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Abstract. A standard way to solve polynomial eigenvalue problems P (λ)x = 0 is to convert the matrix
polynomial P (λ) into a matrix pencil that preserves its elementary divisors and, therefore, its eigenvalues. This
process is known as linearization and is not unique, since there are infinitely many linearizations with widely varying
properties associated with P (λ). This freedom has motivated the recent development and analysis of new classes
of linearizations that generalize the classical first and second Frobenius companion forms, with the goals of finding
linearizations that retain whatever structures that P (λ) might possess and/or of improving numerical properties,
as conditioning or backward errors, with respect the companion forms. In this context, an important new class of
linearizations is what we name generalized Fiedler linearizations, introduced in 2004 by Antoniou and Vologiannidis
as an extension of certain linearizations introduced previously by Fiedler for scalar polynomials. On the other hand,
the mere definition of linearization does not imply the existence of simple relationships between the eigenvectors,
minimal indices, and minimal bases of P (λ) and those of the linearization. So, given a class of linearizations, to
provide easy recovery procedures for eigenvectors, minimal indices, and minimal bases of P (λ) from those of the
linearizations is essential for the usefulness of this class. In this paper we develop such recovery procedures for
generalized Fiedler linearizations and pay special attention to structure preserving linearizations inside this class.
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1. Introduction. Throughout this work we consider n × n matrix polynomials with
degree k ≥ 2 of the form

(1.1) P (λ) =
k∑
i=0

λiAi , A0, . . . , Ak ∈ Fn×n, Ak 6= 0 ,

where F is an arbitrary field and λ is a scalar variable in F. An n × n polynomial P (λ) is
said to be singular if detP (λ) is identically zero, i.e., if all its coefficients are zero, oth-
erwise it is regular. For regular matrix polynomials, the Polynomial Eigenvalue Problem
(PEP) consists of finding scalars λ0 ∈ F and nonzero vectors x and y in Fn satisfying
P (λ0)x = 0 and yTP (λ0) = 0. The values λ0 are known as the eigenvalues of P (λ)
and the associated nonzero vectors x and yT are known as right and left eigenvectors of
P (λ), respectively. Along this paper we follow the convention of writing right eigenvec-
tors as column vectors and left eigenvectors as row vectors. A matrix polynomial P (λ)
may have infinite eigenvalues. These are the zero eigenvalues of the reversal polynomial
revP (λ) = λkP (1/λ) =

∑k
i=0 λ

iAk−i. The PEP problem arises in many applications
[16, 29] and attracts nowadays the attention of many researchers.

In the case of singular matrix polynomials, the above definition of eigenvalue makes no
sense (otherwise, all numbers in F would be eigenvalues of P (λ)), and one has to be more
careful to define eigenvalues [8, Section 2]. In addition, other magnitudes that do not exist for

∗This work was partially supported by the Ministerio de Ciencia e Innovación of Spain through grant MTM-
2009-09281
†Department of Mathematics, University of California, Santa Barbara, CA 93106, USA

(mbueno@math.ucsb.edu).
‡Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain

(fteran@math.uc3m.es). Part of this work was done while this author was visiting the Department of Mathe-
matics at UCSB, whose hospitality is gratefully acknowledged.
§Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM and Departamento de Matemáticas, Universidad

Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain (dopico@math.uc3m.es).

1



2 María I. Bueno, Fernando De Terán, Froilán M. Dopico

regular polynomials are of interest: the minimal bases and minimal indices of P (λ), which
are relevant in many control problems [13, 25]. A short summary on these concepts can be
found in [8, Section 2].

A standard way to solve the PEP is by using linearizations. A linearization of P (λ) is a
matrix pencilK(λ) = λX+Y which is equivalent to diag (In(k−1), P (λ)) [16]. This means
that there exist two unimodular matrix polynomials (that is, matrix polynomials with nonzero
constant determinant) U(λ), V (λ) such that

(1.2) U(λ)K(λ)V (λ) =
[
In(k−1) 0

0 P (λ)

]
,

where here and hereafter Im denotes the m × m identity matrix (In, where n × n is the
size of P (λ), will be denoted simply by I). The linearization K(λ) is said to be strong if,
additionally, revK(λ) is a linearization for revP (λ). This notion was introduced in [15] and
named later in [26]. Note that the size of the linearizations in (1.2) is assumed to be exactly
nk × nk. Linearizations with smaller sizes have been considered recently in [3], and their
minimal possible size has been determined in [7]. Some classes of linearizations, among them
the first and second companion forms, are also useful to study singular matrix polynomials,
as has been shown in [8, 9, 31].

The use of linearizations in the PEP is justified by the following two facts. First, all lin-
earizations (resp. strong linearizations) of P (λ) have the same finite (resp. finite and infinite)
elementary divisors as P (λ), and so the same eigenvalues [14]. Second, since linearizations
transform a PEP into a generalized Eigenvalue Problem (GEP), then well established algo-
rithms for the GEP may be used on linearizations both for regular and singular polynomials
[5, 6, 11, 17, 30, 31]. However, note that in the case of a regular polynomial P (λ), right and
left eigenvectors of a linearization K(λ) for a certain eigenvalue λ0 of P (λ) have length nk,
and they are not eigenvectors of P (λ), which have length n. As a consequence, it is needed to
know how to recover the eigenvectors of P (λ) from those of K(λ) to numerically solve the
whole PEP through the linearization K(λ). Of course, recovery procedures of eigenvectors
are well known since many years ago for the first and second Frobenius companion forms
[16], which have been the linearizations traditionally used in practice. An analogue discus-
sion to the one for eigenvectors can be made for minimal bases and indices of singular matrix
polynomials.

However, the first and second companion forms are not always satisfactory, and, in par-
ticular, they usually do not share any algebraic structure that P (λ) might have. For example,
if P (λ) is symmetric, Hermitian, alternating, or palindromic, then the companion forms will
not retain any of these structures. Consequently, if the companion forms are used to numeri-
cally solve the PEP, then the rounding errors inherent to numerical computations may destroy
qualitative aspects of the spectrum of structured matrix polynomials that appear very often
in applications. This has motivated a recent intense activity towards the development of new
classes of linearizations. Several classes have been introduced for regular matrix polynomials
in [2] and [27], generalizing the Frobenius companion forms in a number of different ways.
Other classes of linearizations were introduced and studied in [1], motivated by the use of
non-monomial bases for the space of polynomials. The extension of all these classes of lin-
earizations to square singular matrix polynomials have been studied in [8, 9]. The numerical
properties of the linearizations in [27] have been analyzed in [18, 19, 21], while the exploita-
tion of these linearizations for the preservation of structure in a variety of contexts has been
developed in [20, 28]. Unfortunately, none of the structure preserving pencils in [20, 27, 28] is
a linearization for singular matrix polynomials [8]. In addition, simple recovery procedures
for the eigenvectors, minimal bases and minimal indices of P (λ) from the corresponding
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magnitudes of the linearization have been developed for all the classes, except one, of the
linearizations mentioned above [8, 9, 18, 27]. The exception is the class of what we name
generalized Fiedler linearizations, and the development of very easy recovery procedures for
eigenvectors, minimal bases and minimal indices of P (λ) from the linearizations in this class
is the main contribution in this work. The interest of generalized Fiedler linearizations is
discussed in the next paragraph.

Two classes of linearizations of matrix polynomials were introduced in [2] and both of
them are extensions of linearizations previously developed by Fiedler for scalar polynomials
in [12]. The first class received the name of Fiedler linearizations in [9], and we will refer
to the second class as generalized Fiedler linearizations. We will describe in detail these two
classes in Section 2. The algebraic properties of Fiedler linearizations are well understood [9]
and are excellent: (i) they are constructed, as the classical companion forms, simply by plac-
ing the coefficients of the matrix polynomial together with 2(k− 1) identity blocks in certain
blocks entries and setting the remaining blocks to zero; (ii) they are strong linearizations for
every matrix polynomial, which is in contrast with the pencils introduced in [1, 27] that are
not linearizations for certain regular and singular polynomials; and (iii) eigenvectors, minimal
bases and minimal indices of the polynomial are easily recovered from those of any Fiedler
linearization. However, the class of Fiedler linearizations does not contain pencils that are
symmetric or palindromic when P (λ) is, respectively, symmetric or palindromic. In contrast,
the wider class of generalized Fiedler linerizations does contain linearizations that preserve
the symmetric structure [2] and the palindromic structure [10], and, moreover, the lineariza-
tions in this class retain the excellent properties of Fiedler linerizations: (i) they are also very
easily constructible from the coefficients of the polynomial, again, in most cases, simply by
placing the coefficients in certain blocks entries (see examples in [2, 10]); and (ii) most of
them are strong linearizations for every matrix polynomial, and for those that do not satisfy
this property, the only polynomials for which they are not linearizations are the ones with
singular leading and/or zero degree coefficients. It should be remarked that for odd degree
matrix polynomials, the structure preserving generalized Fiedler pencils presented in [2, 10]
for symmetric and palindromic polynomials are always strong linearizations, which is again
in contrast with the structured pencils developed in [20, 27, 28] that are not linearizations
for certain regular polynomials and, in fact, are never linearizations for singular polynomials.
All these properties make generalized Fiedler pencils particularly relevant and give, in our
opinion, a strong motivation for obtaining the results presented in this work.

