DL(P )
are the only block symmetric linearizations whose condition numbers and back-
ward errors have been analyzed so far, which, among other reasons, have motivated
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considerable activity on these linearizations (see [2,9,16,17,38] and the references
therein).

In Section 6.1, we revise the analysis presented in [23,24] of the linearizations
in DL(P ), improve some bounds, and complete the analysis considering pertur-
bations measured in an absolute sense. The reader can find the main results on
eigenvalue condition numbers and backward errors of approximated eigenpairs for
the linearizations in DL(P ) in Theorems 6.1 and 6.2. These theorems confirm the
conclusions established in [23,24]: given a simple, finite, nonzero eigenvalue λ0
of P (λ) as in (1.1), if A0 is nonsingular and |λ0| ≥ 1, then the first pencil in
the standard basis of DL(P ), denoted in this paper as D1(λ, P ), has a condition
number and backward error close to optimal among the linearizations of P (λ) in
DL(P ), while if Ak is nonsingular and |λ0| ≤ 1, then the last pencil in the stan-
dard basis of DL(P ), denoted in this paper as Dk(λ, P ), has the same property.
Moreover, when |λ0| � 1, Dk(λ, P ) behaves much worse than P (λ) with respect
to eigenvalue condition numbers, and the approximated eigenpairs recovered from
Dk(λ, P ) lead to large backward errors in P (λ). The same happens when |λ0| � 1
and D1(λ, P ) is used. Thus, if a regular matrix polynomial has eigenvalues with
modulus less than and larger than 1, the use of these two pencils is mandatory
when calculating eigenvalues and eigenvectors.

In addition to the sections and results described above, this paper contains
the following material. Section 2 revises the definitions of eigenvalue condition
numbers and backward errors of approximated eigenpairs of matrix polynomials.
In Section 3 we introduce some technical results that are needed in proving the
main results of the paper. Section 7 includes numerical tests that confirm the
theoretical results presented in previous sections and illustrate the advantages of
TP (λ) with respect to the linearizations in DL(P ). Finally some conclusions and
lines of future research are discussed in Section 8.

Note that although the main applications of TP (λ), and of some modified ver-
sions of this pencil [33–35], are for solving structured PEPs (symmetric, Hermi-
tian, alternating, palindromic,..), we do not incorporate structure in the analysis.
There are three reasons for that: for such structures very often the structured
and unstructured condition numbers and backward errors are very similar [1,7],
to consider structures would make the analysis more complicated, and, finally, the
study of all these structures would make the analysis very long.

2 Eigenvalue condition number and backward error of matrix
polynomials

In this section we recall the concepts of relative condition number of an eigenvalue
and of backward error of an approximate eigenpair of a regular matrix polynomial
of degree k as in (1.1).

We also note that, in this paper, for the sake of brevity, we do not consider
the homogeneous formulation of the polynomial eigenvalue problem and the cor-
responding condition number. Additionally, we only consider simple eigenvalues
since these are essentially the only ones appearing in numerical practice.

Given a complex vector x, we denote by ‖x‖2 the Euclidean norm of x. For
A ∈ Cn×n, we denote by ‖A‖2 the spectral norm of A, that is, the matrix norm
of A induced by the Euclidean norm.
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Let λ0 be a simple, finite, nonzero eigenvalue of a regular matrix polynomial
P (λ) of degree k as in (1.1), and let x be a right eigenvector of P (λ) associated
with λ0. A (relative) normwise condition number κr(λ0, P ) of λ0 can be defined
by

κr(λ0, P ) := lim
ε→0

sup

{
|∆λ0|
ε|λ0|

: [P (λ0 +∆λ0) +∆P (λ0 +∆λ0)](x+∆x) = 0,

‖∆Ai‖2 ≤ ε ωi, 0 ≤ i ≤ k} ,

where ∆P (λ) =
∑k
i=0 λ

i∆Ai and ωi, 0 ≤ i ≤ k, are nonnegative weights that
allow flexibility in how the perturbations are measured [24]. This condition num-
ber is an immediate generalization of the well-known Wilkinson condition num-
ber for the standard eigenvalue problem and measures the relative change in an
eigenvalue with respect to perturbations in the matrix polynomial. We will mea-
sure these perturbations in two ways: 1) ωi = ‖Ai‖2 (relative perturbations); 2)
ωi = max

0≤i≤k
{‖Ai‖2} (absolute perturbations).

Theorem 2.1 gives an explicit formula for κr(λ0, P ). For a matrix polynomial
P (λ), we denote by P ′(λ) the first derivative of P (λ) with respect to λ.

Theorem 2.1 [39, Theorem 5] Let P (λ) be a regular matrix polynomial of degree
k. Let λ0 be a simple, finite, nonzero eigenvalue of P (λ), and let x and y be a right
and a left eigenvector of P (λ) associated with λ0. Then

κr(λ0, P ) =
(
∑k
i=0 |λ0|

iωi)‖y‖2‖x‖2
|λ0||y∗P ′(λ0)x| . (2.1)

Attending to the choice of weights ωi mentioned above, we consider two ver-
sions of the normwise relative condition number:

– Relative-absolute condition number: ωi = max
0≤j≤k

{‖Aj‖2}, i = 0, . . . , k,

κra(λ0, P ) =

max
0≤i≤k

{‖Ai‖2}(
∑k
i=0 |λ0|

i)‖x‖2‖y‖2

|λ0||y∗P ′(λ0)x| . (2.2)

– Relative-relative condition number: ωi = ‖Ai‖2, i = 0, . . . , k,

κrr(λ0, P ) =
(
∑k
i=0 |λ0|

i‖Ai‖2)‖x‖2‖y‖2
|λ0||y∗P ′(λ0)x| . (2.3)

Remark 2.1 To compare the conditioning of eigenvalues and backward error of ap-
proximate eigenpairs of a matrix polynomial P (λ) with those of the linearizations
considered in this paper, it will be convenient to assume that P (λ) as in (1.1) has
a nonzero constant term A0. In fact, if A0 = 0, we have that P (λ) = λsP1(λ) for
some s, where the constant term of P1(λ) is nonzero, and we may consider P1(λ)
instead of P (λ) to compute the nonzero eigenvalues of P (λ). Note that P (λ) and
P1(λ) have the same nonzero finite eigenvalues.
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Observe that, if λ0 6= 0 is an eigenvalue of P (λ), then the (left and right)
eigenvectors of P (λ) and revP (λ) = λkP

(
1
λ

)
associated with λ0 and 1

λ0
, respec-

tively, coincide. Thus, when using the two types of weights considered above for
P (λ) and revP (λ), we obtain the following result, which is a simple consequence
of (2.2) and (2.3). We should point out that, if P (λ) as in (1.1) has degree k and
A0 6= 0, then revP (λ) has degree k as well.

Lemma 2.1 Let P (λ) be a regular matrix polynomial of degree k as in (1.1) with
A0 6= 0. Let λ0 be a simple, finite, nonzero eigenvalue of P (λ). Then

κra(λ0, P ) = κra

(
1

λ0
, revP

)
and κrr(λ0, P ) = κrr

(
1

λ0
, revP

)
.

In some occasions, we will need to scale the matrix polynomial P (λ) by dividing
each of its matrix coefficients by max0≤i≤k{‖Ai‖2} in order to improve the bounds
of the ratio of the condition numbers of an eigenvalue of P (λ) and of a linearization.
Notice that κra(λ0, P ) and κrr(λ0, P ) are invariant under a scaling of this type.

The (relative) normwise backward error of an approximate (right) eigenpair
(x, λ0) of P (λ), where λ0 is finite, is defined by

ηr(x, λ0, P ) := min{ε : (P (λ0) +∆P (λ0))x = 0, ‖∆Ai‖2 ≤ ε ωi, 0 ≤ i ≤ k},

where∆P (λ) =
∑k
i=0 λ

i∆Ai and ωi, 0 ≤ i ≤ k, are arbitrary nonnegative numbers
that represent tolerances against which the perturbations of the matrix coefficients
of P (λ) will be measured [23].

Similarly, for an approximate left eigenpair (y∗, λ0), we have

ηr(y
∗, λ0, P ) := min{ε : y∗(P (λ0) +∆P (λ0)) = 0, ‖∆Ai‖2 ≤ ε ωi, 0 ≤ i ≤ k}.

The following result provides explicit formulas for the normwise backward error
of approximate eigenpairs.

Theorem 2.2 [39, Theorem 1] Let P (λ) be a regular matrix polynomial of degree k
as in (1.1). For a given approximate right eigenpair (x, λ0) of P (λ), where x ∈ Cn
and λ0 ∈ C, the normwise backward error ηr(x, λ0, P ) is given by

ηr(x, λ0, P ) =
‖P (λ0)x‖2

(
∑k
i=0 |λ0|iωi)‖x‖2

.

For an approximate left eigenpair (y∗, λ0), where y ∈ Cn and λ0 ∈ C, we have

ηr(y
∗, λ0, P ) =

‖y∗P (λ0)‖2
(
∑k
i=0 |λ0|iωi)‖y‖2

.

As with the condition number, we will consider two cases, depending of the
selection of the weights ωi. We only display the expressions for right eigenpairs.
The expressions for left eigenpairs can be obtained similarly.

– Relative-absolute backward error: ωi = max
0≤j≤k

{‖Aj‖2}, i = 0, . . . , k,

ηra(x, λ0, P ) =
‖P (λ0)x‖2

max
i=0:k

{‖Ai‖2}(
∑k
i=0 |λ0|i)‖x‖2

.
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– Relative-relative backward error: ωi = ‖Ai‖2, i = 0, . . . , k,

ηrr(x, λ0, P ) =
‖P (λ0)x‖2

(
∑k
i=0 |λ0|i‖Ai‖2)‖x‖2

. (2.4)

The next result follows from Theorem 2.2 and can be easily checked. A similar
result can be obtained for left eigenvectors.

Lemma 2.2 Let P (λ) be a regular matrix polynomial of degree k as in (1.1) with
A0 6= 0. For a given approximate right eigenpair (x, λ0) of P (λ), where x ∈ Cn
and 0 6= λ0 ∈ C, we have that (x, 1

λ0
) is an approximate right eigenpair of revP (λ)

and

ηra(x, λ0, P ) = ηra

(
x,

1

λ0
, revP

)
and ηrr(x, λ0, P ) = ηrr

(
x,

1

λ0
, revP

)
.

The scaling of the polynomial P (λ) by dividing by max0≤i≤k{‖Ai‖2} can also
be used to improve the normwise backward error of an approximate eigenpair of
a linearization of a matrix polynomial. It is easy to show that ηra(x, λ0, P̃ ) =
ηra(x, λ0, P ) and ηrr(x, λ0, P̃ ) = ηrr(x, λ0, P ), where P̃ (µ) is the scaled polyno-
mial, while the corresponding backward errors of the (same) linearizations of P (λ)
and P̃ (µ) can be quite different. We will use this fact in our numerical experiments
to show that a scaling of the polynomial can be applied to decrease the backward
error of the block-symmetric linearization TP (λ) that we are studying.

3 Some definitions and auxiliary results

We introduce some concepts and technical results that will be used in the proofs
of our main results.

If a and b are two positive integers such that a ≤ b, we define

a : b := a, a+ 1, . . . , b.

The following result is an immediate consequence of the Cauchy-Schwarz inequality
when the standard inner product is considered in Cn.

Lemma 3.1 Let m be a positive integer and let a be a positive real number. Then, m∑
j=0

aj

2

≤ (m+ 1)
m∑
j=0

a2j .

The following property is well known (see Lemma 3.5 in [23] for a proof of the
second inequality).

