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Abstract

In this paper we consider the sequence of monic polynomials (Qn) orthogo-
nal with respect to a symmetric Sobolev inner product. If Q2n(x) = Pn(x2)
and Q2n+1(x) = xRn(x2), then we deduce the integral representation of the
inner products such that (Pn) and (Rn) are, respectively, the corresponding
sequences of monic orthogonal polynomials. In the semiclassical case, alge-
braic relations between such sequences are deduced. Finally, an application
of the above results to Freud-Sobolev polynomials is given.

1 Introduction

Let U be a linear functional in the linear space P of polynomials with real
coe�cients. The sequence of real numbers (µn)n∈N where µn = U(xn) is said
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to be the sequence of the moments associated with the linear functional.
Let consider the bilinear functional ϕU : P× P → R such that

ϕ(p, q) = U(pq), p, q ∈ P.

The Gram matrix of ϕU with respect to the canonical basis (xn)n∈N is a
Hankel matrix (see [3]). If the principal submatrices of the Hankel matrix
are nonsingular, then the linear functional U is said to be quasi-de�nite.

For a quasi-de�nite linear functional U there exists a sequence of monic
polynomials {Tn} such that ( [3])

1. deg(Tn) = n, n ∈ N.

2. ϕU(Tn, Tm) = knδnm, kn 6= 0.

This sequence of polynomials satis�es a three-term recurrence relation

xTn(x) = Tn+1(x) + bnTn(x) + cnTn−1(x), n ≥ 0,

with initial conditions

T−1(x) = 0, T0(x) = 1, and cn 6= 0, ∀n ∈ N.

The linear functional is said to be positive de�nite if the principal sub-
matrices of the associated Hankel matrix are positive de�nite. In such condi-
tions, there exists a positive Borel measure µ supported in the real line such
that the following integral representation for the linear functional U holds:

U(p) =

∫
R

p(x)dµ(x), p ∈ P. (1.1)

A linear functional U is said to be symmetric if U(x2n+1) = 0, n ∈ N.
In particular, if U is positive de�nite and symmetric, then the support of the
measure µ in (1.1) is a symmetric set with respect to the origin in the real
line and the measure µ is associated with an even function in R.

If U is a quasi-de�nite linear functional and (Tn) denotes the correspon-
ding sequence of monic orthogonal polynomials, then

T2n(x) = Sn(x2), n ∈ N,

and
T2n+1(x) = xS∗

n(x2), n ∈ N.
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Here (Sn) and (S∗
n) are, respectively, sequences of monic polynomials or-

thogonal with respect to two quasi-de�nite linear functionals V and V ∗ such
that

V (xn) = U(x2n), n ∈ N,

V ∗(xn) = V (xn+1), n ∈ N,

(see [3]).
Conversely, given a quasi-de�nite linear functional V such that Sn(0) 6= 0

for the corresponding sequence of monic orthogonal polynomials, the linear
functional U satisfying

U(x2n) = V (xn), U(x2n+1) = 0

is said to be the symmetrized linear functional associated with U. Notice that
in this situation the sequence (Tn) satis�es a three-term recurrence relation

xTn(x) = Tn+1(x) + cnTn−1(x), n ≥ 0,

with initial conditions

T0(x) = 1, T1(x) = x, and cn 6= 0, ∀n ∈ N.

As a very well known example of symmetrization process, the Hermite
polynomials are the symmetrized of Laguerre polynomials with parameter
α = −1/2, i.e.

H2n(x) = L
− 1

2
n (x2)

H2n+1(x) = xL
1
2
n (x2)

In a recent work [1], the symmetrized linear functionals associated with
semiclassical linear functionals are studied. A semiclassical linear functional
U satis�es a distributional Pearson equation D(φU) = τU where φ and τ
are polynomials with deg(τ) ≥ 1. They constitute an extension of classical
linear functionals (Hermite, Laguerre, Jacobi, and Bessel) and they have been
extensively analyzed during the last two decades (see [4], [6]).

The aim of our contribution is to analyze the symmetrization process for
a kind of inner products which have received some attention very recently,
the so-called Sobolev inner products. Consider two positive de�nite linear
functionals U0 and U1 in the linear space P of the polynomials with real
coe�cients. We introduce a bilinear functional < ·, · > in P× P

< p, q >= U0(pq) + U1(p
′q′) (1.2)
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with p, q ∈ P.
Using the Gram-Schmidt method for the canonical basis (xn)n∈N in P, we

obtain a sequence (Qn) of monic polynomials with deg(Qn) = n which are
orthogonal with respect to the inner product (1.2).

Unfortunately, these polynomials do not satisfy recurrence relations as
those associated with a linear functional. Nevertheless, under some assump-
tions for the linear functionals U0 and U1 it is possible to deduce some higher
order recurrence relations ( see [5]) for the polynomials Qn.

The starting point of our contribution is to assume that U0 and U1 are
symmetric positive de�nite linear functionals. Then, Q2n(x) = Pn(x2) as well
as Q2n+1(x) = xRn(x2). In section 3 we deduce the integral representation
for the inner products such that (Pn) and (Rn) are, respectively, the co-
rresponding sequences of monic orthogonal polynomials. Thus, non-diagonal
Sobolev inner products appear in a natural way.