The paper is organized as follows. In Section 2 we revise the families of Fiedler and
generalized Fiedler pencils and establish some of their properties. Section 3 includes the
main results of this work, that is, recovery procedures of the eigenvectors of regular matrix
polynomials from the eigenvectors of any of its generalized Fiedler linearizations. Except
for a few particular pencils, these recovery procedures consist simply in extracting adequate
blocks from the eigenvectors of the linearizations and, therefore, do not require any computa-
tional effort. We consider the recovery of minimal bases and indices of square singular matrix
polynomials in Section 4. Special attention is paid to structure preserving generalized Fiedler
linearizations in Sections 3 and 4. Some conclusions are presented in Section 5.

2. Generalized Fiedler pencils. In this section we recall the families of Fiedler and
generalized Fiedler (GF) pencils of a given matrix polynomial and some of their properties.
These families were introduced in [2] for regular matrix polynomials (without giving them
the names of Fiedler and GF pencils). Fiedler pencils (not GF) of singular polynomials were
studied in [9] together with recovery procedures of eigenvectors, minimal bases and minimal
indices. We also establish in this section the basic Lemma 2.6 that relates both families in
a particular way and is the basis of the recovery results proved in Sections 3 and 4. Finally,
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we briefly recall two types of structure preserving linearizations related to GF pencils: the
symmetric GF pencils introduced in [2] and the palindromic pencils presented in [10].

2.1. The Fiedler pencils. To introduce the Fiedler family of the matrix polynomial
P (λ) in (1.1), we need the following block-partitioned matrices:

(2.1) Mk :=
[
Ak

I(k−1)n

]
, M0 :=

[
I(k−1)n

−A0

]
,

and

(2.2) Mi :=


I(k−i−1)n

−Ai I
I 0

I(i−1)n

 , i = 1, . . . , k − 1 .

We will often consider these matrices partitioned into k× k blocks of size n× n, and are the
basic factors used to build the Fiedler pencils of P (λ). In [2] these pencils are constructed as

λMk −Mi0Mi1 · · ·Mik−1 ,

where (i0, i1 . . . , ik−1) is any possible permutation of the k-tuple (0, 1, . . . , k − 1). In order
to better express certain key properties of this permutation, the product of the Mi-factors was
indexed in [9] as follows: given any bijection σ : {0, 1, . . . , k−1} → {1, . . . , k} , the Fiedler
pencil of P (λ) associated with σ is the nk × nk matrix pencil

(2.3) Fσ(λ) := λMk −Mσ−1(1) · · ·Mσ−1(k) .

Note that σ(i) describes the position of the factor Mi in the product Mσ−1(1) · · ·Mσ−1(k),
i.e., σ(i) = j means that Mi is the jth factor in the product.

Fiedler pencils include the first and second companion forms of P (λ), which are, respec-
tively, λMk −Mk−1Mk−2 · · ·M1M0 and λMk −M0M1 · · ·Mk−2Mk−1 [9, p. 2186].

It is obvious to check the commutativity relations

(2.4) MiMj = MjMi for |i− j| 6= 1 ,

which imply that some Fiedler pencils associated with different bijections σ are equal.
The Mi matrices in (2.2) are always invertible for i = 1, . . . , k − 1 and the inverses are

(2.5) M−1
i =


I(k−i−1)n

0 I
I Ai

I(i−1)n

 ,
which satisfy commutativity relations analogous to (2.4). The same holds for M−1

i Mj .

2.2. The generalized Fiedler pencils. We will use the following notation introduced in
[2, p. 82]: if E = {i1, . . . , ip} ⊆ {1, . . . , k − 1} is an ordered set, where ij 6= il if j 6= l,
then we define

(2.6) ME := Mi1Mi2 · · ·Mip and M∅ := Ink.

Given four sets of this type Ej , j = 1, 2, 3, 4, such that Ei ∩ Ej = ∅ if i 6= j, and ∪4
i=1Ei =

{1, . . . , k − 1}, the following pencil was introduced in [2, Corollary 2.4]

(2.7) T (λ) = λM−1
E1 MkM

−1
E2 −ME3M0ME4 .
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We refer to pencils of this type as proper generalized Fiedler pencils of the matrix polynomial
P (λ) in (1.1). Note that T (λ) is always defined forP (λ), even ifP (λ) is singular. In addition,
T (λ) is strictly equivalent to the Fiedler pencil λMk−ME1ME3M0ME4ME2 (recall that two
pencils K1(λ) and K2(λ) are strictly equivalent if K1(λ) = EK2(λ)F , where E and F
are nonsingular constant matrices). A particular but interesting family of proper generalized
Fiedler pencils has been presented in [10].

The commutativity relations (2.4) allow us to express T (λ) in (2.7) in different forms.
In particular, we may shift Mk to the first position in M−1

E1 MkM
−1
E2 if k − 1 /∈ E1, or to

the last one if k − 1 /∈ E2. Analogously, we may shift M0 to the first or last position in
ME3M0ME4 . To be precise let us assume that T (λ) = λMkM

−1
E1 M

−1
E2 −M0ME3ME4 , then,

if Ak and/or A0 are nonsingular1, we can create the pencils M−1
k T (λ) = λM−1

E1 M
−1
E2 −

M−1
k M0ME3ME4 , M−1

0 T (λ) = λM−1
0 MkM

−1
E1 M

−1
E2 −ME3ME4 and M−1

0 M−1
k T (λ) =

λM−1
0 M−1

E1 M
−1
E2 − M−1

k ME3ME4 (recall that k ≥ 2 and so Mk and M0 commute). All
these pencils are examples of what we call generalized Fiedler pencils of P (λ). Observe that
they are strictly equivalent to T (λ) and to the Fiedler pencil λMk −ME1ME3M0ME4ME2 .
Some interesting generalized Fiedler pencils have been presented in [2, Theorem 3.1].

In Definition 2.1, we use bijections (as in the case of Fiedler pencils) to make precise the
notion of generalized Fiedler pencils and the subset of proper generalized Fiedler pencils.

DEFINITION 2.1. Let P (λ) be the matrix polynomial in (1.1) and let Mi for i =
0, 1, . . . , k be the matrices defined in (2.1)-(2.2). Let {C0, C1} be a partition2 of {0, 1, ..., k}
with mi = |Ci| for i = 0, 1. Given any pair of bijections µi : Ci → {1, 2, ...,mi}, i = 0, 1,
we denote µ = (µ0, µ1). Then the generalized Fiedler (GF) pencil of P (λ) associated with µ
is the nk × nk pencil Tµ(λ) := λTµ1 − Tµ0 with

Tµi
:= M̃µ−1

i (1)M̃µ−1
i (2) · · · M̃µ−1

i (mi)
, i = 0, 1,

where the factors M̃j are defined, in a different way for i = 0 than for i = 1, as follows
(a) if i = 0 and j ∈ C0, then M̃j = M−1

k for j = k, and M̃j = Mj for j 6= k;
(b) if i = 1 and j ∈ C1, then M̃j = Mk for j = k, and M̃j = M−1

j for j 6= k.

Note that µi(j) describes the position of M̃j in the product M̃µ−1
i (1)M̃µ−1

i (2) · · · M̃µ−1
i (mi)

.
If 0 ∈ C0 and k ∈ C1, then the pencil Tµ(λ) is said to be a proper generalized Fiedler

(PGF) pencil of P (λ).

It is obvious that any Fiedler pencil Fσ(λ) of P (λ) is a particular case of GF pencil with
C0 = {0, 1, . . . , k−1}, C1 = {k}, µ0 = σ and µ1(k) = 1. We stress the fact that GF pencils
that are not proper are defined only if Ak and/or A0 are not singular.

It is straightforward to prove that any GF pencil of P (λ) is strictly equivalent to a Fiedler
pencil of P (λ) by using the commutativity relations (2.4). This fact and Theorem 4.6 in [9]
imply directly the following result.

THEOREM 2.2. Let P (λ) be an n× n matrix polynomial. Then any generalized Fiedler
pencil of P (λ) is a strong linearization for P (λ).

Theorem 2.2 holds for singular polynomials P (λ), but in this case recall that the only GF
pencils that are defined are the PGF pencils. The fact that they are strong linearizations for
any square matrix polynomial makes PGF pencils the most interesting class of GF pencils.

1Note that Ak and A0 are necessarily singular if P (λ) is singular, and that they can be singular even if P (λ) is
regular.

2We admit Ci = ∅, with Tµi = Ink in this case.
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2.3. Consecutions and inversions. The commutativity relations (2.4) and the results
in [9] suggest that the relative positions of factors M̃j and M̃j+1 in the products Tµ1 and
Tµ0 defining a GF pencil are of fundamental interest in studying GF pencils. This motivates
Definition 2.3 that is related to Definition 3.3 in [9].