Proposition 3.1 For any complex `×m block-matrix B = (Bij) we have

max
i,j
‖Bij‖2 ≤ ‖B‖2 ≤

√
`m max

i,j
‖Bij‖2. (3.1)
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Given a matrix polynomial P (λ) of degree k as in (1.1), the ith Horner shift
of P (λ), i = 0 : k, is given by

Pi(λ) := λiAk + λi−1Ak−1 + · · ·+ λAk−i+1 +Ak−i. (3.2)

Notice that P0(λ) = Ak, Pk(λ) = P (λ), and

Pi+1(λ)−Ak−i−1 = λPi(λ), i = 0 : k − 1. (3.3)

When convenient, we write Pi to denote Pi(λ). We also denote

P i(λ) := λiAi + · · ·+ λA1 +A0, i = 0 : k. (3.4)

Notice that P 0(λ) = A0 and P k(λ) = P (λ).

Lemma 3.2 Let P (λ) be a regular matrix polynomial of degree k as in (1.1). Let
Pi(λ) and P i(λ), i = 0 : k, be the matrix polynomials defined in (3.2) and (3.4).
Let λ0 be a nonzero, finite eigenvalue of P (λ), and let x and y be, respectively, a
right and a left eigenvector of P (λ) associated with λ0. Then, for i = 0 : k − 1,

Pi(λ0)x = −λi−k0 P k−i−1(λ0)x and y∗Pi(λ0) = −λi−k0 y∗P k−i−1(λ0).

Proof Note that, for i = 0 : k − 1, we have P (λ0) = λk−i0 Pi(λ0) + P k−i−1(λ0).
Thus, the result follows taking into account that λ0 is nonzero, P (λ0)x = 0, and
y∗P (λ0) = 0. ut

The next lemma can be easily verified.

Lemma 3.3 Let P (λ) be a matrix polynomial of degree k as in (1.1), let λ0 ∈ C,
and let Pi(λ) and P i(λ), i = 0 : k, be the matrix polynomials defined in (3.2) and
(3.4). Then,

‖Pi(λ0)‖2, ‖P i(λ0)‖2 ≤ max
j=0:k

{‖Aj‖2}
i∑

j=0

|λ0|j , i = 0 : k.

We close this section with two combinatorial lemmas that will be used later
in the proofs of our main results. In the statement of the first lemma we use the
following concept: Let H = (Hij) be a k × k block-matrix with Hij ∈ Cn×n. The
block-transpose of H is the matrix HB := (Hji), i.e., the block-transpose of H is
the block-matrix whose block-entry in position (i, j) is Hji.

In the following lemma and throughout the paper we will use the following
notation:

max
i=0:k

{1, ‖Ai‖2} := max{1, max
0≤i≤k

{‖Ai‖2}}.

Lemma 3.4 Let P (λ) be an n× n matrix polynomial of odd degree k as in (1.1),
let Pi(λ), i = 0 : k, be the Horner shifts defined in (3.2), and let

∆B(λ) := [λ
k−1
2 In, λ

k−1
2 P1(λ), λ

k−3
2 In, λ

k−3
2 P3(λ), . . . , λIn, λPk−2(λ), In], (3.5)

where ∆B(λ) denotes the block-transpose of ∆(λ) when viewed as a k × 1 block-
matrix whose blocks are n× n. Let λ0 ∈ C. Then,

‖∆(λ0)‖2, ‖∆B(λ0)‖2 ≤
√
d1(λ0) max

i=0:k
{1, ‖Ai‖2}, (3.6)
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where

d1(λ0) =

k−1
2∑

r=0

|λ0|2r +

k−1
2∑

r=1

(
(k − 2r + 1)

k−r∑
s=r

|λ0|2s
)
. (3.7)

Proof Let λ0 ∈ C and 0 6= x ∈ Cn. Taking into account the definition of ∆(λ), we
get

‖∆(λ0)x‖22 =

k−1
2∑

r=0

|λ0|2r‖x‖22 +

k−1
2∑

r=1

|λ0|2r‖Pk−2r(λ0)x‖22 (3.8)

≤

 k−1
2∑

r=0

|λ0|2r +

k−1
2∑

r=1

|λ0|2r‖Pk−2r(λ0)‖22

 ‖x‖22. (3.9)

By Lemmas 3.3 and 3.1, we obtain

(
‖∆(λ0)x‖2
‖x‖2

)2

≤

k−1
2∑

r=0

|λ0|2r +

k−1
2∑

r=1

|λ0|2r
(

max
i=0:k

{‖Ai‖2}
k−2r∑
s=0

|λ0|s
)2

≤

 k−1
2∑

r=0

|λ0|2r +

k−1
2∑

r=1

(
(k − 2r + 1)

k−r∑
s=r

|λ0|2s
) max

i=0:k
{1, ‖Ai‖2}2

= d1(λ0) max
i=0:k

{‖Ai‖2, 1}2.

Since ‖∆(λ0)‖2 = supx 6=0
‖∆(λ0)x‖2
‖x‖2 , the result for ∆(λ0) in (3.6) follows. In order

to show that the result is also true for ∆B(λ0), notice that

‖∆B(λ0)‖2 = ‖∆B(λ0)∗‖2

and ∆B(λ0)∗ is the block-vector ∆(λ0) associated with P (λ)∗ =
∑k
i=0 λ

iA∗i . Thus,

‖∆B(λ0)‖2 ≤
√
d1(λ0) max

i=0:k
{1, ‖Ai‖2}.

Since d1(λ0) = d1(λ0), the result follows. ut

Lemma 3.5 Let λ0 ∈ C be nonzero and let k ≥ 3 be a positive odd integer. Let
d1(λ) be as in (3.7). If |λ0| ≤ 1, then

d1(λ0) ≤ k + 1

2
+

(k − 1)3

2
|λ0|2. (3.10)

Proof Assume that |λ0| ≤ 1. Then,

k−1
2∑

r=1

(
(k − 2r + 1)

k−r∑
s=r

|λ0|2s
)
≤ (k − 1)2

2

k−1∑
s=1

|λ0|2s

=
(k − 1)2

2
|λ0|2

k−1∑
s=1

|λ0|2(s−1) ≤ (k − 1)3

2
|λ0|2.

Thus, from (3.7), (3.10) follows. ut



An optimal block-symmetric linearization 11

4 The block-symmetric linearization TP (λ).

In this section we present the block-symmetric linearizations of a matrix polyno-
mial P (λ) that are the focus of this paper. Here and in the next section we only
consider matrix polynomials P (λ) of odd degree k ≥ 3.

The family of generalized Fiedler pencils (GFP) associated with a matrix
polynomial P (λ) was introduced in [3,11]. The following block-symmetric block-
tridiagonal GFP associated with an n× n P (λ) of odd degree k was presented in
[3, Theorem 3.1]:

TP (λ) :=



λAk +Ak−1 −In 0
−In 0 λIn

λIn λAk−2 +Ak−3 −In
−In 0

. . .

λA3 +A2 −In
−In 0 λIn

0 λIn λA1 +A0


. (4.1)

Notice that, after permuting some block-rows and block-columns, the pencil
TP (λ) becomes the block Kronecker pencil OP1 (λ) in [8] given by

OP1 (λ) :=

[
M(λ;P ) Ks(λ)T

Ks(λ) 0

]
,

where

M(λ;P ) =

λAk +Ak−1

. . .

λA1 +A0

 , Ks(λ) =


−In λIn

−In λIn
. . .

. . .

−In λIn

 .
Also, the following block-symmetric block-tridiagonal pencil associated with

an n× n P (λ) of odd degree k was introduced in [33, formula (5.1)] :

RP (λ) := SRTP (λ)RS (4.2)

where

R :=

 In

. .
.

In

 ∈ Cnk×nk (4.3)

and S is the k × k block-diagonal matrix whose (i, i)th block-entry is given by

S(i, i) =

{
−In, if i ≡ 0, 1 mod 4,
In, otherwise.

(4.4)

Thus, RP (λ) is just TP (λ) after reordering some block-rows and block-columns
and adding some minus signs.

Because of the simple relationships between TP (λ), RP (λ) and OP1 (λ), it can
be proven that these three pencils have exactly the same properties with respect to
conditioning of eigenvalues and backward error of approximate eigenpairs. Thus,
in the rest of the paper, we focus only on TP (λ).
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It is known [11] that, for any matrix polynomial P (λ) of odd degree k, the pencil
TP (λ) is a strong linearization of P (λ). As mentioned in the introduction, this
linearization has several attractive properties. In particular, it is easy to recover
an eigenvector of P (λ) associated with an eigenvalue λ0 from an eigenvector of
TP (λ) associated with the same eigenvalue, as we show next. We start with a
technical lemma that will be useful for this purpose. Here and in the next sections,
we denote by ei the ith column of the identity matrix of appropriate size for the
context.

Lemma 4.1 Let P (λ) be a matrix polynomial of odd degree k as in (1.1) and let
TP (λ) be as in (4.1). Then,

TP (λ)∆(λ) = ek ⊗ P (λ), and ∆B(λ)TP (λ) = eTk ⊗ P (λ), (4.5)

where ∆B(λ), as in (3.5), denotes the block-transpose of ∆(λ).

Proof Let TP (λ) =: λT1 − T0. Using (3.3), a direct computation shows that

T1∆(λ) =



λ
k−1
2 P0(λ)

λ
k−1
2
−1In

λ
k−1
2
−1P2(λ)

λ
k−1
2
−2In
...

λPk−3(λ)
In

Pk−1(λ)


and T0∆(λ) =



λ
k+1
2 P0(λ)

λ
k−1
2 In

λ
k−1
2 P2(λ)

λ
k−1
2
−1In
...

λ2Pk−3(λ)
λIn
−A0


,

where Pi(λ), i = 0 : k, are the Horner shifts defined in (3.2). Taking into ac-
count (3.3) again and the fact that Pk(λ) = P (λ), the first claim in (4.5) fol-
lows. The second claim in (4.5) follows easily from the first claim by noting that
(TP (λ)∆(λ))B = ∆B(λ)TP (λ), as the ith block-row of TP (λ), with i even, just
contains blocks of the form 0, In, and λIn, and this type of blocks commute with
Pj . ut

Note that the equations in (4.5) are a particular case of equation (2.11) in [23]
(where the homogeneous approach is considered).

The following theorem follows from Lemma 4.1 using arguments similar to
those in the proof of Theorem 3.8 in [31].

Theorem 4.1 Let P (λ) be a regular matrix polynomial of odd degree k as in
(1.1). Assume that λ0 is a finite eigenvalue of P (λ). Let ∆(λ) be as in (3.5). A
vector z is a right (resp. left) eigenvector of TP (λ) associated with λ0 if and only
if z = ∆(λ0)x (resp. z = (∆B(λ0))∗y), for some right (resp. left) eigenvector x
(resp. y) of P (λ) associated with λ0.

Proof Taking into account Lemma 4.1, we have

TP (λ)∆(λ)x = (ek ⊗ P (λ))x = ek ⊗ P (λ)x.

Clearly, if {x1, . . . , xm} is a basis of the eigenspace associated with the eigen-
value λ0 of P (λ), then the vectors ∆(λ0)x1, . . . ,∆(λ0)xm are linearly indepen-
dent and, since λ0 has the same geometric multiplicity as an eigenvalue of P (λ)
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and as an eigenvalue of TP (λ), because TP (λ) is a linearization of P (λ), then
{∆(λ0)x1, . . . ,∆(λ0)xm} is a basis of the eigenspace associated with the eigen-
value λ0 of TP (λ). Thus, a vector z is a right eigenvector of TP (λ) associated with
λ0 if and only if it is a linear combination of ∆(λ0)x1, . . . ,∆(λ0)xm, that is, it is
of the form ∆(λ0)x for some eigenvector x of P (λ) associated with λ0.

The proof for the left eigenvectors is similar. ut

We close this section with two results that will help us study the numerical
performance of TP (λ) in the next section. The next lemma, which can be easily
proven, allows us to focus on eigenvalues of modulus not greater than 1.