In section 4 we assume that U = U0 = U1 and U is a semiclassical linear
functional. Then, algebraic relations between (Pn) and (Rn) are deduced
as well as higher order recurrence relations for (Pn) and (Rn). Finally, as
an example, we show the application of our results and techniques for the
so-called Freud-Sobolev orthogonal polynomials [2].

2 Semiclassical Orthogonal Polynomials. Sym-

metrization and class.

Consider a quasi-de�nite linear functional U in the linear space P of polyno-
mials with real coe�cients and let {Pn} be the sequence of monic polynomials
orthogonal with respect to U.

U is said to be a semiclassical linear functional if

D(φU) = τU (2.1)

where φ and τ are polynomials with deg(φ) = t ≥ 0 and deg(τ) = p ≥ 1.

Theorem 2.1 [1] The following statements are equivalent:

1. U is a semiclassical linear functional.

2. The Stieltjes function SU(z) = −
∑∞

n=0
µn

zn+1 with µn = U(xn) satis�es

φ(z)S ′
U(z) = C(z)SU(z) + D(z) (2.2)
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where
C(z) = −φ′(z) + τ(z) (2.3)

D(z) = −(Uθ0φ)′(z) + (Uθ0τ)(z) (2.4)

and
(Uθ0p)(c) =< U, θcp >, (Uθ0p)′(c) =< U, θ2

cp >

θcp =
p(z)− p(c)

z − c
.

The condition of being semiclassical can also be characterized in terms of
a weight function.

Proposition 2.2 [4] Let U be a semiclassical linear functional with integral
representation

U(p) =

∫
R

pω(x)dx

where ω is a continuosly di�erentiable function in an interval [a, b] satisfying
some extra boundary conditions and such that D(φU) = τU . Then

(φω)′ = τω (2.5)

and ω is said to be a semiclassical weight function.

Remark 2.3 Observe that (2.1) holds for an in�nite family of pairs of poly-
nomials (φ, τ). In particular, if (φ1, τ1) satis�es (2.1), (πφ1, πτ1 + π′φ1) with
π any polynomial, will also satisfy (2.1).

De�nition 2.1 [1] Let (φ, τ) be the pair of polynomials with minimum de-
gree that satisfy (2.1). Then, the class of U is de�ned as

s = max{deg(φ)− 2, deg(τ)− 1}. (2.6)

It is possible to characterize those pairs of polynomials (φ, τ) that de�ne
the class of a semiclassical functional.

Proposition 2.4 [1] Let C and D be the polynomials de�ned in (2.3) and
(2.4). Then, (φ, τ) is the pair of polynomials of minimum degree that satisfy
(2.1) if and only if (φ, C, D) are coprime.
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Theorem 2.5 [1] Let Ψ be a semiclassical linear functional of class s such
that D(φΨ) = τΨ and let U be its symmetrized. Then, U is also semiclassical
of class s̃ and

1. s̃ = 2s if φ(0) = 0, [φ(z) = zE(z)] and 2C(0) + E(0) = 0,
[2C(z) + E(z) = zG(z)].
Furthermore, D(φ̃U) = τ̃U and

φ̃(z) = E(z2) (2.7)

τ̃(z) = z[G(z2) + 2E ′(z2)]. (2.8)

2. s̃ = 2s + 1 if φ(0) = 0, [φ(z) = zE(z)] and 2C(0) + E(0) 6= 0.
Moreover

φ̃(z) = zE(z2) (2.9)

τ̃(z) = 2[E(z2) + z2E ′(z2) + C(z2)]. (2.10)

3. s̃ = 2s + 3 if φ(0) 6= 0 and

φ̃(z) = zφ(z2) (2.11)

τ̃(z) = 2[φ(z2) + z2φ′(z2) + z2C(z2)]. (2.12)

Proposition 2.6 Let U be a symmetric and semiclassical linear functional
of class s̃ such that:

D(φ̃U) = τ̃U.

If s̃ = 2k for some k ∈ N, then φ̃ is an even polynomial. If s̃ = 2k + 1, then
φ̃ is an odd polynomial.

Proof

1. Suppose that U is the symmetrized of a linear functional L of class s.
Moreover, assume that s̃ is even. Then, from Theorem 2.5 we get

s̃ = 2s, s̃ = 2s + 1 or s̃ = 2s + 3 . (2.13)

It is easy to prove that, if s̃ = 2k, then, necessarily s = k. Then, L is
of class k and D(φL) = τL for certain polynomials φ, τ , and from (2.7)

φ̃(x) = E(x2)

i.e., φ̃ is an even polynomial.
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2. Suppose now that s̃ is odd, namely, s̃ = 2k + 1 for some k ∈ N. Then,
because of (2.13) it may happen that s = k or s = k − 1 and L can be
of class k or k − 1.

• If s = k, from (2.9) it holds that

φ̃(x) = xE(x2).

Hence, φ̃ is an odd polynomial.
• If s = k − 1, then from (2.11)

φ̃(x) = xφ(x2)

and φ̃ is an odd polynomial.

Proposition 2.7 Let U be a symmetric, semiclassical linear functional of
class s̃. Assume U is the symmetrized of the semiclassical linear functional
L of class s. If D(φ̃U) = τ̃U , where φ̃ and τ̃ are polynomials, then

1. For s̃ even, τ̃ is an odd polynomial.

2. For s̃ odd, τ̃ is an even polynomial.

Proof

1. If s̃ is even, namely, s̃ = 2k for some k ∈ N, then s = k (see proposition
2.6). Moreover, for (2.8)

τ̃(x) = x[G(x2) + 2E ′(x2)]

for certain polynomials G(x) and E(x). Thus τ̃ is an odd polynomial.