DEFINITION 2.3. Let {C0, C1} be a partition of {0, 1, ..., k} withmi = |Ci| for i = 0, 1,
and let µi : Ci → {1, 2, ...,mi}, i = 0, 1, be a pair of bijections.

(a) We say that µi has a consecution at j if {j, j + 1} ⊂ Ci and µi(j) < µi(j + 1). We
say that µi has an inversion at j if {j, j + 1} ⊂ Ci and µi(j) > µi(j + 1).

(b) We say that µi has cj (resp. ij) consecutions (resp. inversions) at j if µi has conse-
cutions (resp. inversions) at j, j+1, . . . , j+ cj −1 (resp. at j, j+1, . . . , j+ ij −1)
and it has not a consecution (resp. inversion) at j + cj (resp. j + ij).

(c) We say that µi has cf (resp. if ) final consecutions (resp. inversions) if µi has
consecutions (resp. inversions) at k − cf , k − cf + 1, . . . , k − 2, k − 1 (resp. at
k − if , k − if + 1, . . . , k − 2, k − 1) and it has not a consecution (resp. inversion)
at k − cf − 1 (resp. k − if − 1).

REMARK 2.4. The following remarks will be often used in the rest of the paper.
(a) For i = 0, 1, the bijection µi in Definition 2.1 has a consecution (resp. inversion) at

j if and only if M̃j and M̃j+1 are both factors of the product defining Tµi
and M̃j

is to the left (resp. right) of M̃j+1 in Tµi
.

(b) Given a GF pencil Tµ(λ) = λTµ1 − Tµ0 , the commutativity relations (2.4) may
allow us to change the order of the factors M̃j in Tµ1 and Tµ0 . The new order will
be related to a pair of bijections µ′ = (µ′0, µ

′
1) such that µ′ 6= µ and Tµ′(λ) =

Tµ(λ). However, the use of the commutativity relations (2.4) cannot change the
relative positions of M̃j and M̃j+1, and so, for i = 0, 1, µ′i has a consecution (resp.
inversion) at j if and only if µi has a consecution (resp. inversion) at j.

(c) In [9, Definition 3.3] the quantities c1 and i1 are defined for the bijection σ defining
the Fiedler pencil Fσ(λ). In the case of Fiedler pencils, we know that σ = µ0, and
it is obvious to see that if σ has c0 consecutions at 0, then c0 = c1. However, we
stress that if σ has i0 inversions at 0, then i0 6= i1 in general, but that i0 = i1 if
c0 = c1 = 0.

2.4. Fundamental lemma. There may be more than one Fiedler pencil strictly equiv-
alent to a given GF pencil. Moreover, the Fiedler pencils strictly equivalent to a GF pencil
may have quite different structures. Let us illustrate this fact with an example.

EXAMPLE 2.5. Let the degree of the polynomial P (λ) in (1.1) be k = 5. Consider the
PGF pencil of P (λ)

Tµ(λ) = λM5M
−1
3 M−1

1 −M0M2M4 = λM−1
1 M5M

−1
3 −M0M2M4,

where the last equality follows from (2.4). Therefore Tµ(λ) is strictly equivalent to the Fiedler
pencil

Fσ(λ) = Tµ(λ)M1M3 = λM5 −M0M2M4M1M3,

and also strictly equivalent to the Fiedler pencil

Fσ′(λ) = M1Tµ(λ)M3 = λM5 −M1M0M2M4M3.

The reader is invited to check by direct multiplication that Fσ(λ) is quite different than
Fσ′(λ). Observe in addition that, with the notation of Definition 2.1, µ0 has 0 consecu-
tions at 0, σ has 1 consecution at 0, and σ′ has 0 consecutions at 0. In plain words, Fσ′(λ)
preserves the consecutions at 0 of Tµ0 , but Fσ(λ) does not.
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Our goal in this section is to prove in Lemma 2.6 below that any PGF pencil Tµ(λ) of
P (λ) in (1.1) is strictly equivalent to a Fiedler pencil that preserves the consecutions at 0 of
µ0, except in the following very particular cases

(2.8) Tτ (λ) = λMkM
−1
k−1 · · ·M

−1
c0+1 −M0M1 · · ·Mc0 ,

where c0 ∈ {0, 1, ..., k − 2}. Note that in (2.8) the pair of bijections τ = (τ0, τ1) is defined
by

( τ−1
0 (1), τ−1

0 (2), . . . , τ−1
0 (c0 + 1) ) = (0, 1, . . . , c0),(2.9)

( τ−1
1 (1), τ−1

1 (2), . . . , τ−1
1 (k − c0) ) = (k, k − 1, . . . , c0 + 1).(2.10)

LEMMA 2.6. Let P (λ) be the matrix polynomial in (1.1) and let Tµ(λ) be the PGF
pencil of P (λ) associated with the pair of bijections µ = (µ0, µ1). If µ0 has c0 consecutions
at 0 and (µ0, µ1) 6= (τ0, τ1), where τ0 and τ1 are defined in (2.9)-(2.10), then there exist two
ordered subsets E1 and E2 of {1, . . . , k − 1} such that

(a) c0 /∈ E2 and c0 + 1 /∈ E2; and,
(b) Fσ(λ) = ME1 Tµ(λ)ME2 is a Fiedler pencil of P (λ) associated with a bijection σ

that has c0 consecutions at 0.
Proof. If Tµ(λ) is a Fiedler pencil of P (λ), then the result follows trivially by taking

E1 = E2 = ∅, because ME1 = ME2 = Ink by (2.6). Therefore, we will assume in the
rest of the proof that Tµ(λ) = λTµ1 − Tµ0 is not a Fiedler pencil. Recall that the fact
that µ0 : C0 → {1, 2, . . . ,m0} has c0 consecutions at 0 implies that {0, 1, . . . , c0} ⊆ C0,
or, equivalently, that M0,M1, . . . ,Mc0 are among the factors of the product defining Tµ0

(moreover in this precise relative order). As a consequence, c0 ≤ k − 2, because otherwise
the pencil would be a Fiedler pencil. We will separate the proof in three cases.

Case 1: c0 + 1 ∈ C0. Then Mc0+1 is to the left of Mc0 in the product defining Tµ0 ,
because otherwise µ0 would have more than c0 consecutions at 0. Therefore,

Tµ(λ) = λM−1
E1 MkM

−1
E2 − Tµ0 ,

where c0 /∈ E2 and c0 + 1 /∈ E2, and {E1, E2, C0} is a partition of {0, 1, . . . , k − 1}. Then
Fσ(λ) = ME1 Tµ(λ)ME2 = λMk −ME1 Tµ0 ME2 is a Fiedler pencil of P (λ) and σ has c0
consecutions at 0, because these consecutions are determined only by the factors in Tµ0 .

Case 2: c0 + 1 ∈ C1 and µ1(c0 + 1) < µ1(k). This last condition is equivalent to say
that M−1

c0+1 is to the left of Mk in the product defining Tµ1 . Therefore,

(2.11) Tµ(λ) = λM−1
E1 MkM

−1
E2 − Tµ0 ,

where c0+1 ∈ E1, c0 /∈ E2 and c0+1 /∈ E2, and {E1, E2, C0} is a partition of {0, 1, . . . , k−1}.
Then Fσ(λ) = ME1 Tµ(λ)ME2 = λMk −ME1 Tµ0 ME2 is a Fiedler pencil of P (λ) and σ
has c0 consecutions at 0, because these consecutions are determined only by the factors in
Tµ0 and the fact that Mc0+1 is a factor of ME1 , so σ has an inversion at c0.

Case 3: c0 + 1 ∈ C1 and µ1(k) < µ1(c0 + 1). This last condition is equivalent to say
that M−1

c0+1 is to the right of Mk in the product defining Tµ1 . Therefore,

Tµ(λ) = λM−1
E′1
MkM

−1
E′2
− Tµ0 ,

where c0 /∈ E ′2 but c0 + 1 ∈ E ′2, and {E ′1, E ′2, C0} is a partition of {0, 1, . . . , k − 1}. Our
strategy consists in using the commutativity relations (2.4) to rearrange the order of the factors
defining Tµ1 and shift M−1

c0+1 to the left of Mk. To this purpose let s ≥ 0 be the integer such



8 María I. Bueno, Fernando De Terán, Froilán M. Dopico

that µ1 has inversions at c0+1, c0+2, . . . , c0+s, but not at c0+1+s. Note that c0+1+s < k,
because otherwise the pencil Tµ(λ) must be

(2.12) λMkM
−1
k−1 · · ·M

−1
c0+1 −M0M1 · · ·Mc0 ,

which is not possible because (µ0, µ1) 6= (τ0, τ1). The commutativity relations (2.4) allow
us to shift in Tµ1 the factors M−1

c0+1,M
−1
c0+2, . . . ,M

−1
c0+s to the left and group together

M−1
B := M−1

c0+1+sM
−1
c0+s · · ·M

−1
c0+2M

−1
c0+1.