Lemma 4.2 Let P (λ) be a matrix polynomial of odd degree k as in (1.1) with
A0 6= 0. Then,

TP (λ) = λDRTrevP
(

1

λ

)
RD,

where R is as in (4.3) and

D = diag(In,−In, In,−In, . . . , In). (4.6)

Moreover, z ∈ Cnk is a right (resp. left) eigenvector of TP (λ) associated with a
finite, nonzero eigenvalue λ0 if and only if RDz is a right (resp. left) eigenvector
of TrevP (λ) associated with the eigenvalue 1

λ0
.

The following result gives an upper bound on the spectral norm of the matrix
coefficients of TP (λ), improving the one obtained by using Proposition 3.1.

Proposition 4.1 Let P (λ) =
∑k
i=0Aiλ

i be an n × n matrix polynomial of odd
degree k and TP (λ) =: λT1 − T0 be as in (4.1). Then,

‖T1‖2, ‖T0‖2 ≤ 2 max
i=0:k

{1, ‖Ai‖2}.

Proof Let z = [z1, . . . , zk]B be a nonzero k× 1 block-vector partitioned into n× 1
blocks. Then, defining z0 := 0, we have

‖T1z‖22 =

k−1
2∑
i=1

‖z2i+1‖22 +

k−1
2∑
i=0

‖z2i +Ak−2iz2i+1‖22

≤

k−1
2∑
i=1

‖z2i+1‖22 +

k−1
2∑
i=0

(
‖z2i‖22 + ‖Ak−2iz2i+1‖22 + 2‖z2i‖2‖Ak−2iz2i+1‖2

)

≤ max
i=0:k

{1, ‖Ai‖22}

 k∑
i=1

‖zi‖22 +

k−1
2∑
i=0

(
‖z2i+1‖22 + 2 max{‖z2i‖22, ‖z2i+1‖22}

)
≤ max
i=0:k

{1, ‖Ai‖22}(2‖z‖22 + 2

k−1
2∑
i=0

max{‖z2i‖22, ‖z2i+1‖22})

≤ 4 max
i=0:k

{1, ‖Ai‖22}‖z‖22.

The proof for T0 is analogous. ut
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5 Conditioning and backward error of eigenvalues of TP (λ).

Let P (λ) be a matrix polynomial of odd degree k as in (1.1) with A0 6= 0 and let
TP (λ) be the linearization of P (λ) defined in (4.1). In this section we present the
main results in this paper, Theorems 5.1 and 5.2, concerned with the comparison of
the conditioning of eigenvalues and the backward error of approximate eigenpairs
of TP (λ) with, respectively, the conditioning of eigenvalues and the backward error
of approximate eigenpairs of P (λ).

In the statements of our main results for TP (λ), we assume that the poly-
nomial P (λ) has been scaled by dividing all the matrix coefficients of P (λ) by
maxi=0:k{‖Ai‖2}. To scale a polynomial in this way is a standard practice when
using linearizations whose matrix coefficients, seen as block-matrices, have nonzero
blocks equal to the matrix coefficients of P (λ) and blocks equal to ±In to avoid
the unbalance in terms of norms of the ±In blocks and the blocks equal to matrix
coefficients of P (λ) [44]. Linearizations of this type include the famous first Frobe-
nius companion form and also the TP (λ) linearization considered in this work.
From the point of view of computational cost, it would be more convenient to di-
vide by maxi=0:k{‖Ai‖F }, which leads to the same bounds up to some moderate
dimensional constants.

We next state and discuss Theorems 5.1 and 5.2, which will be proven in
Sections 5.1 and 5.2, respectively. We use the notation for P (λ) in (1.1) and we
define the parameter

ρ1 :=
1

min{‖Ak‖2, ‖A0‖2}
. (5.1)

Theorem 5.1 Let P (λ) be a regular matrix polynomial of odd degree k ≥ 3 as in
(1.1) with A0 6= 0 and maxi=0:k{‖Ai‖2} = 1. Assume that λ0 is a simple, finite,
nonzero eigenvalue of P (λ). Let ρ1 be as in (5.1). Then,

1 ≤ κra(λ0, TP )

κra(λ0, P )
≤ (k − 1)3, 1 ≤ κrr(λ0, TP )

κrr(λ0, P )
≤ 2k3ρ1. (5.2)

Moreover, if min{|λ0|, 1
|λ0|} ≤

1
k−1 , then

κra(λ0, TP )

κra(λ0, P )
≤ 2k,

κrr(λ0, TP )

κrr(λ0, P )
≤ 4kρ1.

From Theorem 5.1 we conclude that, up to a dimensional constant, κra(λ0, TP ) =
κra(λ0, P ), which implies that TP (λ) presents optimal behavior in terms of eigen-
value conditioning in the relative-absolute case since the sensitivity of eigenvalues
is the same in P (λ) and in TP (λ). We note that the condition number of any
simple, nonzero, finite eigenvalue of P (λ) is close to the condition number of the
same eigenvalue of TP (λ) with no restriction on the modulus of λ0, in contrast
with what happens to the first and last pencils D1(λ, P ) and Dk(λ, P ) in the
standard basis of DL(P ), which only present good condition number ratios when
|λ0| ≥ 1 and |λ0| ≤ 1, respectively. In the relative-relative case, if the norms of
the matrix coefficients of P (λ) have similar magnitudes, all the comments above
for the relative-absolute case apply as well.
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Remark 5.1 As we will see from the proof of Theorem 5.1, if we do not assume
that P (λ) is scaled so that max

i=0:k
{‖Ai‖2} = 1, we have

1 ≤ κra(λ0, TP )

κra(λ0, P )
≤ (k − 1)3µ′1, ρ2 ≤

κrr(λ0, TP )

κrr(λ0, P )
≤ 2k3µ1, (5.3)

with

µ′1 :=
max{1,maxi=0:k{‖Ai‖32}}

max
i=0:k

{‖Ai‖2}
, µ1 :=

max{1,maxi=0:k{‖Ai‖32}}
min{‖Ak‖2, ‖A0‖2}

, (5.4)

ρ2 :=
min{max{1, ‖Ak‖2},max{1, ‖A0‖2}}

maxi=0:k{‖Ai‖2}
. (5.5)

Next we consider the behavior of TP (λ) in terms of backward errors of ap-
proximate right eigenpairs. Since, for not extremely large values of nk, the algo-
rithm QZ, combined with adequate methods for computing eigenvectors [37], is
used to compute the eigenvalues and eigenvectors of a linearization of P (λ) and
this algorithm produces small backward errors of order unit-roundoff, if we prove
that ηra(x, λ0, P ) (resp. ηrr(x, λ0, P )) is not much larger than ηra(z, λ0, TP ) (resp.
ηrr(z, λ0, TP )) (where (z, λ0) denotes an approximate right eigenpair of TP (λ) and
(x, λ0) denotes an approximate right eigenpair of P (λ) obtained from (z, λ0) in an
appropriate way), we ensure small backward errors for the approximate right eigen-
pairs of P (λ) as well. Note also that, for eigenvalues and eigenvectors computed
with some structured algorithms, ηra(z, λ0, TP ) (resp. ηrr(z, λ0, TP )) is also of or-
der unit-roundoff most of the times, although there is not a formal proof of this fact.
This happens, for instance, if P (λ) is real symmetric and a combination of the algo-
rithms in [5,40] is used for computing the eigenvalues/eigenvectors of the real sym-
metric pencil TP (λ). In these situations if we prove that ηr(x, λ0, P )/ηr(z, λ0, TP )
is moderate we ensure small backward errors for the approximate eigenpairs of
P (λ) as well. This discussion motivates the next theorem, in which an upper

bound for the ratios ηra(x,λ0,P )
ηra(z,λ0,TP ) and ηrr(x,λ0,P )

ηrr(z,λ0,TP ) is established. Note that Theo-
rem 5.2 only deals with right eigenpairs. The result for left eigenpairs is similar
and is omitted for brevity.

Theorem 5.2 Let P (λ) be a matrix polynomial of odd degree k ≥ 3 as in (1.1)
with A0 6= 0 and max

i=0:k
{‖Ai‖2} = 1. Let (z, λ0) be an approximate right eigenpair

of TP (λ), x = (eT1 ⊗ In)z if |λ0| > 1 and x = (eTk ⊗ In)z if |λ0| ≤ 1. Then, (x, λ0)
is an approximate right eigenpair of P (λ) and

ηra(x, λ0, P )

ηra(z, λ0, TP )
≤
√

2(k − 1)3
‖z‖2
‖x‖2

,
ηrr(x, λ0, P )

ηrr(z, λ0, TP )
≤ 2
√

2k
3
2
‖z‖2
‖x‖2

ρ1. (5.6)

Moreover, if min{|λ0|, 1
|λ0|} ≤

1
k−1 , then

ηra(x, λ0, P )

ηra(z, λ0, TP )
≤ 2
√
k
‖z‖2
‖x‖2

,
ηrr(x, λ0, P )

ηrr(z, λ0, TP )
≤ 4
√
k
‖z‖2
‖x‖2

ρ1. (5.7)
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Remark 5.2 In this remark, we investigate the quotient ‖z‖2‖x‖2 appearing in The-
orem 5.2 assuming that z and x are exact eigenvectors. The goal is to provide
some guidance on the expected values of the bounds obtained in Theorem 5.2,
although this guidance needs to be taken with extreme caution since the approxi-
mate eigenvectors may be very different than the exact eigenvectors, especially in
ill-conditioned problems.

From Theorem 4.1, x′ is a right eigenvector of P (λ) associated with the eigen-
value λ0 if and only if z = ∆(λ0)x′ is a right eigenvector of TP (λ) associated with
λ0. From Lemma 3.4, for z = ∆(λ0)x′ (which implies x′ = (eTk ⊗ In)z), we obtain

‖z‖22
‖x′‖22

≤ d1(λ0) max
i=0:k

{‖Ai‖2, 1}2,

where d1(λ0) is as in (3.7). If |λ0| ≤ 1, from Lemma 3.5, we have

‖z‖22
‖x′‖22

≤
(
k + 1

2
+

(k − 1)3

2

)
max
i=0:k

{1, ‖Ai‖2}2,

implying
‖z‖2
‖x′‖2

≤ 1√
2
k

3
2 max
i=0:k

{1, ‖Ai‖2}.

If |λ0| > 1, taking into account Lemma 4.2, the right eigenvectors of TrevP (λ) asso-
ciated with the eigenvalue 1

λ0
are of the form RDz, where z is a right eigenvector

of TP (λ) associated with λ0. From Theorem 4.1, (eTk ⊗ In)RDz is an eigenvec-
tor of revP (λ) associated with the eigenvalue 1

λ0
, that is, an eigenvector of P (λ)

associated with λ0. Thus, from the calculations above, we also have

‖z‖2
‖(eT1 ⊗ In)z‖2

=
‖RDz‖2

‖(eTk ⊗ In)RDz‖2
≤ 1√

2
k

3
2 max
i=0:k

{1, ‖Ai‖2}.

Thus, if P (λ) is scaled so that maxi=0:k{‖Ai‖2} = 1, we obtain

‖z‖2
‖x‖2

/
1√
2
k

3
2 ,

where x = (eTk ⊗ In)z if |λ0| ≤ 1 and x = (eT1 ⊗ In)z if |λ0| > 1. If we assume
that an approximate right eigenvector z has a block structure similar to that of an
exact right eigenvector of Tp(λ), then we can expect that the bound given above

for the quotient ‖z‖2‖x‖2 appearing in Theorem 5.2 still holds and it is close to 1 for
moderate k.

Note that, when the matrix coefficients of P (λ) have similar norms, then ρ1 ≈ 1
and the bound on the quotient of relative-relative backward errors in Theorem 5.2
is expected to depend only on k. This happens for the quotient of relative-absolute
backward errors for any P (λ) with max

i=0:k
{‖Ai‖2} = 1.