2. If s̃ is odd, namely, s̃ = 2k+1 for some k ∈ N, then one of the following
statements holds

• s = k and τ̃(x) = 2[E(x2) + x2E ′(x2) + C(x2)] for certain polyno-
mials E(x) and C(x). As a consequence, τ̃ is an even polynomial.

• s = k − 1 and τ̃(x) = 2[φ(x2) + x2φ′(x2) + x2C(x2)] for certain
polynomials φ(x), C(x). Thus τ̃ is an even polynomial. �.
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3 Symmetric Sobolev Inner products.

Consider two positive Borel measures µ0,µ1 supported on the real line such
that ∫

R
xndµi < ∞ i = 0, 1, n ∈ N.

Consider an inner product in the linear space P of polynomials with real
coe�cients

< p, q >s=

∫
R

pqdµ0 +

∫
R

p′q′dµ1. (3.1)

This product is said to be a Sobolev inner product.
Furthermore, assume that µ0 and µ1 are supported on a subset of the real

line which is symmetric with respect to the origin as well as the corresponding
sequences of moments

c(i)
n =

∫
R

xndµi, i = 0, 1,

satisfy c
(i)
2n+1 = 0, i = 0, 1, n ∈ N.

Under these conditions, if we denote {Qn} the corresponding sequence of
monic polynomials orthogonal with respect to (3.1), then

Q2n(x) = Pn(x2), Q2n+1(x) = xRn(x2)

for certain sequences of monic polynomials {Pn} and {Rn}.
We are interested in the study of the orthogonality properties of the

sequences {Pn} and {Rn}, respectively.
First, observe that for n 6= m

0 =< Q2n, Q2m >s=

∫
R

Pn(x2)Pm(x2)dµ0 +

∫
R

4x2P ′
n(x2)P ′

m(x2)dµ1 =

=

∫ ∞

0

Pn(x)Pm(x)dµ̂0 +

∫ ∞

0

P ′
n(x)P ′

m(x)dµ̂1

where
dµ̂0 = x−

1
2 dµ0(x

1
2 ), dµ̂1 = 4x

1
2 dµ1(x

1
2 ).

On the other hand,

0 6=< Q2n, Q2n >=

∫
R+

P 2
n(x)dµ̂0 +

∫
R+

[P ′
n(x)]2dµ̂1.
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This means that {Pn} is a sequence of monic polynomials orthogonal with
respect to the Sobolev inner product

< p, q >1=

∫
R+

pqdµ̂0 +

∫
R+

p′q′dµ̂1. (3.2)

Moreover, if n 6= m,
0 =< Q2n+1, Q2m+1 >=

=

∫
R

x2Rn(x2)Rm(x2)dµ0+

∫
R
[Rn(x2)+2x2R′

n(x2)][Rm(x2)+2x2R′
m(x2)]dµ1 =

=

∫
R

[
Rn(x2) R′

n(x2)
] [

x2dµ0 + dµ1 2x2dµ1

2x2dµ1 4x4dµ1

] [
Rm(x2)
R′

m(x2)

]
=

=

∫
R+

[
Rn(x) R′

n(x)
] [

xdµ̂0 + dµ̂1

4x
dµ̂1

2
dµ̂1

2
xdµ̂1

] [
Rm(x)
R′

m(x)

]
and

0 6=< Q2n+1, Q2n+1 >=

∫
R+

[
Rn(x) R′

n(x)
] [

xdµ̂0 + dµ̂1

4x
dµ̂1

2
dµ̂1

2
xdµ̂1

] [
Rn(x)
R′

n(x)

]
.

This means that {Rn} is a sequence of monic polynomials orthogonal
with respect to the non-diagonal Sobolev inner product

< p, q >2=

∫
R+

[
p p′

]
dΩ2

[
q
q′

]
(3.3)

where dΩ2 =

[
xdµ̂0 + dµ̂1

4x
dµ̂1

2
dµ̂1

2
xdµ̂1

]
.

Observe that dΩ2 is a matrix of measures related to the diagonal matrix
of measures

dΩ1 =

[
dµ̂0 0
0 dµ̂1

]
in the following way

dΩ2 = MdΩ1M
t

with M =

[
x

1
2

1

2x
1
2

0 x
1
2

]
= x

1
2

[
1 1

2x

0 1

]
namely,

dΩ2 = N

[
xdµ̂0 0

0 xdµ̂1

]
N t
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with N =

[
1 1

2x

0 1

]
, or equivalently,

dΩ2 =

[
x 1

2

0 x

] [
1
x
dµ̂0 0
0 1

x
dµ̂1

] [
x 0
1
2

x

]
.

In the sequel, we will analyze the particular case when dµ0 and dµ1 are equal
and absolutely continuous measures. Moreover

• We will specify the orthogonality measures related to the sequences
{Pn} and {Rn} .

• We will look for explicit algebraic relations between {Pn} and {Rn} .

• We will determine a recurrence relation that such sequences satisfy.