It may happen that in this shifting process M−1
c0+1 moves to the left of Mk, then

(2.13) Tµ1 = · · ·M−1
B · · ·Mk · · · ,

or that M−1
c0+1 stays to the right of Mk, then

(2.14) Tµ1 = · · ·Mk · · ·M−1
B · · · .

In the scenario (2.14), c0 + 1 + s < k − 1 (otherwise the pencil must be (2.12), which is
not possible) and M−1

c0+2+s is not between Mk and M−1
B (since µ1 has not an inversion at

c0 + 1 + s). Therefore, the relations (2.4) allow us to write Tµ1 in (2.14) as in (2.13). Thus,
in any situation, Tµ(λ) can be written in turn as in (2.11) and we obtain the result proceeding
as in Case 2.

2.5. Symmetric GF pencils. In [2, Theorem 3.1] two particular GF pencils of P (λ) in
(1.1) were considered. These GF pencils have the key property of being symmetric if P (λ) is
symmetric, that is, if ATi = Ai for i = {0, 1, ..., k}. These GF pencils are defined as follows

(2.15) S(λ) =
{
λMkM

−1
k−2 · · ·M

−1
3 M−1

1 −M0M2 · · ·Mk−3Mk−1, if k is odd
λM−1

k−1M
−1
k−3 · · ·M

−1
3 M−1

1 −M0M2 · · ·Mk−2M
−1
k , if k is even.

Note that S(λ) is a PGF pencil if the degree k is odd. In addition, the pencils in (2.15) have
a simple block-tridiagonal structure.

2.6. Palindromic linearizations based on PGF pencils. The matrix polynomial P (λ)
in (1.1) is said to be palindromic [28] if ATi = Ak−i for i = 0, 1, . . . , k, or in other words if
revP (λ) = P (λ)T . Palindromic polynomials arise in a number of application areas and are
receiving considerable attention in the last years [4, 22, 23, 24, 28, 32]. As far as we know,
GF pencils of P (λ) that are palindromic when P (λ) is palindromic have not been found.
However, a family of linearizations with this property has been introduced in [10] for odd
degree matrix polynomials. The pencils in this family are obtained by multiplying by two
constant simple matrices the following PGF pencils.

DEFINITION 2.7. [10] (Admissible index set and associated pencils) Let P (λ) be the
matrix polynomial in (1.1) with odd degree k and let h := (k + 1)/2. A subset with h
elements C0 =

{
j1, . . . , jh

}
⊂ {0, 1, . . . , k − 1} is said to be an admissible index set if

0 ∈ C0 and C0 ∩
{
k − j1, . . . , k − jh

}
= ∅. Given any bijection τ0 : C0 → {1, 2, . . . , h},

the pencil of P (λ) associated with C0 and τ0 is the nk × nk pencil

(2.16) Lτ0(λ) := λM̃k−τ−1
0 (h) · · · M̃k−τ−1

0 (2)M̃k−τ−1
0 (1) −Mτ−1

0 (1)Mτ−1
0 (2) · · ·Mτ−1

0 (h),

where M̃j are the matrices defined in part (b) of Definition 2.1.
If C1 :=

{
k − j1, . . . , k − jh

}
and we define the bijection τ1 : C1 → {1, 2, . . . , h} as

( τ−1
1 (1), τ−1

1 (2), . . . , τ−1
1 (h) ) := (k− τ−1

0 (h), . . . , k− τ−1
0 (2), k− τ−1

0 (1)), then observe
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that (2.16) is the PGF pencil associated with the pair of bijections (τ0, τ1). As explained
in [10], admissible index sets are easy to construct: simply take exactly one element from
{j, k − j} for each j = 1, 2, . . . , (k − 1)/2, and then add 0.

We still need another two matrices to construct the linearizations presented in [10]. One
is the k × k block reverse identity matrix R ∈ Fnk×nk defined as

(2.17) R :=

[
I

. . .
I

]
.

The other one is a k×k block-diagonal matrix S ∈ Fnk×nk whose n×n diagonal blocks are

(2.18) S(i, i) :=

 −I if

 τ0 has an inversion at i− 1, or
τ0 has a consecution at k − i, or
i ∈ C0 and i− 1 6∈ C0

I otherwise

.

It was proved in [10, Theorem 4.7] that the pencil S · R · Lτ0(λ) is a strong linearization of
P (λ) which is palindromic whenever P (λ) is palindromic. Although the definition of these
pencils seems complicated, they are very easy to construct and some of them have a simple
block anti-tridiagonal structure. See examples in [10].

3. Recovery of eigenvectors of regular matrix polynomials from GF pencils. This
section includes the two main results in this paper: the recovery of eigenvectors correspond-
ing to a finite eigenvalue of a regular matrix polynomial from the eigenvectors of any of
its GF pencils (Theorem 3.2), and the recovery of eigenvectors corresponding to the infinite
eigenvalue (Theorem 3.4). As corollaries of these results we present eigenvector recovery
procedures from the structure preserving linearizations discussed in Sections 2.5 and 2.6.

Instead of dealing with individual eigenvectors, we will consider the general problem of
the recovery of bases of the right and left eigenspaces for an eigenvalue λ0 of a regular matrix
polynomial P (λ). These eigenspaces are the right and left null spaces of P (λ0), i.e.,

Nr(P (λ0)) :=
{
x ∈ Fn×1 : P (λ0)x = 0

}
,

N`(P (λ0)) :=
{
yT ∈ F1×n : yTP (λ0) = 0T

}
.

The key ideas behind the recovery results we present are very simple. First, consider two
nk × nk linearizations L(λ) and K(λ) of a regular matrix polynomial P (λ) that are strictly
equivalent, i.e, L(λ) = UK(λ)V where U, V ∈ Fnk×nk are nonsingular constant matrices.
Assume that λ0 ∈ F is a finite eigenvalue of P (λ) (and so also of L(λ) and K(λ)). It is
straightforward to prove that the right eigenspaces of L(λ) and K(λ) for λ0 are related by
the following isomorphism

(3.1)
Nr(L(λ0)) −→ Nr(K(λ0))

x 7−→ V · x

Second, recall that almost any PGF pencil Tµ(λ) of P (λ) is strictly equivalent to a particular
Fiedler pencil Fσ(λ) of P (λ) (see Lemma 2.6) and that it is known how to recover very
easily the eigenvectors of P (λ) with eigenvalue λ0 from the eigenvectors of Fσ(λ) with
eigenvalue λ0 (see [9, Corollary 7.1]). Then, the specific isomorphism between Nr(Tµ(λ0))
and Nr(Fσ(λ0)) will allow us to recover also very easily the eigenvectors of P (λ) from the
eigenvectors of Tµ(λ). The recovery results for GF pencils that are not proper will require a
little bit of extra work, and we need to distinguish in Theorem 3.2 if the matrix M̃0 is a factor
of the one or the zero degree coefficient of the GF pencil.
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REMARK 3.1. We warn the reader that the situations covered in parts (a2), (b2), (c2),
(d2), (e2) and (f2) of Theorem 3.2 correspond to very particular pencils that, as far as we
know, are not used in any application. For instance:

(a2) corresponds only to the pencil λInk −M0M1 · · ·Mk−1M
−1
k ;

(b2) corresponds to the pencils λM−1
i′0
· · ·M−1

1 M−1
0 −Mi′0+1 · · ·Mk−1M

−1
k for i′0 =

0, 1, . . . , k − 1; and
(c2) corresponds only to the pencil λMkM

−1
k−1 · · ·M

−1
1 M−1

0 − Ink.
These cases are included in Theorem 3.2 for completeness, and note that for them the recovery
of eigenvectors is more complicated than for the rest of GF pencils.

THEOREM 3.2 (eigenvector recovery from generalized Fiedler pencils). Let P (λ) =∑k
i=0 λ

i Ai be an n × n regular matrix polynomial with degree k ≥ 2, and let Tµ(λ) =
λTµ1 − Tµ0 be the GF pencil of P (λ) associated with the pair of bijections µ = (µ0, µ1),
where µi : Ci → {1, . . . ,mi}, i = 0, 1. Let λ0 be a finite eigenvalue of P (λ).

Right eigenvectors: Let {z1, . . . , zp} ⊂ Fnk×1 be a basis of Nr(Tµ(λ0)), partition the
vectors zj ∈ Fnk×1 as k × 1 block vectors with n× 1 blocks, denote by z(q)

j ∈ Fn×1 the qth
block of zj , and assume that µ0 has cj consecutions at j and µ1 has i′j inversions at j.

(a) Suppose 0 ∈ C0:
(a1) If c0 < k, then {z(k−c0)

1 , . . . , z
(k−c0)
p } is a basis of Nr(P (λ0)).

Note that all PGF pencils are included in part (a1).
(a2) If c0 = k, then {A−1

k z
(1)
1 , . . . , A−1

k z
(1)
p } is a basis of Nr(P (λ0)).