From Theorem 5.2 and Remark 5.2 we conclude that, up to a constant de-
pending on the degree of the matrix polynomial, we can expect ηra(z, λ0, TP ) ≈
ηra(x, λ0, P ), when x is recovered from z as explained in Theorem 5.2, which
implies that TP (λ) presents optimal behavior in terms of backward error in the
relative-absolute case, that is, the same behavior as the polynomial itself. In the



An optimal block-symmetric linearization 17

relative-relative case, if the norms of the matrix coefficients of P (λ) have similar
magnitudes, assuming that max

i=0:k
{‖Ai‖2} = 1, the backward error of an approxi-

mate eigenpair of P (λ) is close to the backward error of the corresponding eigenpair
of TP (λ).

Remark 5.3 As we will see from the proof of Theorem 5.2, if we do not assume
that P (λ) is scaled so that max

i=0:k
{‖Ai‖2} = 1, we have

ηra(x, λ0, P )

ηra(z, λ0, TP )
≤
√

2(k − 1)3ν′1
‖z‖2
‖x‖2

,
ηrr(x, λ0, P )

ηrr(z, λ0, TP )
≤ 2
√

2k
3
2 ν1
‖z‖2
‖x‖2

,

where

ν′1 :=
max{1,maxi=0:k{‖Ai‖22}}

max
i=0:k

{‖Ai‖2}
, ν1 :=

max{1,maxi=0:k{‖Ai‖22}}
min{‖Ak‖2, ‖A0‖2}

.

Note that Theorems 5.1 and 5.2 hold with no nonsingularity restrictions on the
matrix coefficients of P (λ), in contrast with the analogous results for the block-
symmetric linearizations D1(λ, P ) and Dk(λ, P ) (see [23,24] and Section 6).

In the rest of this section we use the notation introduced in Sections 3 and 4.

5.1 Proof of Theorem 5.1

We start with a lemma in which we give explicit expressions for the two consid-
ered condition numbers (relative-absolute and relative-relative) of a simple, finite,
nonzero eigenvalue λ0 of the linearization TP (λ) of a matrix polynomial P (λ) of
odd degree.

Lemma 5.1 Let P (λ) be a regular matrix polynomial of odd degree k as in (1.1).
Assume that λ0 is a simple, finite, nonzero eigenvalue of P (λ) with left and right
eigenvectors x1 and x2, respectively. Let TP (λ) =: λT1 − T0. Then,

κra(λ0, TP ) =
max{‖T1‖2, ‖T0‖2}(|λ0|+ 1)‖∆B(λ0)∗x1‖2‖∆(λ0)x2‖2

|λ0||x∗1P ′(λ0)x2|
, (5.8)

κrr(λ0, TP ) =
(|λ0|‖T1‖2 + ‖T0‖2)‖∆B(λ0)∗x1‖2‖∆(λ0)x2‖2

|λ0||x∗1P ′(λ0)x2|
, (5.9)

where ∆(λ) is defined as in (3.5).

Proof Differentiating the first equality in (4.5), we get

T ′P (λ)∆(λ) + TP (λ)∆′(λ) = ek ⊗ P ′(λ). (5.10)

By Theorem 4.1, the vector z1 = ∆B(λ0)∗x1 is a left eigenvector of TP (λ) associ-
ated with λ0 and z2 = ∆(λ0)x2 is a right eigenvector of TP (λ) associated with λ0.
Evaluating the expression (5.10) at λ0, premultiplying by z∗1 , and postmultiplying
by x2, we get

z∗1T ′P (λ0)(∆(λ0)x2) = z∗1(ek ⊗ P ′(λ0)x2),

or, equivalently,

z∗1T ′P (λ0)z2 = x∗1∆
B(λ0)(ek ⊗ P ′(λ0)x2) = x∗1P

′(λ0)x2.

Now (5.8) and (5.9) follow from (2.2) and (2.3). ut
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The following lemma will allow us to only consider eigenvalues λ0 such that
|λ0| ≤ 1 when proving Theorem 5.1.

Lemma 5.2 Let P (λ) be a regular matrix polynomial of odd degree k as in (1.1)
with A0 6= 0, and let λ0 be a simple, finite, nonzero eigenvalue of P (λ). Then,

κra(λ0, TP ) = κra

(
1

λ0
, TrevP

)
, κrr(λ0, TP ) = κrr

(
1

λ0
, TrevP

)
.

Proof Let TP (λ) =: λT1 − T0. We prove the second claim. The first one can be
proven similarly. From Lemma 4.2,

TrevP (λ) = λRDTP
(

1

λ

)
DR = RD(T1 − λT0)DR =: λT̃1 − T̃0. (5.11)

Moreover, if y and x are, respectively, a left and a right eigenvector of TP (λ)
associated with λ0, then ỹ = RDy and x̃ = RDx are, respectively, a left and a
right eigenvector of TrevP (λ) associated with 1/λ0. Then, taking into account (2.3)
and the fact that the spectral norm is unitarily invariant, we have

κrr

(
1

λ0
, TrevP

)
=

(
∣∣∣ 1
λ0

∣∣∣ ‖T̃1‖2 + ‖T̃0‖2)‖ỹ‖2‖x̃‖2∣∣∣ 1
λ0

∣∣∣ |ỹ∗T̃1x̃|
=

(‖T̃1‖2 + |λ0|‖T̃0‖2)‖ỹ‖2‖x̃‖2
|ỹ∗T̃1x̃|

=
(‖T0‖2 + |λ0|‖T1‖2)‖y‖2‖x‖2

|y∗T0x|

=
(‖T0‖2 + |λ0|‖T1‖2)‖y‖2‖x‖2

|λ0||y∗T1x|
= κrr(λ0, TP ),

where the equality before the last equality follows from the fact that (λ0T1−T0)x =
0. ut

Proof of Theorem 5.1. Let x1 and x2 be, respectively, a left and a right eigen-
vector of P (λ) associated with λ0. First we compare κra(λ0, TP ) with κra(λ0, P ).
Taking into account Lemmas 2.1 and 5.2, we assume |λ0| ≤ 1, as otherwise we
replace P (λ) by revP (λ) and λ0 by 1

λ0
. From (2.2) and Lemma 5.1, we have

κra(λ0, TP )

κra(λ0, P )
=

max{‖T1‖2, ‖T0‖2}(|λ0|+ 1)‖∆B(λ0)∗x1‖2‖∆(λ0)x2‖2
max
i=0:k

{‖Ai‖2}(
∑k
i=0 |λ0|i)‖x1‖2‖x2‖2

. (5.12)

By Proposition 4.1, we get

‖T1‖2, ‖T0‖2 ≤ 2 max
i=0:k

{1, ‖Ai‖2}. (5.13)

Moreover, by Proposition 3.1,

max{‖T1‖2, ‖T0‖2} ≥ max
i=0:k

{‖Ai‖2}.

Thus, from (5.12) and the inequalities above, we get

|λ0|+ 1∑k
i=0 |λ0|i

QT ≤
κra(λ0, TP )

κra(λ0, P )
≤

2 max
i=0:k

{1, ‖Ai‖2}

maxi=0:k{‖Ai‖2}
|λ0|+ 1∑k
i=0 |λ0|i

QT , (5.14)
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where

QT :=
‖∆B(λ0)∗x1‖2‖∆(λ0)x2‖2

‖x1‖2‖x2‖2
≤ ‖∆(λ0)‖2‖∆B(λ0)‖2 ≤ d1(λ0) max

i=0:k
{1, ‖Ai‖22},

(5.15)
with d1(λ0) as in (3.7). Note that the last inequality follows from Lemma 3.4.

We continue by computing the upper bound for κra(λ0,TP )
κra(λ0,P ) . Taking into account

Lemma 3.5, and since |λ0| ≤ 1, we obtain, for k ≥ 3,

|λ0|+ 1∑k
i=0 |λ0|i

d1(λ0) ≤ |λ0|+ 1∑k
i=0 |λ0|i

(
k + 1

2
+

(k − 1)3

2
|λ0|2

)
≤ (k − 1)3

2

(|λ0|+ 1)(1 + |λ0|2)∑k
i=0 |λ0|i

=
(k − 1)3

2

∑3
i=0 |λ0|

i∑k
i=0 |λ0|i

≤ (k − 1)3

2
.

A better bound for |λ0|+1∑k
i=0 |λ0|i

d1(λ0) can be obtained when |λ0| ≤ 1
k−1 . Taking

into account Lemma 3.5, we have d1(λ0) ≤ k, implying that

|λ0|+ 1∑k
i=0 |λ0|i

d1(λ0) ≤ k.

Taking into account (5.14), (5.15), the previous upper bounds for |λ0|+1∑k
i=0 |λ0|i

d1(λ0)

and the fact that we are assuming that maxi=0:k{‖Ai‖2} = 1, the upper bound
part of the theorem follows for the ratio of relative-absolute condition numbers.

Now we compare κrr(λ0, TP ) with κrr(λ0, P ). Again we can assume |λ0| ≤ 1.
From 2.3 and Lemma 5.1, we have

κrr(λ0, TP )

κrr(λ0, P )
=

(|λ0|‖T1‖2 + ‖T0‖2)‖∆B(λ0)∗x1‖2‖∆(λ0)x2‖2
(
∑k
i=0 |λ0|i‖Ai‖2)‖x1‖2‖x2‖2

. (5.16)

By Propositions 3.1 and 4.1, and taking into account that each of the matrix
coefficients of TP (λ) contains an identity block, we get

(|λ0|+ 1) min{max{1, ‖Ak‖2},max{1, ‖A0‖2}} ≤
|λ0|‖T1‖2 + ‖T0‖2 ≤ 2(|λ0|+ 1) max

i=0:k
{1, ‖Ai‖2}.

(5.17)

We also have

k∑
i=0

|λ0|i‖Ai‖2 ≥ ‖Ak‖2|λ0|k + ‖A0‖2 ≥ min{‖Ak‖2, ‖A0‖2}(|λ0|k + 1). (5.18)

Thus, from (5.16) and the inequalities above, we get

ρ2
|λ0|+ 1∑k
i=0 |λ0|i

QT ≤
κrr(λ0, TP )

κrr(λ0, P )
≤ 2

max
i=0:k

{1, ‖Ai‖2}

min{‖Ak‖2, ‖A0‖2}
|λ0|+ 1

|λ0|k + 1
QT , (5.19)

where ρ2 is as in (5.5) and QT is as in (5.15).
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We now focus on the upper bound for κrr(λ0,TP )
κrr(λ0,P ) . Taking into account Lemma

3.5, and since |λ0| ≤ 1, we obtain, for k > 2,

|λ0|+ 1

|λ0|k + 1
d1(λ0) ≤ 2d1(λ0) ≤ k3.

A better bound for |λ0|+1
|λ0|k+1

d1(λ0) can be obtained when |λ0| ≤ 1
k−1 . Taking

into account Lemma 3.5, d1(λ0) ≤ k, implying that

|λ0|+ 1

|λ0|k + 1
d1(λ0) ≤ 2k.

Taking into account (5.19), (5.15), the previous upper bounds for |λ0|+1
|λ0|k+1

d1(λ0)

and the fact that maxi=0:k{1, ‖Ai‖2} = 1, the upper bound part of the theorem
follows for the ratio of relative-relative condition numbers.

Next we show the lower bounds for both ratios κra(λ0, TP )/κra(λ0, P ) and
κrr(λ0, TP )/κrr(λ0, P ). From the definition of ∆(λ) in (3.5) we get

‖∆B(λ0)∗x1‖2‖∆(λ0)x2‖2 = ‖x∗1∆B(λ0)‖2‖∆(λ0)x2‖2 ≥ ‖x1‖2‖x2‖2

k−1
2∑

r=0

|λ0|2r.

Thus,

|λ0|+ 1∑k
i=0 |λ0|i

QT ≥
(|λ0|+ 1)

∑ k−1
2

r=0 |λ0|
2r∑k

i=0 |λ0|i
= 1,

and the result follows from (5.14) and (5.19). ut

5.2 Proof of Theorem 5.2

The following lemma will allow us to only consider eigenvalues λ0 such that |λ0| ≤
1 when proving Theorem 5.2.