4 Symmetric Sobolev inner products with equal

and absolutely continuous measures

The study of Sobolev inner products with respect to a measure was considered
by F.Marcellán, T.E.Pérez, M.A.Piñar, and A.Ronveaux in [5]. Moreover,
they took in consideration a semiclassical, positive de�nite linear functional
U (2.1) to de�ne the Nth Sobolev inner product

< p, q >(N)
s = U(pq) +

N∑
m=1

λmU(p(m)q(m)), ∀p, q ∈ P. (4.1)

Denote by
< p, q >= U(pq)

the standard inner product associated with U.
Considering {Pn} the monic orthogonal polynomial sequence associated

with the linear functional U and denoting {Qn} the MOPS with respect to
the Sobolev inner product (4.1), they proved the following result:

Proposition 4.1 For every nonnegative integer number n ≥ Ns, we get

φ(x)NPn(x) =
n+Ns∑
i=n−t

αn,iQi(x) (4.2)

where s = deg(φ), αn,n−t 6= 0 and t = deg(F (N)(xn))− n.(Here F (N) denotes
a di�erential operator introduced in [5]).
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We will consider the inner product

< p, q >s=

∫
R

pqω(x)dx +

∫
R

p′q′ω(x)dx (4.3)

where ω(x) is an even weight function supported on an interval of the real
line symmetric with respect to the origin. In this case, the corresponding
odd moments satisfy

µ2n+1 = 0, ∀n ∈ N .

Furthermore, suppose that ω(x) is a semiclassical weight, i.e,

(φω)′ = τω (4.4)

where φ, τ are the polynomials of minimum degree that satisfy (4.4) with
deg(φ) = s′ ≥ 0 and deg(τ) = t > 0.

Let {Qn} be the sequence of monic polynomials orthogonal with respect
to the inner product (4.3). Then,

Q2n(x) = Pn(x2), Q2n+1(x) = xRn(x2) (4.5)

for certain sequences of monic polynomials {Pn} and {Rn}.
Consider the standard inner product

< p, q >=

∫
R

pqω(x)dx (4.6)

and let {Tn} be the sequence of monic polynomials orthogonal with respect
to (4.6). Then

Proposition 4.2

φ(x)Tn(x) =
n+s′∑

j=n−s

αnjQj(x) (4.7)

with αn,n−s 6= 0, where s = max{s̃, s′} and s̃ is the class of the semiclassical
linear functional de�ned by ω.

Proof Let consider the Fourier expansion of φTn in terms of {Qn}

φ(x)Tn(x) =
n+s′∑
j=0

αnjQj(x)
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Here αnj =
<φTn,Qj>s

‖Qj‖2s
. But

< φTn, Qj >s=

∫
R

φTnQjω(x)dx +

∫
R

φ′TnQ
′
jω(x)dx +

∫
R

φT ′
nQ

′
jω(x)dx.

Applying integration by parts to the third integral we get

=

∫
R

φTnQjω(x)dx +

∫
R

φ′TnQ
′
jω(x)dx−

∫
R

Tn(φQ′
jω)′dx.

Since ω is a semiclassical weight, we obtain

=

∫
R

φTn(Qj −Q′′
j )ω(x)dx−

∫
R

TnQ
′
j(τ − φ′)ω(x)dx.

The �rst integral will vanish if j < n− s′, and the second one will vanish if
j < n− s̃. Then < φTn, Qj >s= 0 if j < n−max{s′, s̃}. �
Observe that φ(x) in (4.7) can be chosen in such a way that αn,n+s′ = 1.

4.1 Orthogonality Measures for {Pn} and {Rn}
Taking into account that {Qn} is orthogonal with respect to the Sobolev
inner product (4.3), for n 6= m

0 =< Q2n, Q2m >s=

∫
R

Pn(x2)Pm(x2)ω(x)dx+

∫
R

4x2P ′
n(x2)P ′

m(x2)ω(x)dx =

=

∫ ∞

0

Pn(t)Pm(t)t−
1
2 ω(t

1
2 )dt +

∫ ∞

0

4P ′
n(t)P ′

m(t)t
1
2 ω(t

1
2 )dt ,

then {Pn} is orthogonal with respect to the diagonal Sobolev inner product
with matrix of measures

dΩ1 =

[
1 0
0 4t

]
t−

1
2 ω(t

1
2 )dt .

On the other hand, if n 6= m

0 =< Q2n+1, Q2m+1 >s=

∫
R

x2Rn(x2)Rm(x2)ω(x)dx+
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+

∫
R
[Rn(x2) + 2x2R′

n(x2)][Rm(x2) + 2x2R′
m(x2)]ω(x)dx =

=

∫
R
(x2 + 1)Rn(x2)Rm(x2)ω(x)dx + 2

∫
R
[Rn(x2)Rm(x2)]′x2ω(x)dx+

+4

∫
R

R′
n(x2)R′

m(x2)x4ω(x)dx .

Changing the variable t = x2∫ ∞

0

(t + 1)Rn(t)Rm(t)t−
1
2 ω(t

1
2 )dt + 2

∫ ∞

0

[Rn(t)Rm(t)]′t
1
2 ω(t

1
2 )dt +

+4

∫ ∞

0

R′
n(t)R′

m(t)t
3
2 ω(t

1
2 )dt . (4.8)

Then {Rn} is a sequence of monic polynomials orthogonal with respect
to the Sobolev inner product with matrix of measures

dΩ2 =

[
1 + t 2t
2t 4t2

]
t−

1
2 ω(t)dt .

The support of both measures, dΩ1, dΩ2 is contained in R+. Denote

π1(t) = t

[
0 0
0 4

]
+

[
1 0
0 0

]

π2(t) = t2
[

0 0
0 4

]
+ t

[
1 2
2 0

]
+

[
1 0
0 0

]
.