Part (a) includes all GF pencils that have been used so far in applications.
(b) Suppose 0 ∈ C1 and i′0 + 1 ∈ C0:

(b1) If s = i′0 + ci′0+1 +1 < k, then {z(k−s)
1 , . . . , z

(k−s)
p } is a basis ofNr(P (λ0)).

(b2) If i′0 + ci′0+1 +1 = k, then {A−1
k z

(1)
1 , . . . , A−1

k z
(1)
p } is a basis ofNr(P (λ0)).

(c) Suppose 0 ∈ C1 and i′0 + 1 /∈ C0:
(c1) If i′0 < k, then {z(k−i′0)

1 , . . . , z
(k−i′0)
p } is a basis of Nr(P (λ0)).

(c2) If i′0 = k, then {A−1
k z

(1)
1 , . . . , A−1

k z
(1)
p } is a basis of Nr(P (λ0)).

Left eigenvectors: Let {wT1 , . . . , wTp } ⊂ F1×nk be a basis of N`(Tµ(λ0)), partition the
vectors wTj ∈ F1×nk as 1×k block vectors with 1×n blocks, denote by (wTj )(q) ∈ F1×n the
qth block of wTj , and assume that µ0 has ij inversions at j and µ1 has c′j consecutions at j.

(d) Suppose 0 ∈ C0:
(d1) If i0 < k, then {(wT1 )(k−i0), . . . , (wTp )(k−i0)} is a basis of N`(P (λ0)).

Note that all PGF pencils are included in part (d1).
(d2) If i0 = k, then {(wT1 )(1)A−1

k , . . . , (wTp )(1)A−1
k } is a basis of N`(P (λ0)).

Part (d) includes all GF pencils that have been used so far in applications.
(e) Suppose 0 ∈ C1 and c′0 + 1 ∈ C0:

(e1) If s = c′0 + ic′0+1 + 1 < k, then {(wT1 )(k−s), . . . , (wTp )(k−s)} is a basis of
N`(P (λ0)).

(e2) If c′0 + ic′0+1 + 1 = k, then {(wT1 )(1)A−1
k , . . . , (wTp )(1)A−1

k } is a basis of
N`(P (λ0)).

(f) Suppose 0 ∈ C1 and c′0 + 1 /∈ C0:
(f1) If c′0 < k, then {(wT1 )(k−c′0), . . . , (wTp )(k−c′0)} is a basis of N`(P (λ0)).
(f2) If c′0 = k, then {(wT1 )(1)A−1

k , . . . , (wTp )(1)A−1
k } is a basis of N`(P (λ0)).

Proof. Part (a1) for PGF pencils. This is the key result. The rest of the theorem follows
easily from it. Note that PGF pencils have less than k + 1 factors Mj in the product defining
Tµ0 , because Mk is a factor of Tµ1 , so necessarily c0 < k. Assume first that µ 6= τ , where
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the pair of bijections τ was defined in (2.9)-(2.10), and let Fσ(λ) = ME1 Tµ(λ)ME2 be the
Fiedler pencil in part (b) of Lemma 2.6. This means that σ has c0 consecutions at 0. Then
x 7→ME2x is an isomorphism from Nr(Fσ(λ0)) to Nr(Tµ(λ0)), which means that

(3.2) {z1, . . . , zp} = {ME2v1, . . . ,ME2vp},

for some basis {v1, . . . , vp} ⊂ Fnk×1 of Nr(Fσ(λ0)). From [9, Corollary 7.1], we know
that {v(k−c0)

1 , . . . , v
(k−c0)
p } ⊂ Fn×1 is a basis of Nr(P (λ0)). The result follows by noting

that {z(k−c0)
1 , . . . , z

(k−c0)
p } = {v(k−c0)

1 , . . . , v
(k−c0)
p }, becauseME2 = Mi1Mi2 . . .Mic with

ij 6= c0, ij 6= c0 + 1, which implies that all these factors Mij have I at block entry (k −
c0, k − c0) when they are partitioned into k × k blocks of size n× n.

Assume next that µ = τ and define in this situation ME2 := Mc0+1Mc0+2 . . .Mk−1.
Then, according to (2.8),

(3.3) Tτ (λ)ME2 = λMk −M0M1 · · · Mk−1 =: Fσ′(λ),

where the Fiedler pencil Fσ′(λ) is such that σ′ has k − 1 consecutions at 0 (in fact, Fσ′(λ)
is the second companion form of P (λ)). The same argument as above shows that the relation
(3.2) holds for some basis {v1, . . . , vp} ⊂ Fnk×1 of Nr(Fσ′(λ0)). Use again [9, Corollary
7.1], to prove that {v(1)

1 , . . . , v
(1)
p } ⊂ Fn×1 is a basis ofNr(P (λ0)). The result follows from

noting that

(3.4) ME2 =



−Ak−1 I . . . 0 0

−Ak−2 0
. . . 0 0

...
...

. . . 0
−Ac0+1 0 I

I 0 . . . . . . 0
Ic0n


,

which implies that {z(k−c0)
1 , . . . , z

(k−c0)
p } = {v(1)

1 , . . . , v
(1)
p }. This completes the proof for

PGF pencils.
Part (a1) for GF pencils. It only remains to prove the result if Tµ(λ) is not a PGF pencil.

This happens when k ∈ C0. The commutativity relations (2.4) and the fact that µ0 has c0
consecutions at 0 allow us to shift M0,M1, . . .Mc0 to the right and write

Tµ0 = H`(M0M1 · · ·Mc0),

where H` is a product of a certain set of Mj factors (j 6= 0, j 6= k) and M−1
k . Therefore H`

is a nonsingular matrix. Observe that Tµ′(λ) := H−1
` Tµ(λ) is a PGF pencil such that µ′0 has

c0 consecutions at zero and that, according to (3.1), Nr(Tµ′(λ0)) = Nr(Tµ(λ0)). The result
follows from applying (a1) to the PGF pencil Tµ′(λ).

Part (a2) . The condition c0 = k determines that

Tµ(λ) = λInk −M0M1M2 · · ·Mk−1M
−1
k .

Observe that Tµ′(λ) = λTµ′1−Tµ′0 := Tµ(λ)Mk is a Fiedler pencil (so PGF) such that µ′0 has
k − 1 consecutions at 0 and that, according to (3.1), {z′1, . . . , z′p} := {M−1

k z1, . . . ,M
−1
k zp}

is a basis of Nr(Tµ′(λ0)). Part (a1) applied on Tµ′(λ) implies that {(z′1)(1), . . . , (z′p)(1)} =

{A−1
k z

(1)
1 , . . . , A−1

k z
(1)
p } is a basis of Nr(P (λ0)) (recall (2.1)).
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Part (b). In this situationM−1
0 is a factor in the product defining Tµ1 . The commutativity

relations (2.4) and the fact that µ1 has i′0 inversions at 0 allow us to shiftM−1
0 ,M−1

1 , . . .M−1
i′0

to the left and write

Tµ1 = (M−1
i′0
· · ·M−1

1 M−1
0 ) · · · .

Then the pencil Tµ′(λ) = λTµ′1−Tµ′0 := (M0M1 · · ·Mi′0
)Tµ(λ) is a GF pencil that satisfies:

(i)M0 and M̃i′0+1 are factors of Tµ′0 ; (ii) the bijection µ′0 has s = i′0+ci′0+1+1 consecutions at
0, because M0M1 · · ·Mi′0

are the first factors of Tµ′0 ; and (iii) Nr(Tµ′(λ0)) = Nr(Tµ(λ0))
by (3.1), since (M0M1 · · ·Mi′0

) is invertible. The result follows from applying part (a) to
Tµ′(λ).

Part (c). We follow the proof of part (b) to construct the GF pencil Tµ′(λ) = λTµ′1 −
Tµ′0 := (M0M1 · · ·Mi′0

)Tµ(λ), but now Tµ′(λ) satisfies: (i) M0 is a factor of Tµ′0 but M̃i′0+1

is not; (ii) the bijection µ′0 has i′0 consecutions at 0; and (iii)Nr(Tµ′(λ0)) = Nr(Tµ(λ0)) by
(3.1). The result follows again from applying part (a) to Tµ′(λ).

Proof of the recovery of left eigenvectors. Note that for any matrix polynomial Q(λ) (of
any size) and for any λ0, the mapping xT 7→ x establishes an isomorphism from N`(Q(λ0))
to Nr(Q(λ0)T ). Then, {wT1 , . . . , wTp } ⊂ F1×nk is a basis of N`(Tµ(λ0)) if and only if
{w1, . . . , wp} ⊂ Fnk×1 is a basis of Nr(Tµ(λ0)T ). In addition, Tµ(λ)T is a GF pencil of
P (λ)T , as a consequence of the structure of the Mj and M−1

j matrices defined in (2.1), (2.2)
and (2.5). Note also that the action of taking transposes reverses the order of the factors of
a product, so if µ′ is the pair of bijections corresponding to Tµ(λ)T viewed as a GF pencil
for P (λ)T (symbolically, Tµ′(PT )(λ) := Tµ(λ)T ), then, for i = 0, 1, µ′i has a consecution
(resp. inversion) at j if and only if µi has an inversion (resp. consecution) at j. Finally,
the result follows from applying the recovery of bases of right eigenspaces to get a basis of
Nr(P (λ0)T ) from the basis {w1, . . . , wp} ⊂ Fnk×1 of Nr(Tµ(λ0)T ).