Lemma 5.3 Let P (λ) be a regular matrix polynomial of odd degree k as in (1.1)
with A0 6= 0, and let (z, λ0) be an approximate right eigenpair of TP (λ), with
λ0 6= 0. Then, (RDz, 1

λ0
) is an approximate right eigenpair of TrevP (λ) and

ηra(z, λ0, TP ) = ηra

(
RDz,

1

λ0
, TrevP

)
, ηrr(z, λ0, TP ) = ηrr

(
RDz,

1

λ0
, TrevP

)
,

where R and D are as in (4.3) and (4.6), respectively.

Proof Let TP (λ) =: λT1−T0 and let TrevP (λ) := λT̃1−T̃0. Note that (5.11) holds.
Then, from (2.4) and Lemma 4.2,

ηrr

(
RDz,

1

λ0
, TrevP

)
=

‖TrevP ( 1
λ0

)RDz‖2

(
∣∣∣ 1
λ0

∣∣∣ ‖T̃1‖2 + ‖T̃0‖2)‖RDz‖2
=

‖ 1
λ0
TP (λ0)z‖2

(
∣∣∣ 1
λ0

∣∣∣ ‖T̃1‖2 + ‖T̃0‖2)‖z‖2

=
‖TP (λ0)z‖2

(‖T0‖2 + |λ0|‖T1‖2)‖z‖2
= ηrr(z, λ0, TP ).

The result for the relative-absolute case can be proven similarly. ut



An optimal block-symmetric linearization 21

Proof of Theorem 5.2. Let (z, λ0) be an approximate right eigenpair of
TP (λ) := λT1 − T0 and assume that |λ0| ≤ 1. Let x := (eTk ⊗ In)z. Note that
(x, λ0) can be seen as an approximate right eigenpair of P (λ). First we show the
upper bounds in (5.6). We have

P (λ0)x = P (λ0)(eTk ⊗ In)z = (eTk ⊗ P (λ0))z = ∆B(λ0)TP (λ0)z,

where the last equality follows from Lemma 4.1. Thus,

ηra(x, λ0, P )

ηra(z, λ0, TP )
=

‖P (λ0)x‖2
max
i=0:k

{‖Ai‖2}(
∑k
i=0 |λ0|i)‖x‖2

· max{‖T1‖2, ‖T0‖2}(1 + |λ0|)‖z‖2
‖TP (λ0)z‖2

≤ ‖∆B(λ0)‖2‖TP (λ0)z‖2
max
i=0:k

{‖Ai‖2}(
∑k
i=0 |λ0|i)‖x‖2

· max{‖T1‖2, ‖T0‖2}(1 + |λ0|)‖z‖2
‖TP (λ0)z‖2

=
‖∆B(λ0)‖2 max{‖T1‖2, ‖T0‖2}(1 + |λ0|)

max
i=0:k

{‖Ai‖2}
∑k
i=0 |λ0|i

· ‖z‖2‖x‖2

≤ 2
max
i=0:k

{1, ‖Ai‖2}

max
i=0:k

{‖Ai‖2}
|λ0|+ 1∑k
i=0 |λ0|i

‖z‖2
‖x‖2

‖∆B(λ0)‖2, (5.20)

where the last inequality follows from Proposition 4.1. By Lemma 3.4, we have

‖∆B(λ0)‖2 ≤
√
d1(λ0) max

i=0:k
{1, ‖Ai‖2},

where d1(λ) is as in (3.7). Taking into account Lemma 3.5, since |λ0| ≤ 1, we have,
for k ≥ 3,

|λ0|+ 1∑k
i=0 |λ0|i

√
d1(λ0) ≤

√
(|λ0|+ 1)2

(
k+1
2 + (k−1)3

2 |λ0|2
)

∑k
i=0 |λ0|i

≤
√

(k − 1)3

2

√
(|λ0|+ 1)2(1 + |λ0|2)∑k

i=0 |λ0|i

≤
√

(k − 1)3

2

∑2
i=0 |λ0|

i∑k
i=0 |λ0|i

≤
√

(k − 1)3

2
.

Thus, the first upper bound in (5.6) follows by combining the two previous bounds
with (5.20).

Similarly,

ηrr(x, λ0, P )

ηrr(z, λ0, TP )
=

‖P (λ0)x‖2
(
∑k
i=0 |λ0|i‖Ai‖2)‖x‖2

· (|λ0|‖T1‖2 + ‖T0‖2)‖z‖2
‖TP (λ0)z‖2

≤ ‖∆
B(λ0)‖2‖TP (λ0)z‖2

(
∑k
i=0 |λ0|i‖Ai‖2)‖x‖2

· (|λ0|‖T1‖2 + ‖T0‖2)‖z‖2
‖TP (λ0)z‖2

=
‖∆B(λ0)‖2(|λ0|‖T1‖2 + ‖T0‖2)∑k

i=0 |λ0|i‖Ai‖2
· ‖z‖2‖x‖2

≤ 2
maxi=0:k{1, ‖Ai‖2}
min{‖Ak‖2, ‖A0‖2}

|λ0|+ 1

|λ0|k + 1

‖z‖2
‖x‖2

‖∆B(λ0)‖2, (5.21)
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where the last inequality follows from (5.18) and the second inequality in (5.17).
Moreover, since |λ0| ≤ 1, we have, for k ≥ 3, using again Lemma 3.5,

|λ0|+ 1

|λ0|k + 1

√
d1(λ0) ≤ |λ0|+ 1

|λ0|k + 1

√
k + 1

2
+

(k − 1)3

2
|λ0|2 ≤

√
2k3/2.

Thus, the second upper bound in (5.6) follows by combining the previous bound
with (5.21) and the bound for ‖∆B(λ0)‖2 in Lemma 3.4.

If |λ0| ≤ 1
k−1 , a better bound can be obtained. In this case,

|λ0|+ 1∑k
i=0 |λ0|i

√
d1(λ0) ≤

√
k,

|λ0|+ 1

|λ0|k + 1

√
d1(λ0) ≤ 2

√
k,

implying the upper bounds for the ratios of backward errors in (5.7).
Now suppose that |λ0| > 1. From Lemmas 2.2 and 5.3, we have

ηrr((e
T
1 ⊗ In)z, λ0, P )

ηrr(z, λ0, TP )
=
ηrr((e

T
k ⊗ In)RDz, 1

λ0
, revP )

ηrr(RDz,
1
λ0
, TrevP )

.

Taking into account Lemma 4.2 and since | 1λ0
| < 1, by the part of Theorem 5.2

already proven, we have that

ηrr((e
T
k ⊗ In)RDz, 1

λ0
, revP )

ηrr(RDz,
1
λ0
, TrevP )

= 2
√

2k3/2
‖RDz‖2

‖(eTk ⊗ In)RDz‖2
ρ1

= 2
√

2k3/2
‖z‖2

‖(eT1 ⊗ In)z‖2
ρ1.

A similar observation applies when the relative-absolute backward error is consid-
ered.

6 Conditioning and backward error of eigenvalues of D1(λ, P ),
Dk(λ, P ) and C1(λ)

In this section we present results analogous to Theorems 5.1 and 5.2 for the lin-
earizations D1(λ, P ), Dk(λ, P ) (which are the first and the last pencils in the
standard basis of the vector space of block-symmetric pencils DL(P ) introduced
in [31]), and for C1(λ) (called the first Frobenius companion form, and which is the
linearization used by default by MATLAB when solving a polynomial eigenvalue
problem). We introduce formally these pencils below. We note that some of the
claims in the results presented in this section were previously obtained in [23] and
[24]. We include them for completeness with the goal of comparing the condition-
ing and backward error of the eigenvalues of TP (λ) and those of the linearizations
D1(λ, P ), Dk(λ, P ), and C1(λ), and of discussing the advantages of TP (λ) over
these linearizations. With respect to the conditioning, we give some improvements
on the bounds proven in [24], which allow us to obtain a more accurate comparison
of the different linearizations.

We start by recalling the definition of the pencils that we are considering in
this section. The reader can find more details in [25,31].
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Let P (λ) be a matrix polynomial of degree k as in (1.1) and assume that k ≥ 2.
We have

D1(λ, P ) := λ


Ak
−Ak−2 −Ak−3 · · · −A0

−Ak−3 −Ak−4 · · · 0
... . .

. ...
−A0 0 · · · 0

−

−Ak−1 −Ak−2 · · · −A1 −A0

−Ak−2 −Ak−3 · · · −A0 0
... . .

. ...
−A0 0 · · · · · · 0

 ,

Dk(λ, P ) := λ


0 · · · 0 Ak
0 · · · Ak Ak−1

... . .
. ...

...
Ak · · · A2 A1

−


0 · · · 0 Ak
0 · · · Ak Ak−1

... . .
. ...

Ak · · · A3 A2

−A0

 ,

C1(λ) := λ


Ak

In
. . .

In

−

−Ak−1 −Ak−2 · · · −A0

In 0 · · · 0
...

. . .
. . .

...
0 · · · In 0

 .
We emphasize that C1(λ) is the very well-known first Frobenius companion

form, which is fundamental in the theory and in the numerical computations of
matrix polynomials [20]. The block-symmetric pencils D1(λ, P ) and Dk(λ, P ) have
been thoroughly studied recently in [9,23–25,31,32], although they were intro-
duced as early as in [28].

When comparing the conditioning of eigenvalues and the backward error of
approximate eigenpairs of a regular P (λ) with those of any of its linearizations
D1(λ, P ), Dk(λ, P ) and C1(λ), the next two lemmas will be useful since they
provide a way to recover an eigenvector of a matrix polynomial P (λ) from an
eigenvector of D1(λ, P ), Dk(λ, P ) and C1(λ). We will use the following notation:

Λ(λ) =
[
λk−1 · · ·λ 1

]T
. (6.1)

Lemma 6.1 [31, Theorems 3.8 and 3.14] Let P (λ) be an n × n regular matrix
polynomial of degree k and λ0 be a finite eigenvalue of P (λ). Let L(λ) = Di(λ, P ),
with i ∈ {1, k}, be a linearization of P (λ). A vector z is a right eigenvector of
L(λ) associated with λ0 if and only if z = Λ(λ0) ⊗ x for some right eigenvector
x of P (λ) associated with λ0. Similarly, a vector ω is a left eigenvector of L(λ)
associated with λ0 if and only if ω = Λ(λ0)⊗y for some left eigenvector y of P (λ)
associated with λ0.

Lemma 6.2 [24, Section 1 and Lemma 7.2] Let P (λ) be an n× n regular matrix
polynomial of degree k and λ0 be a finite eigenvalue of P (λ). A vector z is a right
eigenvector of C1(λ) associated with λ0 if and only if z = Λ(λ0)⊗x for some right
eigenvector x of P (λ) associated with λ0.

A vector ω is a left eigenvector of C1(λ) associated with λ0 if and only if
ω∗ = y∗[In, P1(λ0), . . . , Pk−2(λ0), Pk−1(λ0)], for some left eigenvector y of P (λ)
associated with λ0, where Pi(λ) is as in (3.2). Thus, if ω is a left eigenvector of
C1(λ) with eigenvalue λ0, then y = (eT1 ⊗ In)ω is a left eigenvector of P (λ) with
eigenvalue λ0. Moreover, any left eigenvector y of P (λ) with eigenvalue λ0 can be
recovered from some left eigenvector ω of C1(λ) by taking y = (eT1 ⊗ In)ω.
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6.1 Conditioning and backward error of eigenvalues of D1(λ, P ) and Dk(λ, P )

Next we recall some well-known results on the conditioning of eigenvalues and
backward error of approximate eigenpairs of the linearizationsD1(λ, P ) andDk(λ, P )
of a regular matrix polynomial P (λ) introduced previously in [23,24]. Moreover,
we sharpen one of the results in [24].

Recall that D1(λ, P ) (resp. Dk(λ, P )) is a strong linearization of a regular
matrix polynomial P (λ) as in (1.1) if and only if A0 (resp. Ak) is nonsingular.