Thus,
dΩ1 = π1(t)t

− 1
2 ω(t)dt

dΩ2 = π2(t)t
− 1

2 ω(t)dt .

Taking into account the calculations done in (4.8) and applying integra-
tion by parts to the second integral

0 =

∫ ∞

0

tRnRmt−
1
2 ω(t

1
2 )dt−

∫ ∞

0

RnRmω′(t
1
2 )dt+

+4

∫ ∞

0

R′
n(t)R′

m(t)t
3
2 ω(t

1
2 )dt .
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If ω satisfy ω′ = τω, (Freud weights), then

0 =

∫ ∞

0

[t− τ(t
1
2 )t

1
2 ]RnRmt−

1
2 ω(t

1
2 )dt+

+4

∫ ∞

0

R′
nR

′
mt

3
2 ω(t

1
2 )dt .

In such a case, {Rn} is orthogonal with respect to a diagonal Sobolev
inner product with matrix of measures

dΩ2 =

[
t− τ(t

1
2 )t

1
2 0

0 4t2

]
t−

1
2 ω(t

1
2 )dt .

If ω′ = τω, then the semiclassical functional de�ned by ω(t) is of even
class. Thus, from Proposition 2.7, τ(x) is an odd polynomial and so τ(t

1
2 )t

1
2

is a polynomial in t.

4.2 Explicit Algebraic Relations between {Pn} and {Rn}
The sequence {Tn}, which is orthogonal with respect to the inner product(4.6),
satis�es a three-term recurrence relation

xTn(x) = Tn+1(x) + cnTn−1(x), n ≥ 1, (4.9)

T−1(x) ≡ 0, T0(x) ≡ 1, cn > 0 .

Furthermore,
T2n(x) = Sn(x2), T2n+1(x) = xS∗

n(x2) (4.10)

for a certain sequence of orthogonal polynomials {Sn}, where {S∗
n} is the se-

quence of kernel polynomials {Kn(x; 0)} associated with the sequence {Sn} [3].
Taking into account (4.7) for n = 2m we get

φ(x)T2m(x) = Q2m+s′(x) + α2m,2m+s′−1Q2m+s′−1(x) + ... + α2m,2m−sQ2m−s(x)
(4.11)

• Suppose that s̃ is even, then, s′ and s are even, i.e., s = 2k and s′ = 2k′

with k, k′ ∈ N. In this case, because of Proposition 2.6, φ is an even
polynomial. Taking into account this result,(4.11) may be simpli�ed

φ(x)T2m(x) = Q2m+2k′(x) + α2m,2m+2k′−2Q2m+2k′−2(x) + . . .
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· · ·+ +α2m,2m−2kQ2m−2k(x) .

From (4.5) and (4.10)we get

φ(x)Sm(x2) = Pm+k′(x2) +
m+k′−1∑
j=m−k

α2m,2jPj(x
2) .

Since φ is an even polynomial, φ(x) = φ̃(x2) for a certain polynomial
φ̃ and then

φ̃(x)Sm(x) = Pm+k′(x) +
m+k′−1∑
j=m−k

α2m,2jPj(x) . (4.12)

For n = 2m + 1 (4.7) becomes

φ(x)T2m+1(x) = Q2m+2k′+1(x) + α2m+1,2m+2k′−1Q2m+2k′−1(x) + . . .

· · ·+ α2m+1,2m+1−2kQ2m−2k+1(x) .

Because of (4.5) and (4.10)

φ(x)xS∗
m(x2) = xRm+k′(x2) +

m+k′−1∑
j=m−k

α2m+1,2j+1xRj(x
2) .

Then,

φ̃(x)S∗
m(x) = Rm+k′(x) +

m+k′−1∑
j=m−k

α2m+1,2j+1Rj(x) . (4.13)

Taking into account the recurrence relation (4.9) for n = 2m, it holds

xT2m(x) = T2m+1(x) + c2mT2m−1(x), m ≥ 1 .

Because of (4.10)

Sm(x) = S∗
m(x) + c2mS∗

m−1(x) . (4.14)

Multiplying both hand sides of (4.14) by φ̃ and applying (4.12) and
(4.13),
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Pm+k′(x)+
∑m+k′−1

j=m−k α2m,2jPj(x) = Rm+k′(x)+[α2m+1,2m+2k′−1+c2m]Rm+k′−1(x)+

+
∑m+k′−2

j=m−k [α2m+1,2j+1 + c2mα2m−1,2j+1]Rj(x) + . . .

· · ·+ c2mα2m−1,2m−2k−1Rm−k−1(x) (4.15)

• Assume now that s̃ is odd. Let k, k′ ∈ N be such that s = 2k + 1 and
s′ = 2k′ + 1. Furthermore, φ is an odd polynomial from Proposition
2.7 and, as a consequence, (4.11) may be simpli�ed to get
φ(x)T2m(x) = Q2m+2k′+1(x) + α2m,2m+2k′−1Q2m+2k′−1(x) + . . .

· · ·+ α2m,2m−2k−1Q2m−2k−1(x) .

Taking into account (4.5) and (4.10)

φ(x)Sm(x2) = xRm+k′(x2) +
m+k′−1∑

j=m−k−1

α2m,2j+1xRj(x
2) .