We illustrate with a couple of examples the utter simplicity of the "recipes" for recovering
eigenvectors given in Theorem 3.2. For brevity, we focus on right eigenvectors.

EXAMPLE 3.3. Consider the following GF pencils of P (λ) in (1.1) with degree k = 6:

Tµ(λ) = λM−1
3 M6M

−1
5 −M4M0M2M1,(3.5)

Tµ′(λ) = λM−1
1 M6M

−1
0 −M4M5M2M3,(3.6)

and let λ0 be a finite eigenvalue of P (λ). For dealing with the first pencil Tµ(λ), we use part
(a) of Theorem 3.2 and observe that c0 = 1 in this case. So, if {z1, . . . , zp} ⊂ F6n×1 is a
basis of Nr(Tµ(λ0)), then {z(5)

1 , . . . , z
(5)
p } ⊂ Fn×1 is a basis of Nr(P (λ0)).

For dealing with the second pencil Tµ′(λ), we use part (b) of Theorem 3.2, since i′0 = 1
and M2 is a factor of Tµ′0 . Observe that c2 = 1, so i′0 + ci′0+1 + 1 = 3. Therefore, if

{v1, . . . , vp} ⊂ F6n×1 is a basis of Nr(Tµ′(λ0)), then {v(3)
1 , . . . , v

(3)
p } ⊂ Fn×1 is a basis of

Nr(P (λ0)).

Next, we consider the recovery of left and right eigenvectors corresponding to the eigen-
value ∞ from GF pencils. This is simpler than the recovery for finite eigenvalues, because
if P (λ) in (1.1) has the eigenvalue∞, then Ak is singular. This limits the set of GF pencils
for P (λ), since Mk has to be necessarily a factor of the first degree term of the GF pencil.
To understand why Ak is singular, recall that P (λ) has an infinite eigenvalue if and only if
revP (λ) has the eigenvalue 0, and that the right and left eigenspaces at∞ of P (λ) are the
right and left eigenspaces of revP (λ) for the eigenvalue 0, that is, the right and left null
spaces of the matrix revP (0) = Ak.
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THEOREM 3.4 (eigenvector recovery at ∞ from generalized Fiedler pencils). Let
P (λ) =

∑k
i=0 λ

iAi be an n × n regular matrix polynomial with degree k ≥ 2, and let
Tµ(λ) = λTµ1 − Tµ0 be the GF pencil of P (λ) associated with the pair of bijections µ =
(µ0, µ1). Suppose ∞ is an eigenvalue of P (λ), and assume that µ1 has cf and if final
consecutions and inversions, respectively.
Right eigenvectors at ∞: Let {z1, . . . , zp} ⊂ Fnk×1 be a basis of the right eigenspace of
Tµ(λ) at∞, partition the vectors zj ∈ Fnk×1 as k × 1 block vectors with n× 1 blocks, and
denote by z(q)

j ∈ Fn×1 the qth block of zj .

(a) If if < k, then {z(if +1)
1 , . . . , z

(if +1)
p } is a basis of the right eigenspace of P (λ) at

∞. Note that all PGF pencils are included in part (a).
(b) If if = k, then {A−1

0 z
(k)
1 , . . . , A−1

0 z
(k)
p } is a basis of the right eigenspace of P (λ)

at∞.
Left eigenvectors at ∞: Let {wT1 , . . . , wTp } ⊂ F1×nk be a basis of the left eigenspace of
Tµ(λ) at∞, partition the vectors wTj ∈ F1×nk as 1× k block vectors with 1× n blocks, and
denote by (wTj )(q) ∈ F1×n the qth block of wTj .

(c) If cf < k, then {(wT1 )(cf +1), . . . , (wTp )(cf +1)} is a basis of the left eigenspace of
P (λ) at∞. Note that all PGF pencils are included in part (c).

(d) If cf = k, then {(wT1 )(k)A−1
0 , . . . , (wTp )(k)A−1

0 } is a basis of the left eigenspace
of P (λ) at∞.

Proof. Part (a). Note that {z1, . . . , zp} ⊂ Fnk×1 is a basis ofNr(rev Tµ(0)) = Nr(Tµ1).
The relations (2.4) and the fact that µ1 has if final inversions allow us to write

Tµ1 = H`MkM
−1
k−1 · · ·M

−1
k−if

,

where H` is a product of a certain set of M−1
j factors. Therefore H` is a nonsingular matrix

and Nr(rev Tµ(0)) = Nr(Tµ1) = Nr(MkM
−1
k−1 · · ·M

−1
k−if

). Note that if if < k, then

(3.7) MkM
−1
k−1 · · ·M

−1
k−if

=



0 · · · · · · 0 Ak
I · · · · · · 0 Ak−1

. . .
...

...
. . . 0 Ak−if +1

I Ak−if

I · · · 0
...

. . .
...

0 · · · I


.

Observe that the first block of (MkM
−1
k−1 · · ·M

−1
k−if

) zj = 0 is Akz
(if +1)
j = 0, for j =

1, . . . , p. This means that {z(if +1)
1 , . . . , z

(if +1)
p } is contained in the right eigenspace of P (λ)

at ∞, i.e., Nr(Ak), but not yet that it is basis. To prove that it is a basis, note first that
dimNr(revP (0)) = dimNr(rev Tµ(0)), since Tµ(λ) is a strong linearization for P (λ), so
we only have to prove that {z(if +1)

1 , . . . , z
(if +1)
p } is a linearly independent set. We proceed

by contradiction: assume that it is linearly dependent, then there exists a nonzero vector
x ∈ Fp×1 such that [ z(if +1)

1 | · · · |z(if +1)
p ]x = 0. Then the vector v = [ z1| · · · |zp ]x ∈ Fnk×1

satisfies: (i) v 6= 0, since {z1, . . . , zp} are linearly independent; (ii) v(if +1) = 0; and (iii)
(MkM

−1
k−1 · · ·M

−1
k−if

) v = 0. But (ii), (iii) and (3.7) imply v = 0, which is in contradiction

with (i). Therefore {z(if +1)
1 , . . . , z

(if +1)
p } is a linearly independent set.
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Part (b). It is similar to the proof of part (a). Simply note that if if = k, then Tµ1 =
MkM

−1
k−1 · · ·M

−1
1 M−1

0 and

MkM
−1
k−1...M

−1
1 M−1

0 =


0 · · · · · · −AkA−1

0

I · · · · · · −Ak−1A
−1
0

...
. . . . . .

...
0 · · · I −A1A

−1
0

 .

Thus, the first block of (MkM
−1
k−1 · · ·M

−1
1 M−1

0 ) zj = 0 is Ak(A−1
0 ) z(k)

j = 0, for j =

1, . . . , p. This means that {A−1
0 z

(k)
1 , . . . , A−1

0 z
(k)
p } is contained in the right eigenspace of

P (λ) at∞, i.e., Nr(Ak). The proof that it is a basis is essentially the same as the one in part
(a) and is omitted.

Parts (c) and (d). As in the proof of Theorem 3.2, the recovery of left eigenvectors at∞
follows from the recovery of right eigenvectors at∞ from the GF pencil Tµ(λ)T . The idea is
the same as in Theorem 3.2 and we invite the reader to complete the details.

We illustrate the recovery of right eigenvectors at∞ with a couple of examples.
EXAMPLE 3.5. Let Tµ(λ) be the GF pencil in (3.5), then if = 1. So, if {z1, . . . , zp} ⊂

Fnk×1 is a basis of the right eigenspace of Tµ(λ) at ∞, then {z(2)
1 , . . . , z

(2)
p } ⊂ Fn×1 is a

basis of the right eigenspace of P (λ) at∞.
Let Tµ′(λ) be the GF pencil in (3.6), then if = 0. So, if {z1, . . . , zp} ⊂ Fnk×1 is a basis

of the right eigenspace of Tµ′(λ) at∞, then {z(1)
1 , . . . , z

(1)
p } ⊂ Fn×1 is a basis of the right

eigenspace of P (λ) at∞.

3.1. Recovery of eigenvectors from structure preserving linearizations. Theorems
3.2 and 3.4 lead to very simple eigenvector recovery “recipes” if they are applied to the
linearizations presented in Subsection 2.5.

COROLLARY 3.6 (eigenvector recovery from symmetric GF linearizations). Let
P (λ) be an n × n regular matrix polynomial with degree k ≥ 2 and let S(λ) be the GF
linearization of P (λ) defined in (2.15). Let λ0 be an eigenvalue of P (λ) that may be finite or
infinite. Observe that if λ0 =∞ and k is even, then S(λ) is not defined.