In [24], it was shown that, for a simple, finite, nonzero eigenvalue λ0 of a regular
P (λ) as in (1.1) with A0 6= 0, the relative-relative condition number of λ0 as an
eigenvalue of D1(λ, P ) (resp. Dk(λ, P )), when A0 (resp. Ak) is nonsingular, is
close to optimal among the linearizations of P (λ) in DL(P ), when |λ0| ≥ 1 (resp.
|λ0| ≤ 1), provided that

ρ :=
maxi=0:k{‖Ai‖2}

min{‖Ak‖2, ‖A0‖2}
. (6.2)

is of order 1, which happens, in particular, when all matrix coefficients of P (λ)
have similar norms. In this case, these optimal condition numbers are close to the
relative-relative condition number of the polynomial itself.

The combination of Theorems 4.4 and 4.5 in [24] provides a lower and an upper

bound for κrr(λ0,Dt)
κrr(λ0,P ) , when either t = 1 and |λ0| ≥ 1, or t = k and |λ0| ≤ 1, namely,

(
2
√
k

k + 1

)
1

ρ
≤ κrr(λ0, Dt)

κrr(λ0, P )
≤
√
k7ρ2.

Using the same techniques as those applied to compute the bounds in Theorem
5.1, next we deduce sharper bounds for the quotient κrr(λ0,Dt)

κrr(λ0,P ) than those provided

in [24] and compute lower and upper bounds for κra(λ0,Dt)
κra(λ0,P ) . Based on the results

obtained, we can provide a fair comparison of the linearizations TP (λ), D1(λ, P )
and Dk(λ, P ) with respect to conditioning, and explain the numerical experiments
in Section 7 appropriately.

Theorem 6.1 Let P (λ) be a regular matrix polynomial of degree k as in (1.1)
with A0 6= 0. Assume that λ0 is a simple, finite, nonzero eigenvalue of P (λ). Let
` ∈ {1, k} and suppose that A0 is nonsingular if ` = 1, and Ak is nonsingular if
` = k. Let ρ be as in (6.2). Then,

max{1, |λ0|k−1}, if ` = k
max{1, 1

|λ0|k−1 }, if ` = 1

}
≤ κra(λ0, D`)

κra(λ0, P )
≤

{
k2 max{1, |λ0|k−1}, if ` = k,
k2 max{1, 1

|λ0|k−1 }, if ` = 1.

max{1, |λ0|k−1} 1ρ , if ` = k,

max{1, 1
|λ0|k−1 } 1ρ , if ` = 1.

}
≤ κrr(λ0, D`)

κrr(λ0, P )
≤

{
k2ρmax{1, |λ0|k−1}, if ` = k,
k2ρmax{1, 1

|λ0|k−1 }, if ` = 1.

Proof We only prove the bounds for the quotient of relative-relative condition
numbers. The relative-absolute case can be proven similarly. Let x and y be a
right and a left eigenvector of P (λ) associated with λ0, respectively. Let Λ(λ) be
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as in (6.1). Let ` ∈ {1, k}, and define D`(λ, P ) := L`1λ− L`0. Taking into account
Theorem 3.2 in [24], we have

κrr(λ0, D`)

κrr(λ0, P )
=

(|λ0|‖L`1‖2 + ‖L`0‖2)‖Λ(λ0)‖22
|λ0|k−`

∑k
i=0 |λ0|i‖Ai‖2

. (6.3)

By Proposition 3.1 and taking into account that all block-entries of L`1 and L`0 are
either 0 or matrix coefficients of P (λ), we obtain

|λ0|‖L`1‖2 + ‖L`0‖2 ≤ (|λ0|+ 1)k max
i=0:k

{‖Ai‖2}. (6.4)

Thus, from (5.18) and (6.3), we obtain

κrr(λ0, D`)

κrr(λ0, P )
≤ k maxi=0:k{‖Ai‖2}

min{‖Ak‖2, ‖A0‖2}
(|λ0|+ 1)

∑k−1
i=0 |λ0|

2i

(|λ0|k + 1)|λ0|k−`
= kρ

∑2k−1
i=0 |λ0|

i

(|λ0|k + 1)|λ0|k−`
.

(6.5)

Clearly, if |λ0| = 1, the upper bound in the statement follows. Now suppose that
|λ0| 6= 1. We have

κrr(λ0, D`)

κrr(λ0, P )
≤ kρ |λ0|2k − 1

(|λ0| − 1)(|λ0|k + 1)|λ0|k−`
= kρ

|λ0|k − 1

(|λ0| − 1)|λ0|k−`

≤ kρ |λ0|
k−1 + · · ·+ 1

|λ0|k−`
≤ k2ρmax{1, |λ0|k−1}

|λ0|k−`

=

{
k2ρmax{1, |λ0|k−1}, if ` = k,
k2ρmax{1, 1

|λ0|k−1 }, if ` = 1.

Thus, the result for the upper bound in the relative-relative case follows.
Now we show the lower bound in the statement. From Proposition 3.1 and

taking into account the block-structure of D`(λ, P ), we obtain

(|λ0|+ 1) min{‖Ak‖2, ‖A0‖2} ≤ |λ0|‖L`1‖2 + ‖L`0‖2.

Thus, from (6.3),

κrr(λ0, D`)

κrr(λ0, P )
≥

(|λ0|+ 1) min{‖Ak‖2, ‖A0‖2}
∑k−1
i=0 |λ0|

2i

maxi=0:k{‖Ai‖2}|λ0|k−`
∑k
i=0 |λ0|i

=
1

ρ

∑2k−1
i=0 |λ0|

i

|λ0|k−`
∑k
i=0 |λ0|i

≥ 1

ρ

{
max{1, |λ0|k−1}, if ` = k,
max{1, 1

|λ0|k−1 }, if ` = 1. ut

We notice that the previous theorem implies that, if k is moderate, |λ0| ≥ 1,
and A0 is nonsingular (resp. |λ0| ≤ 1 and Ak is nonsingular), then κra(λ0, D1) =
κra(λ0, P ) (resp. κra(λ0, Dk) = κra(λ0, P )), up to some dimensional constant. In
the relative-relative case, the same conclusion is obtained if, in addition, ρ ≈ 1.
However, if |λ0| < 1 (resp. |λ0| > 1), the ratio of condition numbers when λ0
is considered an eigenvalue of D1(λ, P ) (resp. Dk(λ, P )) grows as |λ0| decreases
(resp. increases) in both the relative-absolute and the relative-relative case, even if
ρ ≈ 1. Thus, D1(λ, P ) (resp. Dk(λ, P )) cannot be used to compute the eigenvalues
with small (resp. large) modulus.
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Remark 6.1 Based on Theorems 5.1 and 6.1, we compare the conditioning of
the nonzero, finite, simple eigenvalues of the linearizations TP (λ), D1(λ, P ) and
Dk(λ, P ). We note first that, while we can use TP (λ) to compute any eigenval-
ues of P (λ), regardless of their modulus, we are forced to use both linearizations,
D1(λ, P ) and Dk(λ, P ), when the matrix polynomial has both eigenvalues with
modulus larger than 1 and eigenvalues with modulus less than 1. This is the case
since κra(λ0, TP ) = κra(λ0, P ), up to a moderate constant (which is often very
pessimistic) for every λ0, while κra(λ0, D1) (resp. κra(λ0, Dk)) can be much larger
than κra(λ0, P ) if |λ0| < 1 (resp. |λ0| > 1). A similar observation applies in the
relative-relative case if, in addition, we assume ρ ≈ 1 (notice that ρ = ρ1 when
maxi=0:k{‖Ai‖2} = 1). We also observe that D1(λ, P ) (resp. Dk(λ, P )) is a strong
linearization of P (λ) if and only if A0 (resp. Ak) is nonsingular, contrarily to
TP (λ), which is always a strong linearization of P (λ). Thus, it is clear that the
use of TP (λ) presents clear advantages over the combined use of D1(λ, P ) and
Dk(λ, P ) for conditioning purposes.

We now recall a result that compares the backward error of an approximate
eigenpair of the linearization D`(λ, P ), ` ∈ {1, k}, with the backward error of a
certain approximate eigenpair of P (λ). The result for the relative-relative case
was obtained in [23, Corollary 3.11]. A few extra computations show the relative-
absolute case.

Theorem 6.2 Let P (λ) be a matrix polynomial of degree k as in (1.1) with A0 6=
0. Let ` ∈ {1, k} and suppose that A0 is nonsingular if ` = 1, and Ak is nonsingular
if ` = k. Let ρ be as in (6.2). Let (z, λ0) be an approximate right eigenpair of
D`(λ, P ), with λ0 nonzero and finite. Then, for z` = (eT` ⊗ In)z, we have that
(z`, λ0) is an approximate right eigenpair for P (λ) and

ηra(z`, λ0, P )

ηra(z, λ0, D`)
≤ k3/2 ‖z‖2‖z`‖2

,
ηrr(z`, λ0, P )

ηrr(z, λ0, D`)
≤ k3/2 ‖z‖2‖z`‖2

ρ. (6.6)

An analogous result holds for left eigenpairs (w∗, λ0) of D`(λ, P ) by simply replac-
ing z by w and z` by w` := (eT` ⊗ In)w.

Taking into account the form of the right eigenvectors ofD1(λ, P ) andDk(λ, P )
(see Lemma 6.1), and assuming that the approximate eigenvector z has a similar
block-structure, it is expected that, if ` = 1 and |λ0| ≥ 1, or if ` = k and |λ0| ≤ 1,
the approximate eigenvector z` for P (λ), recovered from the approximate eigen-

vector z of D`(λ, P ) as in Theorem 6.2, makes the quotient ‖z‖2
‖z`‖2 in (6.6) not

larger than
√
k.

Remark 6.2 Based on Theorems 5.2 and 6.2, we compare the backward errors of
TP (λ), D1(λ, P ) and Dk(λ, P ). First note that, although Theorem 6.2 is valid for
any value of λ0, an argument similar to the one in Remark 5.2 shows that, for
D1(λ, P ), the quotient ‖z‖2‖z1‖2 in (6.6) is expected to be not larger than

√
k only

if |λ0| ≥ 1, while for Dk(λ, P ), the quotient ‖z‖2
‖zk‖2 is expected to be not larger

than
√
k only if |λ0| ≤ 1. In contrast, according to Remark 5.2, the quotient ‖z‖2‖x‖2

appearing in Theorem 5.2 is expected to be bounded by 1√
2
k3/2 for any value

of λ0. This implies that in the relative-absolute case, TP (λ) presents optimal be-
havior in terms of backward error in contrast with D1(λ, P ) and Dk(λ, P ). In
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addition, observe that, when P (λ) is scaled by dividing all the matrix coefficients
by max

i=0:k
{‖Ai‖2}, the parameters ρ1 and ρ that appear in the bounds of the quo-

tients of relative-relative backward errors in Theorems 5.2 and 6.2, respectively,
have the same value, which is approximately one for polynomials whose coeffi-
cients have similar norms. Finally, observe that the bounds in Theorem 5.2 and
6.2 have the same dependence on k, that is, k3/2. Therefore, once P (λ) is di-
vided by max

i=0:k
{‖Ai‖2}, the use of Tp(λ) presents clear advantages with respect to

D1(λ, P ) and Dk(λ, P ) in terms of backward errors, since by using Tp(λ), for all
approximate eigenvalues, we will get similar backward errors as using D1(λ, P )
for computing the eigenvalues with |λ0| ≥ 1 and Dk(λ, P ), for computing the
eigenvalues with |λ0| ≤ 1.

6.2 Conditioning and backward error of C1(λ)

Next we focus on the first Frobenius companion linearization C1(λ) of P (λ). Note
that, since C2(λ) = [C1(λ)]B, where C1(λ)B denotes the block-transpose of C1(λ)
and C2(λ) denotes the second Frobenius companion form of P (λ) [20], any result
that we produce for C1(λ) has an immediate counterpart for C2(λ) (see [24, Lemma
7.1]).