Since φ is an odd polynomial, φ(x) = xφ̂(x2), then

φ̂(x)Sm(x) = Rm+k′(x) +
m+k′−1∑

j=m−k−1

α2m,2j+1Rj(x) . (4.16)

Writing (4.7) for n = 2m + 1,

φ(x)T2m+1(x) = Q2m+2k′+2(x)+α2m+1,2m+2k′Q2m+2k′(x)+· · ·+α2m,2m−2kQ2m−2k(x).

Because of (4.5) and (4.10)

φ(x)xS∗
n(x2) = Pm+k′+1(x

2) +
m+k′∑

j=m−k

α2m+1,2jPj(x
2).

Then we get

xφ̂(x)S∗
n(x) = Pm+k′+1(x) +

m+k′∑
j=m−k

α2m+1,2jPj(x) . (4.17)
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On the other hand, from

xT2n+1(x) = T2n+2(x) + c2n+1T2n(x), n ≥ 0

we get
xS∗

n(x) = Sn+1(x) + c2n+1Sn(x) . (4.18)

Multiplying both sides by φ̂ and applying (4.16) and (4.17),

Pm+k′+1(x) +
∑m+k′

j=m−k α2m+1,2jPj(x) = Rm+k′+1(x) + [α2m+2,2m+2k′+1 +

c2m+1]Rm+k′(x)+ +
∑m+k′−1

j=m−k [α2m+2,2j+1 + c2m+1α2m,2j+1]Rj(x) + . . .

· · ·+ α2m,2m−2k−1c2m+1Rm−k−1(x) . (4.19)

4.3 Recurrence Relations

If the linear functional associated with the weight function ω(x) is of class s̃
and s̃ is even, (4.15) holds as well as (4.18). Multiplying both hand sides of
(4.18) by φ̃ and considering (4.13) and (4.14) we get

x[Rm+k′(x)+
∑m+k′−1

i=m−k α2m+1,2i+1Ri(x)] = [Pm+k′+1(x)+
∑m+k′

i=m−k+1 α2m+2,2iPi(x)]+

· · ·+ c2m+1[Pm+k′(x) +
m+k′−1∑
i=m−k

α2m,2iPi(x)] . (4.20)

Substituting (4.15) in (4.20) in a convenient way

x[Rm+k′(x)+
m+k′−1∑
i=m−k

α2m+1,2i+1Ri(x)] = Rm+k′+1(x)+
m+k′∑

i=m−k+1

α2m+3,2i+1Ri(x)+

+c2m+2[Rm+k′(x)+
m+k′−1∑
i=m−k

α2m+1,2i+1Ri(x)]+c2m+1[Rm+k′(x)+
m+k′−1∑
i=m−k

α2m+1,2i+1Ri(x)+

+c2m(Rm+k′−1(x) +
m+k′−2∑

i=m−k−1

α2m−1,2i+1Ri(x))] .
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Then we get the following (k + k′ + 2)-term recurrence relation for {Rn}

Rm+k′+1(x) = (x− α2m+3,2m+2k′+1 − c2m+2 − c2m+1)Rm+k′(x)+

+[xα2m+1,2m+2k′−1 − α2m+3,2m+2k′−1 − (c2m+2 + c2m+1)α2m+1,2m+k′−1−

−c2m+1c2m]Rm+k′−1(x) + +
m+k′−2∑
m−k+1

[xα2m+1,2i+1 − α2m+3,2i+1−

−(c2m+2 + c2m+1)α2m+1,2i+1 − c2m+1c2mα2m−1,2i+1]Ri(x) + [xα2m+1,2m−2k+1−
−(c2m+2 + c2m+1)α2m+1,2m−2k+1 − c2m+1c2mα2m−1,2m−2k−1]Rm−k(x) +

+c2mc2m+1α2m−1,2m−2k−1Rm−k−1(x) . (4.21)

Multiplying both sides of (4.15) by x and replacing (4.20) in (4.15)

x[Pm+k′(x) +
m+k′−1∑
i=m−k

α2m,2iPi(x)] = Pm+k′+1(x) +
m+k′∑

i=m−k+1

α2m+2,2iPi(x)+

+c2m+1[Pm+k′(x) +
m+k′−1∑
i=m−k

α2m,2iPi(x)] + c2m[Pm+k′(x) +
m+k′−1∑
i=m−k

α2m,2iPi(x)+

+c2m−1(Pm+k′−1(x) +
m+k′−2∑

i=m−k−1

α2m−2,2iPi(x))] .

Thus a (k + k′ + 2)-term recurrence relation for {Pn} follows.

Pm+k′+1(x) = [x− α2m,2m+2k′ − c2m+1 − c2m]Pm+k′(x)+

+[xα2m,2m+2k′−2 − α2m+2,2m+2k′−2 − (c2m−1 + c2m)α2m,2m+2k′−2 − c2mc2m−1]Pm+k′−1(x)+

+
m−k′−2∑

i=m−k+1

[xα2m,2i − α2m+2,2i − (c2m+1 + c2m)α2m,2i − c2mc2m−1α2m−2,2i]Pi(x)+

+[xα2m,2m−2k − c2m+1α2m,2m−2k − c2mα2m,2m−2k − c2mc2m−1α2m−2,2m−2k]Pm−k(x) +

c2mc2m−1α2m−2,2m−2k−2Pm−k−1(x) . (4.22)