Right eigenvectors: Let {z1, . . . , zp} ⊂ Fnk×1 be a basis of the right eigenspace of S(λ) for
the eigenvalue λ0, partition the vectors zj ∈ Fnk×1 as k× 1 block vectors with n× 1 blocks,
and denote by z(q)

j ∈ Fn×1 the qth block of zj .

(a) If λ0 is finite, then {z(k)
1 , . . . , z

(k)
p } is a basis of the right eigenspace of P (λ) for λ0.

(b) If λ0 =∞, then {z(1)
1 , . . . , z

(1)
p } is a basis of the right eigenspace of P (λ) at∞.

Left eigenvectors: Let {wT1 , . . . , wTp } ⊂ F1×nk be a basis of the left eigenspace of S(λ) for
the eigenvalue λ0, partition the vectors wTj ∈ F1×nk as 1×k block vectors with 1×n blocks,
and denote by (wTj )(q) ∈ F1×n the qth block of wTj .

(c) If λ0 is finite, then {(wT1 )(k), . . . , (wTp )(k)} is a basis of the left eigenspace of P (λ)
for λ0.

(d) If λ0 =∞, then {(wT1 )(1), . . . , (wTp )(1)} is a basis of the left eigenspace of P (λ) at
∞.

Proof. The matrix M0 is a factor of the zero degree term of S(λ). So the recovery of
eigenvectors corresponding to finite eigenvalues is given by parts (a) and (d) of Theorem 3.2.
In addition, the magnitudes c0 and i0 in Theorem 3.2 are c0 = i0 = 0 for S(λ), which implies
parts (a) and (c). If λ0 =∞, then the magnitudes cf and if in Theorem 3.4 are cf = if = 0,
which implies parts (b) and (d).
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REMARK 3.7. We know that the linearization S(λ) in (2.15) is symmetric if P (λ) is
symmetric. In addition, left eigenvectors of any symmetric polynomial are the transpose
of the corresponding right eigenvectors. Therefore, for symmetric matrix polynomials, it is
only needed to recover right eigenvectors. Recall, however, that S(λ) is a linearization for
arbitrary matrix polynomials P (λ). For this reason, we present in Corollary 3.6 recovery
procedures both for left and right eigenvectors.

Theorems 3.2 and 3.4 also lead to simple eigenvector recovery procedures from the lin-
earizations presented in Subsection 2.6.

COROLLARY 3.8 (eigenvector recovery from palindromic linearizations based on
PGF pencils). Let P (λ) be an n×n regular matrix polynomial with odd degree k ≥ 3, let S
and R be the matrices defined in (2.18) and (2.17), and let Lτ0(λ) be the PGF pencil of P (λ)
defined in (2.16). Suppose that the bijection τ0 has c0 and i0 consecutions and inversions at
0, respectively. Let λ0 be an eigenvalue of P (λ) that may be finite or infinite.

Right eigenvectors: Let {z1, . . . , zp} ⊂ Fnk×1 be a basis of the right eigenspace of SRLτ0(λ)
for the eigenvalue λ0, partition the vectors zj ∈ Fnk×1 as k × 1 block vectors with n × 1
blocks, and denote by z(q)

j ∈ Fn×1 the qth block of zj .

(a) If λ0 is finite, then {z(k−c0)
1 , . . . , z

(k−c0)
p } is a basis of the right eigenspace of P (λ)

for λ0.
(b) If λ0 =∞, then {z(i0+1)

1 , . . . , z
(i0+1)
p } is a basis of the right eigenspace of P (λ) at

∞.

Left eigenvectors: Let {wT1 , . . . , wTp } ⊂ F1×nk be a basis of the left eigenspace of SRLτ0(λ)
for the eigenvalue λ0, partition the vectors wTj ∈ F1×nk as 1 × k block vectors with 1 × n
blocks, and denote by (wTj )(q) ∈ F1×n the qth block of wTj .

(c) If λ0 is finite, then {(wT1 )(i0+1), . . . , (wTp )(i0+1)} is a basis of the left eigenspace of
P (λ) for λ0.

(d) If λ0 = ∞, then {(wT1 )(k−c0), . . . , (wTp )(k−c0)} is a basis of the left eigenspace of
P (λ) at∞.

Proof. The right eigenspace of SRLτ0(λ) corresponding to λ0 is equal to the right
eigenspace of the PGF pencil Lτ0(λ) corresponding to λ0. So parts (a) and (b) follow from
applying Theorem 3.1-(a1) and Theorem 3.4-(a) to the PGF pencil Lτ0(λ). The applica-
tion of Theorem 3.4-(a) is particularly simple in this case, because, as we explained in Sub-
section 2.6, Lτ0(λ) is the PGF pencil associated with the pair of bijections (τ0, τ1), where
( τ−1

1 (1), τ−1
1 (2), . . . , τ−1

1 (h) ) := (k − τ−1
0 (h), . . . , k − τ−1

0 (2), k − τ−1
0 (1)). Therefore,

τ1 has cf (resp. if ) final consecutions (resp. inversions) if and only if τ0 has c0 (resp. i0)
consecutions (resp. inversions) at 0. Before proving this property, we invite the reader to
consider, for k = 5, the example Lτ0(λ) = λM−1

3 M−1
4 M5 −M0M1M2.

For the left eigenspaces, note that yT 7→ yTSR establishes an isomorphism from the
left eigenspace of SRLτ0(λ) corresponding to λ0 to the left eigenspace of the PGF pencil
Lτ0(λ) corresponding to λ0. Therefore, {wT1 S R, . . . , wTp S R} ⊂ F1×nk is a basis of the left
eigenspace of Lτ0(λ) for the eigenvalue λ0. Equations (2.17) and (2.18) give the following
relationships between blocks: (wTj S R)(q) = ±(wTj )(k−q+1), for j = 1, . . . , p and q =
1, . . . , k. Use these relationships, apply Theorem 3.1-(d1) and Theorem 3.4-(c) to Lτ0(λ),
and get parts (c) and (d) of Corollary 3.8.

REMARK 3.9. We know that the linearization SRLτ0(λ) is palindromic if P (λ) is palin-
dromic. In addition, left eigenvectors of an eigenvalue λ0 of any palindromic polynomial are
the transpose of the right eigenvectors for the eigenvalue 1/λ0. Therefore, for palindromic
matrix polynomials, it is only needed to recover right eigenvectors. Recall, however, that
SRLτ0(λ) is a linearization for arbitrary matrix polynomials P (λ). For this reason, we
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present in Corollary 3.8 recovery procedures both for left and right eigenvectors.

4. Recovery of minimal bases and minimal indices of singular matrix polynomials
from PGF pencils. In this section we consider square singular matrix polynomials, that is,
matrix polynomials P (λ) such that all the coefficients of detP (λ) as a scalar polynomial in λ
are zero. We focus on the recovery of the minimal bases and indices of P (λ) from those of its
PGF pencils. We explained in Section 2 that PGF are the only GF pencils defined for singular
polynomials, and this fact makes very simple the recovery of minimal bases. Minimal bases
and indices are magnitudes of fundamental importance in different control problems [13].
Next, we briefly recall their definitions. The reader may found a more complete summary in
[8].

Let F(λ) denote the field of rational functions with coefficients in F. An n× n singular
matrix polynomial P (λ) has left and right nullspaces that are F(λ)-vector spaces. These are,
respectively,

N`(P ) :=
{
y(λ)T ∈ F(λ)1×n : y(λ)TP (λ) ≡ 0T

}
,

Nr(P ) :=
{
x(λ) ∈ F(λ)n×1 : P (λ)x(λ) ≡ 0

}
.

A left (resp. right) minimal basis of P (λ) is a basis of N`(P ) (resp. Nr(P )) consisting
of vectors polynomials, i.e., vectors with polynomial entries, and such that the sum of the
degrees of the vectors in this basis is minimal among all polynomial bases of N`(P ) (resp.
Nr(P )) [13]. It can be shown [13] that the ordered list of degrees of the vectors in any left
(resp. right) minimal basis of P (λ) is always the same. These degrees are then called the left
(resp. right) minimal indices of P (λ).

Minimal bases of P (λ) can be recovered from minimal bases of any of its PGF pencils
as explained in Theorem 4.1.

THEOREM 4.1 (recovery of minimal bases from PGF pencils). Let P (λ) be an n× n
singular matrix polynomial with degree k ≥ 2 and let Tµ(λ) = λTµ1 − Tµ0 be the PGF
pencil of P (λ) associated with the pair of bijections µ = (µ0, µ1). Assume that µ0 has c0
and i0 consecutions and inversions at 0, respectively.