We start by comparing the conditioning of the eigenvalues of C1(λ) with the
conditioning of the corresponding eigenvalues of P (λ). As far as we know, an
explicit result, valid for any k, is not given in the literature, though the quadratic
case was studied in [24] in the relative-relative case.

Theorem 6.3 Let P (λ) be a regular matrix polynomial of degree k as in (1.1) with
A0 6= 0 and maxi=0:k{‖Ai‖2} = 1. Let λ0 be a simple, finite, nonzero eigenvalue
of P (λ). Let C1(λ) be the first Frobenius companion linearization of P (λ). Let ρ1
be as in (5.1).

Then,

1√
k + 1

≤ κra(λ0, C1)

κra(λ0, P )
≤ 2k3,

1√
k + 1

≤ κrr(λ0, C1)

κrr(λ0, P )
≤ 2k3ρ1.

Proof We prove the result for the relative-relative case. The relative-absolute case
can be proven similarly. Let C1(λ) := λX1 + Y1. By Lemma 6.2, if y is a left-
eigenvector of P (λ) associated with λ0, then

w =


In

(P1(λ0))∗

...
(Pk−1(λ0))∗

 y,
is a left eigenvector of C1(λ) associated with λ0. Taking into account [24, Theorem
7.3], we obtain

κrr(λ0, C1)

κrr(λ0, P )
=
‖w‖2
‖y‖2

(|λ0|‖X1‖2 + ‖Y1‖2)‖Λ(λ0)‖2∑k
i=0 |λ0|i‖Ai‖2

,
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where Λ(λ) is as in (6.1). By [24, Lemma 7.4], we have

‖X1‖2 = max{1, ‖Ak‖2} = 1 (6.7)

and
1 = max

i=0:k−1
{1, ‖Ai‖2} ≤ ‖Y1‖2 ≤ k max

i=0:k−1
{1, ‖Ai‖2} = k. (6.8)

Thus, using (5.18), we get

κrr(λ0, C1)

κrr(λ0, P )
≤ ‖w‖2‖y‖2

|λ0|+ k

min{‖Ak‖2, ‖A0‖2}

√∑k−1
i=0 |λ0|2i

|λ0|k + 1
. (6.9)

Assume that |λ0| ≤ 1. Then,

‖w‖22 = ‖y‖22 +

k−1∑
i=1

‖(Pi(λ0))∗y‖22 ≤

(
1 +

k−1∑
i=1

‖(Pi(λ0))∗‖22

)
‖y‖22

≤ max
i=0:k

{1, ‖Ai‖22}‖y‖22

1 +

k−1∑
i=1

 i∑
j=0

|λ0|j
2

≤ max
i=0:k

{1, ‖Ai‖22}‖y‖22

1 + (k − 1)k

k−1∑
j=0

|λ0|2j
 , (6.10)

where the second and third inequalities follow taking into account Lemma 3.3 and
Lemma 3.1, respectively. Thus,

‖w‖22 ≤ max
i=0:k

{1, ‖Ai‖22}‖y‖22
[
1 + (k − 1)k2

]
≤ k3‖y‖22. (6.11)

From (6.9), we obtain κrr(λ0,C1)
κrr(λ0,P ) ≤ 2k3ρ1, when |λ0| ≤ 1.

If |λ0| > 1, taking into account Lemmas 3.1, 3.2 and 3.3, we have

‖w‖22 = ‖y‖22 +

k−1∑
i=1

‖y∗Pi(λ0)‖22 = ‖y‖22 +

k−1∑
i=1

‖λi−k0 y∗P k−i−1(λ0)‖22

≤ ‖y‖22 +

k−1∑
i=1

|λ0|2(i−k)‖P k−i−1(λ0)‖22‖y‖22

≤ ‖y‖22 max
i=0:k

{1, ‖Ai‖22}

1 +

k−1∑
i=1

|λ0|2(i−k)
k−i−1∑

j=0

|λ0|j
2

≤ ‖y‖22

1 +

k−1∑
i=1

(k − i)
k−i−1∑
j=0

|λ0|2i−2k+2j


≤ ‖y‖22

1 + (k − 1)2
k−2∑
j=0

|λ0|2j+2−2k


≤ ‖y‖22

[
1 + (k − 1)3|λ0|−2

]
. (6.12)
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Since |λ0|+ k ≤ (|λ0|+ 1)k, taking into account (6.9) and the upper bound for
‖w‖22/‖y‖22 in (6.12), we have

κrr(λ0, C1)

κrr(λ0, P )
≤ ‖w‖2‖y‖2

1

min{‖Ak‖2, ‖A0‖2}
(1 + |λ0|)k

√
k|λ0|k−1

1 + |λ0|k

= ρ1k
√
k
√

1 + (k − 1)3|λ0|−2
(1 + |λ0|)
|λ0|

≤ 2k3ρ1.

Now we find a lower bound for κrr(λ0,C1)
κrr(λ0,P ) . Notice that ‖w‖2 ≥ ‖y‖2. Thus,

from (6.7) and (6.8), and since maxi=0:k{‖Ai‖2} = 1, we have

κrr(λ0, C1)

κrr(λ0, P )
≥ (|λ0|‖X1‖2 + ‖Y1‖2)‖Λ(λ0)‖2∑k

i=0 |λ0|i‖Ai‖2
≥

(|λ0|+ 1)
√∑k−1

i=0 |λ0|2i∑k
i=0 |λ0|i

=

√
(|λ0|+ 1)2

∑k−1
i=0 |λ0|2i∑k

i=0 |λ0|i
≥

√
(|λ0|2 + 1)

∑k−1
i=0 |λ0|2i∑k

i=0 |λ0|i

≥

√∑k
i=0 |λ0|2i∑k
i=0 |λ0|i

=

√ ∑k
i=0 |λ0|2i

(
∑k
i=0 |λ0|i)2

≥ 1√
k + 1

.

Notice that the last inequality holds by Lemma 3.1. ut

We now recall a result obtained in [23] regarding the comparison of the relative-
relative backward errors of approximate eigenpairs of C1(λ) and P (λ). We also
include the relative-absolute result, which can be obtained similarly.

Theorem 6.4 [23, Theorems 3.6 and 3.8] Let P (λ) be a matrix polynomial of
degree k as in (1.1) with A0 6= 0 and max

i=0:k
{‖Ai‖2} = 1. Let (z, λ0) be an approxi-

mate right eigenpair of C1(λ). Then, for z` = (eT` ⊗ In)z, ` = 1 : k, we have that
(z`, λ0) is an approximate right eigenpair of P (λ) and

ηra(z`, λ0, P )

ηra(z, λ0, C1)
≤ k5/2 ‖z‖2‖z`‖2

,
ηrr(z`, λ0, P )

ηrr(z, λ0, C1)
≤ k5/2 ‖z‖2‖z`‖2

ρ1, (6.13)

where ρ1 is as in (5.1). Let (w∗, λ0) be an approximate left eigenpair of C1(λ).
Then, for w1 = (eT1 ⊗ In)w, we have that (w∗1 , λ0) is an approximate left eigenpair
of P (λ) and

ηra(w∗1 , λ0, P )

ηra(w∗, λ0, C1)
≤ k3/2 ‖w‖2‖w1‖2

,
ηrr(w

∗
1 , λ0, P )

ηrr(w∗, λ0, C1)
≤ k3/2 ‖w‖2‖w1‖2

ρ1. (6.14)

Remark 6.3 Taking into account the form of the right eigenvectors of C1(λ) (see
Lemma 6.2), and assuming that the approximate right eigenvector z has a similar

block structure as the exact ones, it is expected that the quotient ‖z‖2‖z`‖2 in (6.13) is

not larger than
√
k if ` = 1 and |λ0| ≥ 1, or if ` = k and |λ0| ≤ 1. Thus, depending

on the modulus of the approximate eigenvalue λ0, it is convenient to recover the
approximate eigenvector x of P (λ) from the eigenvector z of C1(λ) as follows: we
take x = z1 if |λ0| ≥ 1 and x = zk if |λ0| ≤ 1. Regarding the left eigenvectors,
assuming that the approximate left eigenvector ω has a block structure similar
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to the exact one, from (6.11) and (6.12) it is expected that the quotient ‖ω‖2‖ω1‖2 in

(6.14) is not larger than k3/2. Finally, we note that, in the bounds for the quotients
of relative-relative backward errors, for ρ1 to be close to 1, it is enough that all
matrix coefficients of P (λ) have similar norms.

Remark 6.4 Based on Theorems 5.1, 5.2, 6.3 and 6.4, we conclude that Tp(λ)
and C1(λ) have similar behavior in terms of conditioning and backward errors.
Moreover, both pencils are always linearizations of P (λ) (regular and singular).
However, when P (λ) is symmetric (Hermitian), TP (λ) has an advantage over C1(λ)
since, in this case, TP (λ) is also symmetric (Hermitian) while C1(λ) is not and,
for numerical reasons, it is more convenient that the linearizations preserve the
structure of the original matrix polynomial in order to preserve any symmetries
in the spectrum and save operations.

7 Numerical experiments

In this section, we run some numerical experiments to illustrate the theoretical re-
sults presented in previous sections concerning the conditioning of eigenvalues and
backward errors of approximate eigenpairs of the linearizations TP (λ), D1(λ, P ),
Dk(λ, P ) and C1(λ) of a matrix polynomial P (λ) and to compare the behavior of
the different linearizations analyzed. The goal is to show that indeed in practice
TP (λ) is a block symmetric linearization with much better numerical properties
than the block symmetric linearizations D1(λ, P ) and Dk(λ, P ) and with prop-
erties similar to those of the standard unstructured first Frobenius companion
form C1(λ). In some examples, P (λ) is a random matrix polynomial, sometimes
prepared to illustrate situations in which the advantage of TP (λ) over the other
linearizations are really striking, while in another, P (λ) is one of the matrix poly-
nomials connected with an application discussed in [4]. But in all the examples
that we have run, the numerical experiments show that the linearization TP (λ)
outperforms D1(λ, P ) and Dk(λ, P ) numerically.

The experiments were run on MATLAB-R2016a, for which the unit round-
off is 2−53. When calculating the condition numbers in Experiments 1 and 2, we
computed the eigenvalues, eigenvectors, and the condition numbers themselves us-
ing variable precision arithmetic with 40 decimal digits of precision. This was not
possible in Experiments 3 and 4 since either the matrix polynomial is very large
(degree 3 and size 128 × 128) or we run a large number of experiments (we used
50 and 100 matrix polynomials, respectively). The standard double precision of
MATLAB was used in this case. When computing the backward errors, we consid-
ered only right eigenpairs and the computations were done in the double precision
floating point arithmetic of MATLAB in all the experiments. The function eig is
used to compute approximate eigenvalues and eigenvectors of the linearizations. If
z denotes a computed eigenvector of a linearization, associated with a computed
eigenvalue λ0, an eigenvector for P (λ) was recovered from z as described in Re-
mark 6.3 and Theorems 5.2 and 6.2, for C1(λ), TP (λ), and D1(λ, P ) and Dk(λ, P ),
respectively.

According to the statements of the main results in Section 5 and 6, and for the
reasons explained there, in all the numerical tests, we scale the considered matrix
polynomial P (λ) by dividing each of its coefficients by maxi=0:k{‖Ai‖2}. Recall
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Fig. 7.1: Condition numbers ratio for random 20× 20 matrix polynomial P (λ) of
degree 3.

that, with this scaling, the ratios κra(λ0, TP )/κra(λ0, P ) and
ηra(x, λ0, P )/ηra(z, λ0, TP ) have been proven to be a moderate number of order 1
(for moderate k) and so TP (λ) is optimal in the relative-absolute sense. Therefore,
our experiments focus only on comparing the relative-relative condition numbers
and backward errors. We note that the scaling mentioned above does not affect
the conditioning and the backward errors of D1(λ, P ) and Dk(λ, P ).