On the other hand, it has also been proved that if s̃ is odd and s = 2k+1,
s′ = 2k′ + 1, then (4.19) holds. Let also remember (4.14). Multiplying both
hand sides by φ̂ and substituting (4.16) and (4.17) there, we get
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x[Rm+k′(x)+
∑m+k′−1

j=m−k−1 α2m,2j+1Rj(x)] = Pm+k′+1(x)+
∑m+k′

j=m−k α2m+1,2jPj(x)+

+c2m[Pm+k′(x) +
m+k′−1∑

j=m−k−1

α2m−1,2jPj(x)] . (4.23)

Replacing (4.19) in (4.23)

x[Rm+k′(x)+
∑m+k′−1

j=m−k−1 α2m,2j+1Rj(x)] = [Rm+k′+1(x)+
∑m+k′

j=m−k α2m+2,2j+1Rj(x)]+

+c2m+1[Rm+k′(x)+
∑m+k′−1

j=m−k−1 α2m,2j+1Rj(x)]+c2m[Rm+k′(x)+
∑m+k′−1

j=m−k−1 α2m,2j+1Rj(x)

+c2m−1(Rm+k′−1(x) +
∑m−k′−2

j=m−k−2 α2m−2,2j+1Rj(x))] .

Finally

Rm+k′+1(x) = [x−α2m+2,2m+2k′+1−c2m+1−c2m]Rm+k′(x)+[xα2m,2m+2k′−1−
−α2m+2,2m+2k′−1 − (c2m+1 + c2m)α2m,2m+2k′−1 − c2mc2m−1]Rm+k′−1(x)+

+
∑m+k′−2

j=m−k [xα2m,2j+1 − α2m+2,2j+1 − (c2m+1 + c2m)α2m,2j+1−
−c2mc2m−1α2m−2,2j+1]Rj(x) + [xα2m,2m−2k−1 − (c2m+1 + c2m)α2m2m−2k−1−

−c2mc2m−1α2m−2,2m−2k−1]Rm−k−1(x)− c2mc2m−1α2m−2,2m−2k−3Rm−k−2(x) .(4.24)

Multiplying both hand sides of (4.19) by x and substituting (4.23) in the
resulting expression, a (k + k′ + 3)-term recurrence relation for {Pn} is ob-
tained.

Pm+k′+2(x) = [x−α2m+1,2m+2k′ − c2m− c2m−1]Pm+k′(x)+ [xα2m−1,2m+2k′−2

−α2m+1,2m+2k′−2−(c2m +c2m−1)α2m−1,2m+2k′−2−c2m−1c2m−2]Pm+k′−1(x)+

+
∑m+k′−2

j=m−k [xα2m−1,2j − α2m+1,2j − (c2m + c2m+1)α2m−1,2j−
−c2m−1c2m−2α2m−3,2j]Pi(x)+[xα2m−1,2m−2k−2−(c2m+c2m−1)α2m−1,2m−2k−2−

−c2m−1c2m−2α2m−3,2m−2k−2]Pm−k−1(x)−−c2m−1c2m−2α2m−3,2m−2k−4Pm−k−2(x).
(4.25)

4.3.1 Recurrence Relation for {Qn}

Let start from (4.7). Multiplying both hand sides of (4.7) by x and using the
three-term recurrence relation for {Tn},

φ(x)(Tn+1(x) + cnTn−1(x)) =
n+s′∑

j=n−s

xαnjQj(x) , (4.26)
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thus, the substitution of (4.7) in (4.26) yields a recurrence relation for {Qn}.

Qn+s′+1(x) = [x− αn+1,n+s′ ]Qn+s′(x)+

+
n+s′−1∑

j=n−s+1

[xαnj − αn+1,j − cnαn−1,j]Qj(x)+

+[xαn,n−s − cnαn−1,n−s]Qn−s(x)− cnαn−1,n−s−1Qn−s−1(x) . (4.27)

4.4 Application: Freud-Sobolev Polynomials

A particular example of the Sobolev inner product given in (4.3) is

< p, q >s=

∫
R

pqe−x4

dx +

∫
R

p′q′e−x4

dx (4.28)

This kind of inner product has been introduced in [2]. Let {Qn} be
the sequence of monic polynomials orthogonal with respect to (4.28). These
polynomials are called Freud-Sobolev Polynomials.

Obviously (4.28) is a symmetric inner product, hence {Qn} satisfy (4.5).

4.4.1 Orthogonality Measures associated with {Pn} and {Rn} in
the Freud-Sobolev Case.

Taking into account that {Qn} is orthogonal with respect to the inner product
(4.28), for n 6= m,

0 =< Q2n, Q2m >s=

=

∫ ∞

0

PnPmt−
1
2 e−t2dt +

∫ ∞

0

P ′
nP

′
m4t

1
2 e−t2dt .

Thereupon, {Pn} is orthogonal with respect to the diagonal Sobolev inner
product given by the matrix of measures

dΩ1 =

[
1 0
0 4t

]
t−

1
2 e−t2dt . (4.29)

On the other hand, for n 6= m

0 =< Q2m+1, Q2n+1 >s=
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=

∫ ∞

0

RnRm(t + 4t2)t−
1
2 e−t2dt + 4

∫ ∞

0

R′
nR

′
mt

3
2 e−t2dt . (4.30)

Hence, {Rn} is a sequence of monic polynomials orthogonal with respect
to the diagonal Sobolev inner product given by the matrix of measures

dΩ2 =

[
1 + 4t 0

0 4t

]
t

1
2 e−t2dt . (4.31)

Moreover, the support of the measures dΩ1 and dΩ2 is R+. Denote

π1(t) = t

[
0 0
0 4

]
+

[
1 0
0 0

]
,

π2(t) = t2
[

4 0
0 4

]
+ t

[
1 0
0 0

]
.