Experiment 1. To start with, we examine a 20×20 random matrix polynomial
P (λ) of degree 3. The polynomial P (λ) was generated by producing random matrix
coefficients with the MATLAB function randn. The matrix coefficients of P (λ) had
similar spectral norms. More precisely, ‖A3‖2 = 1, ‖A2‖2 = 0.94, ‖A1‖2 = 0.93
and ‖A0‖2 = 0.96. The smallest modulus of the eigenvalues of P (λ) was 0.22 and
the largest was 3.25, i.e., all the moduli of the eigenvalues of P (λ) were close to 1.
The main results for Experiment 1 are shown in Figures 7.1 and 7.2, where the x-
axis has the indices 1, 2, ..., 60 to represent the non-zero, simple, finite eigenvalues
of P (λ), which are sorted in increasing order by modulus (i.e. 1 represents the
smallest eigenvalue in this order while 60 represents the eigenvalue with largest
modulus). The y-axis in the graph in Figure 7.1 corresponds to the ratio of relative-

relative condition numbers κrr(λ0,L)
κrr(λ0,P ) , where L is any of the linearizations,D1(λ, P ),

Dk(λ, P ), C1(λ) or TP (λ). The y-axis in the graph in Figure 7.2 corresponds to
the ratio of relative-relative backward errors ηrr(x, λ0, P )/ηrr(z, λ0, L).

Figures 7.1 and 7.2 show that TP (λ) has, in terms of conditioning and backward
errors, better behavior than each of the block symmetric linearizations D1(λ, P )
and Dk(λ, P ) and similar behavior to the combined used of D1(λ, P ) and Dk(λ, P ),
when D1(λ, P ) is used to compute the eigenvalues with moduli larger than 1 and
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Fig. 7.2: Backward errors ratio for random 20× 20 matrix polynomial P (λ) of
degree 3.

Dk(λ, P ) is used to compute the eigenvalues with moduli smaller than 1. Note
that we can guess what eigenvalues have modulus less than 1 or larger than 1
by inspecting where the graphs for D1(λ, P ) and Dk(λ, P ) intersect. In addition,
the behavior of TP (λ) is similar to the behavior of the unstructured Frobenius
companion form C1(λ).

We emphasize that we have repeated this random experiment for several sizes
and odd degrees (up to 21) and we have always obtained similar results. Moreover,
since the matrix coefficients of P (λ) have very similar norms, the results in these

examples remain essentially unchanged for the relative-absolute ratios κra(λ0,L)
κra(λ0,P )

and ηra(x, λ0, P )/ηra(z, λ0, L), illustrating the optimality of TP (λ), which behaves
essentially as the polynomial P (λ), i.e., producing ratios essentially equal to 1.
Finally, we remark that the improvements of TP (λ) with respect to D1(λ, P ) and
Dk(λ, P ) shown in Figures 7.1 and 7.2 are very moderate, as a consequence of the
fact that all the eigenvalues of P (λ) have moduli close to 1 (recall Theorem 6.1 in
this respect). This led us to devise the following experiment.

Experiment 2. In this experiment, we examine another random matrix poly-
nomial of size 20 × 20 and degree 3. The coefficients of P (λ) were again gen-
erated with the command randn of MATLAB, with the exception of A0 and
A3 that were both constructed in such a way that each of them has six very
small singular values equal to 10−6, 10−5, 10−4, 10−3, 10−2, 10−1. The matrix co-
efficients of P (λ) had similar norms. After scaling P (λ) by dividing all matrix
coefficients by max{‖Ai‖2, i = 0 : 3}, the scaled matrix coefficients Ãi of P (λ)
satisfy mini=0:3{‖Ãi‖2} = 0.43 and maxi=0:3{‖Ãi‖2} = 1. The smallest modulus
of the eigenvalues of P (λ) was 3.6 ·10−8 and the largest 6.9 ·107. Thus, in this case,
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Fig. 7.3: Condition numbers ratio for random 20× 20 matrix polynomial P (λ) of
degree 3 with very small and very large eigenvalues.

Fig. 7.4: Backward errors ratio for random 20× 20 matrix polynomial P (λ) of
degree 3 with very small and very large eigenvalues.
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there are eigenvalues with moduli very different from 1. The results are shown in
Figures 7.3 and 7.4 and similar comments to those for Figures 7.1 and 7.2 hold
with respect to the comparison of the behavior of the different linearizations, al-
though, in this case, TP (λ) outperforms the individual behavior of D1(λ, P ) and
Dk(λ, P ) by several orders of magnitude in the smallest and the largest eigenval-
ues, respectively.

We would like to point out that, in the graph for the backward errors, the
ratio corresponding to the largest eigenvalue of Dk(λ, P ) does not appear. This
phenomenon, that we have observed in numerous experiments, is related with the
fact that the leading matrix coefficient of Dk(λ, P ) is very ill-conditioned and its
condition number is much larger than that of the leading matrix coefficients of
the other linearizations and P (λ). When computing this eigenvalue of Dk(λ, P ),
MATLAB outputs an infinite eigenvalue. We would like to highlight that this
behavior only affects Dk(λ, P ) and that this problem does not occur with the ratio
of condition numbers since these have been computed with extended accuracy.

Experiment 3. The first part of this numerical experiment comes from an
applied problem discussed in [4]: the “plasma-drift problem” (modeling of drift in-
stabilities in the plasma edge inside a Tokamak reactor). This problem corresponds
to a 128 × 128 matrix polynomial P (λ) of degree 3 that we have scaled in such
a way that maxi=0:k{‖Ai‖2} = 1. In contrast with previous experiments, in this
example the matrix coefficients of P (λ) have norms of different magnitudes. More
specifically, ‖A3‖2 = 0.0103, ‖A2‖2 = 0.0043, ‖A1‖2 = 1 and ‖A0‖2 = 0.0999. The
smallest modulus of the eigenvalues of P (λ) is 0.028 and the largest is 11.745. The
results for the ratios of relative-relative condition numbers and backward errors
are shown in Figures 7.5 and 7.6. We observe again that TP (λ) has a better behav-
ior than each of the block symmetric linearizations D1(λ, P ) and Dk(λ, P ), in this
case by several orders of magnitude, a similar behavior to the combined used of
D1(λ, P ) and Dk(λ, P ) (never differing by more than a factor 10), and also similar
to the behavior of the first Frobenius form C1(λ). In this test, the ratios for TP (λ)
and the other linearizations increase with the moduli of the eigenvalues, which did
not happen in Experiments 1 and 2. This is related to the differences in norms of
the matrix coefficients of P (λ) and the fact that we are considering relative-relative
condition numbers and backward errors. For their relative-absolute counterparts,
the ratios for TP (λ) are always essentially equal to 1, i.e., optimal, as we proved
in Theorems 5.1 and 5.2.

Although in the plasma-drift problem, where the matrix coefficients of the ma-
trix polynomial vary widely in norm, C1(λ) and TP (λ) behave very similarly, this
is not always the case. To show this, we constructed 50 random matrix polynomials
of degree 3 and size 40 and multiplied the matrix coefficients of each polynomial
by constants so that the norm of the leading coefficient was approximately 106

times the norm of the matrix coefficient of the term of degree 0. For each polyno-
mial, we computed the maximum of the ratios κrr(λ0,C1)

κrr(λ0,TP ) and the maximum of the

ratios κrr(λ0,TP )
κrr(λ0,C1)

, among all the eigenvalues of the matrix polynomial. Then, we
constructed two vectors, u and v, whose ith entry is, respectively, the maximum
ratio κrr(λ0,C1)

κrr(λ0,TP ) and κrr(λ0,TP )
κrr(λ0,C1)

associated with the ith matrix polynomial. Finally,
we computed the maximum, mode, average, and median of the entries of those
two vectors and got the following results: max(u) = 1.486 · 104, mode(u) = 12.52,
average(u) = 722.84, median(u) = 113.78, max(v) = 3.185 · 103, mode(v) = 5.19,
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average(v) = 109.18, and median(v) = 20.46. Thus, we conclude that, if the ma-
trix coefficients of a matrix polynomial vary widely in norm, then κrr(λ0, C1) can
be much larger than κrr(λ0, TP ) for some eigenvalues and polynomials, but also
κrr(λ0, TP ) can be much larger than κrr(λ0, C1) for other eigenvalues and poly-
nomials. We do not have yet any explanation for these rather different behaviors.

Fig. 7.5: Condition number ratios for Plasma-drift problem.

Experiment 4. Theorem 5.1 provides upper bounds on the ratio of condi-
tion numbers associated with TP (λ) that depend on k3, unless the modulus of the
eigenvalue is smaller than 1

k−1 or is larger than k − 1. If this bound was sharp,

for k moderate to large, say 102, the bound would be very large (a multiple of 106

in this example). In this experiment we study if the ways those bounds depend
on k are pessimistic or if it can be expected that those bounds are attained for
eigenvalues with modulus close to 1. In the experiment, we first generated 100
random matrix polynomials of degree 101 and size 2 and, for each of the polyno-
mials, we computed the maximum ratio κrr(λ0,TP )

κrr(λ0,P ) among the eigenvalues λ0 of
the polynomial. Then, we constructed a vector u whose ith entry is that maximum
ratio for the ith random matrix polynomial and computed the maximum, mode,
average and median of the entries of u. We got that the maximum entry in u was
2.012 ·103, the mode was 22.108, the average was 100.13 and the median, 29.2811.
Additionally, we split the range of values of u into 11 intervals of equal length 200
and considered the frequencies of the entries of u in those intervals. We got the
vector of frequencies N = [92, 1, 4, 0, 1, 0, 0, 0, 0, 1, 1]. We conclude that, in general,
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the bounds in Theorem 5.1 are pessimistic and bounds depending on k3/2 more
than on k3 can be expected.

Fig. 7.6: Backward error ratios for Plasma-drift problem.

As a conclusion, except for a few matrix polynomials of degree 101 and for a
very few matrix polynomials whose coefficients vary widely in norm, in all the nu-
merical experiments that we have run, after scaling the matrix polynomial P (λ),
the linerization TP (λ) produced small ratios of condition numbers for all nonzero,
finite, simple eigenvalues of P (λ), and small ratios of backward errors for approx-
imate eigenpairs corresponding to all such eigenvalues. Moreover, the numerical
behavior of TP (λ) was comparable with the combined used of the block symmetric
linearizations D1(λ, P ) and Dk(λ, P ). Also, TP (λ) presented a similar numerical
behavior to that of the unstructured linearization C1(λ).

8 Conclusions

In this paper, we have studied for the first time eigenvalue condition numbers
and backward errors of approximated eigenpairs of the block symmetric lineariza-
tion TP (λ) introduced by Fiedler in [18] for scalar polynomials with odd degree
and extended by Antoniou and Vologiannidis to regular matrix polynomials with
odd degree in [3]. The theoretical analysis and the numerical tests in this paper
show that TP (λ) has much better properties with respect to condition numbers
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and backward errors than any other block symmetric linearization analyzed so
far in the literature, and it has similar properties to the unstructured Frobenius
companion forms, which are the linearizations used more often for solving poly-
nomial eigenvalue problems. Moreover, we have seen that, when the perturbations
are measured in an absolute sense, the condition numbers and backward errors of
TP (λ) are always essentially equal to those of the polynomial P (λ) and, so, TP (λ)
can be considered optimal in this respect. Future work in this area includes the
development of strategies for extending the excellent properties of TP (λ) to matrix
polynomials with even degree and to design and analyze other block symmetric
linearizations of even degree polynomials with better numerical properties than
those of the linearizations analyzed so far in the literature, in particular, better
than those of the linearizations in DL(P ) [25,31]. We are currently working on
these ideas. Another line of potential future research is to incorporate different
structures, as symmetric, Hermitian, palindromic, alternating, etc, in the analysis
performed in this paper.
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