Then
dΩ1 = π1(t)t

− 1
2 e−t2dt,

dΩ2 = π2(t)t
− 1

2 e−t2dt .

Next we give an explicit relation between the sequences {Pn} and {Rn}.
Consider the standard inner product

< p, q >=

∫
R

pqe−x4

dx (4.32)

and let {Tn} be the sequence of monic polynomials orthogonal with respect
to (4.32), namely, the sequence of the so-called Freud Polynomials. Then, it
can be proved (see [2]) that

Tn(x) = Qn(x) + anQn−2(x), n ≥ 3, (4.33)
T0(x) = Q0(x), T1(x) = Q1(x), T2(x) = Q2(x),

where
an = 4n

‖ Tn+2 ‖2

‖ Qn ‖2
s

, n ≥ 1,

a0 = a−1 = a−2 = 0 .

Furthermore,

T2n(x) = Sn(x2), T2n+1(x) = xS∗
n(x2), (4.34)
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for a certain sequence of orthogonal polynomials {Sn} where S∗
n denotes the

nth kernel polynomial Kn(x; 0) normalized to be monic, associated with the
sequence {Sn}.

Overwriting (4.33) for n = 2m and for n = 2m + 1, respectively,

Sm(x) = Pm(x) + a2mPm−1(x), m ≥ 2, (4.35)

and S0(x) = P0(x), S1(x) = P1(x).

S∗
m(x) = Rm(x) + a2m+1Rm−1(x), m ≥ 1, (4.36)

and S∗
0(x) = R0(x).

On the other hand, the sequence {Tn} satis�es the three-term recurrence
relation

xTn(x) = Tn+1(x) + cnTn−1(x), n ≥ 1, (4.37)
T0(x) = 1, T1(x) = x

where
n = 4cn(cn+1 + cn + cn−1), n ≥ 1,

with initial conditions c0 = 0, c1 = Γ(3/4)
Γ(1/4)

.

For n = 2m + 1, the expression (4.37) yields

xS∗
m(x) = Sm+1(x) + c2m+1Sm(x) .

Taking into account (4.35) and (4.36), for m ≥ 2 we get

x[Rm(x)+a2m+1Rm−1(x)] = Pm+1(x)+(a2m+2+c2m+1)Pm(x)+a2mc2m+1Pm−1(x),
(4.38)

Repeating the above procedure for n = 2m, m ≥ 2

Pm(x) + a2mPm−1(x) = Rm(x) + (a2m+1 + c2m)Rm−1(x) + c2ma2m−1Rm−2(x),
(4.39)

4.4.2 Recurrence Relations in Freud-Sobolev Case

Consider again (4.38) and (4.39). Substituting (4.39) in (4.38), we get

xRm(x) = Rm+1(x) + [a2m+3 + c2m+1 + c2m+2]Rm(x) + [c2mc2m+1

+a2m+1(c2m+1 + c2m+2 − x)]Rm−1(x) + a2m−1c2mc2m+1Rm−2(x) (4.40)
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for m ≥ 1 with �xed initial conditions.
Multiplying (4.39) by x

x[Pm(x)+a2mPm−1(x)] = x[Rm(x)+a2m+1Rm−1(x)]+xc2m[Rm−1(x)+a2m−1Rm−2(x)].

Because of (4.38),

xPm(x) = Pm+1(x) + (a2m+2 + c2m + c2m+1)Pm(x) + [c2m−1c2m + a2m(c2m+

c2m+1 − x)]Pm−1(x) + c2m−1c2ma2m−2Pm−2(x) .

As a conclusion, the sequences {Pn} and {Rn} satisfy the following re-
currence relations

Pm+1(x) = [x− (a2m+2 + c2m + c2m+1)]Pm(x) + [a2m(x− c2m − c2m+1)−

−c2m−1c2m]Pm−1(x)− c2m−1c2ma2m−1Pm−2(x), (4.41)

Rm+1(x) = [x− (a2m+3 + c2m+1 + c2m+2)]Rm(x) + [a2m+1(x− c2m+1−

−c2m+2)− c2mc2m+1]Rm−1(x)− c2mc2m+1a2m−2Rm−2(x) . (4.42)

We can summarize our main results

• We have identi�ed {Pn} and {Rn} as sequences of polynomials orthog-
onal with respect to a diagonal Sobolev inner product.

• We have proved two algebraic relations between {Pn} and {Rn}.

• We have proved that {Pn} and {Rn} satisfy four-term recurrence rela-
tions.

Finally , observe that multiplying (4.33) by x and applying the recurrence
relation (4.37)

Tn+1(x) + cnTn−1(x) = xQn(x) + anxQn−2(x) .

Replacing (4.33) in the previous equation

Qn+1(x)+an+1Qn−1(x)+cn[Qn−1(x)+an−1Qn−3(x)] = xQn(x)+anxQn−2(x).
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Then, {Qn} satisfy the following �ve-term recurrence relation

Qn+1(x) = xQn(x)− (an+1 + cn)Qn−1(x) + xanQn−2(x)− cnan−1Qn−3(x) .
(4.43)
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