Right minimal bases: Let {z1(λ), . . . , zp(λ)} ⊂ F(λ)nk×1 be a right minimal basis of
Tµ(λ), partition the vectors zj(λ) ∈ F(λ)nk×1 as k× 1 block vectors with n× 1 blocks, and
denote by xj(λ) ∈ Fn×1 the (k − c0)th block of zj(λ). Then {x1(λ), . . . , xp(λ)} is a right
minimal basis of P (λ).
Left minimal bases: Let {w1(λ)T , . . . , wp(λ)T } ⊂ F(λ)1×nk be a left minimal basis of
Tµ(λ), partition the vectors wj(λ)T ∈ F(λ)1×nk as 1 × k block vectors with 1 × n blocks,
denote by yj(λ)T ∈ F1×n the (k − i0)th block of wj(λ)T , then {y1(λ)T , . . . , yp(λ)T } is a
left minimal basis of P (λ).

Proof. The proof for right minimal bases is similar to the proof of Theorem 3.2-(a1).
We only sketch the main ideas. Assume first that µ 6= τ , where the pair of bijections τ was
defined in (2.9)-(2.10), and let Fσ(λ) = ME1 Tµ(λ)ME2 be the Fiedler pencil in part (b) of
Lemma 2.6. This means that σ has c0 consecutions at 0. Then v(λ) 7→ME2v(λ) is an isomor-
phism from Nr(Fσ) to Nr(Tµ), that are F(λ)-vector spaces. In addition, this isomorphism
induces a degree-preserving bijection between the subsets of vector polynomials in Nr(Fσ)
and Nr(Tµ), because ME2 is a constant nonsingular matrix. This means that

(4.1) {z1(λ), . . . , zp(λ)} = {ME2v1(λ), . . . ,ME2vp(λ)},

for some right minimal basis {v1(λ), . . . , vp(λ)} of Fσ(λ). From [9, Corollary 5.8], we
know that the (k − c0)th blocks of {v1(λ), . . . , vp(λ)} form a right minimal basis of P (λ).
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These (k − c0)th blocks are precisely {x1(λ), . . . , xp(λ)}, because ME2 = Mi1Mi2 . . .Mic

with ij 6= c0, ij 6= c0 + 1, which implies that all these factors Mij have I at block entry
(k − c0, k − c0). If µ = τ , then use (3.3) and (3.4) and follow the same argument.

As in the proof of Theorem 3.2, the recovery of left minimal bases follows from the
recovery of right minimal bases for Tµ(λ)T , which is a PGF pencil for P (λ)T . We only
remark that for any singular matrix polynomialQ(λ), the mapping y(λ)T 7→ y(λ) transforms
left minimal bases of Q(λ) into right minimal bases of Q(λ)T , and viceversa.

The recovery of minimal indices from PGF pencils is also very simple. We use for this
purpose the notation introduced in (2.6) and (2.7).

THEOREM 4.2 (recovery of minimal indices from PGF pencils). Let P (λ) be an
n × n singular matrix polynomial with degree k ≥ 2 and consider four ordered sets Ej ,
j = 1, 2, 3, 4, such that Ei ∩ Ej = ∅ if i 6= j, and ∪4

i=1Ei = {1, . . . , k − 1}. Let

Tµ(λ) = λM−1
E1 MkM

−1
E2 −ME3M0ME4

be a PGF pencil of P (λ) and consider the related Fiedler pencil

Fσ(λ) = λMk −ME1ME3M0ME4ME2 .

Let 0 ≤ η1 ≤ η2 ≤ · · · ≤ ηp and 0 ≤ ε1 ≤ ε2 ≤ · · · ≤ εp be, respectively, the left and right
minimal indices of P (λ) and c(σ) and i(σ) be, respectively, the total number of consecutions
and inversions of σ. Then, the left and right minimal indices of Tµ(λ) are, respectively,

η1 + c(σ) ≤ η2 + c(σ) ≤ · · · ≤ ηp + c(σ) and ε1 + i(σ) ≤ ε2 + i(σ) ≤ · · · ≤ εp + i(σ) .

Proof. It is immediate to see that Tµ(λ) and Fσ(λ) have equal minimal indices because
they are strictly equivalent. The result follows from applying Corollaries 5.8 and 5.11 in [9]
to Fσ(λ).

We illustrated in Example 2.5 that there may be more than one Fiedler pencil strictly
equivalent to a given PGF pencil, and that these Fiedler pencils may have quite different
structures. However, Theorem 4.2 implies that all these Fiedler pencils have the same total
number of consecutions and the same total number of inversions. We illustrate this fact with
an example

EXAMPLE 4.3. Let Fσ(λ) and Fσ′(λ) be the Fiedler pencils defined in Example 2.5.
Then, c(σ) = c(σ′) = 2 and i(σ) = i(σ′) = 2. However, σ and σ′ do not have neither all the
consecutions nor all the inversions at the same indices.

Theorems 4.1 and 4.2 can be directly applied to the PGF pencil S(λ) defined in (2.15)
for odd degree, because for S(λ) the magnitudes in these theorems are i0 = c0 = 0 and
i(σ) = c(σ) = (k − 1)/2. So we can state the following corollary.

COROLLARY 4.4 (recovery of minimal bases and indices from symmetric PGF liner-
izations). Let P (λ) be an n × n singular matrix polynomial with odd degree k ≥ 3 and let
S(λ) be the PGF linearization of P (λ) defined in (2.15). Then the minimal bases and indices
of P (λ) can be recovered from the minimal bases and indices of S(λ) by setting i0 = c0 = 0
and i(σ) = c(σ) = (k − 1)/2 in Theorems 4.1 and 4.2.

The last result in this paper is Corollary 4.5, which establishes the recovery of minimal
indices and bases from the linearizations presented in Subsection 2.6. As in the proof of
Corollary 3.8 for eigenvectors, the main idea is to deal first with the PGF pencil Lτ0(λ) and
then with the strictly equivalent pencil SRLτ0(λ). For brevity we omit the straightforward
proof. We only remark that the recovery of minimal indices was already presented in [10,
Theorem 6.1], and that the argument presented in [10] is, in our opinion, simpler than a direct
application of Theorem 4.2.
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COROLLARY 4.5 (recovery of minimal indices and bases from palindromic lineariza-
tions based on PGF pencils). Let P (λ) be an n × n singular matrix polynomial with odd
degree k ≥ 3, let S and R be the matrices defined in (2.18) and (2.17), and let Lτ0(λ) be the
PGF pencil of P (λ) defined in (2.16). Suppose that the bijection τ0 has c0 and i0 consecutions
and inversions at 0, respectively.
Right minimal bases: Let {z1(λ), . . . , zp(λ)} ⊂ F(λ)nk×1 be a right minimal basis of
SRLτ0(λ), partition the vectors zj(λ) ∈ F(λ)nk×1 as k× 1 block vectors with n× 1 blocks,
and denote by xj(λ) ∈ Fn×1 the (k − c0)th block of zj(λ). Then {x1(λ), . . . , xp(λ)} is a
right minimal basis of P (λ).
Left minimal bases: Let {w1(λ)T , . . . , wp(λ)T } ⊂ F(λ)1×nk be a left minimal basis of
SRLτ0(λ), partition the vectorswj(λ)T ∈ F(λ)1×nk as 1×k block vectors with 1×n blocks,
and denote by yj(λ)T ∈ F1×n the (i0 + 1)th block of wj(λ)T . Then {y1(λ)T , . . . , yp(λ)T }
is a left minimal basis of P (λ).
Minimal indices: Let 0 ≤ η1 ≤ η2 ≤ · · · ≤ ηp and 0 ≤ ε1 ≤ ε2 ≤ · · · ≤ εp be,
respectively, the left and right minimal indices of P (λ). Then, the left and right minimal
indices of SRLτ0(λ) are, respectively,

η1 +
k − 1

2
≤ η2 +

k − 1
2
≤ · · · ≤ ηp +

k − 1
2

and

ε1 +
k − 1

2
≤ ε2 +

k − 1
2
≤ · · · ≤ εp +

k − 1
2

.

REMARK 4.6. It was proved in [8, Section 3]: (a) that left minimal indices are equal to
right minimal indices for symmetric and palindromic matrix polynomials; (b) that left mini-
mal bases are transposes of right minimal bases for symmetric matrix polynomials; and, (c)
for palindromic matrix polynomials, if the vectors of a right minimal basis are reversed and
transposed, then a left minimal basis is obtained. Therefore, for symmetric and palindromic
polynomials only right minimal bases and indices need to be recovered.

5. Conclusions. We have developed easy recovery procedures for the eigenvectors of
regular matrix polynomials and for the minimal indices and bases of square singular matrix
polynomials from the corresponding ones of any generalized Fiedler linearization. Except
for a few particular linearizations, these recovery procedures consist simply in extracting
adequate blocks from the eigenvectors or minimal bases of the linearization, and in shifting
left and right minimal indices by certain quantities that can be easily determined. Therefore,
the recovery methods we propose do not represent any computational cost. This is, at a first
glance, surprising because the class of generalized Fiedler pencils is a wide set containing
many pencils with widely varying structures and properties. The results in this work allow
us to use generalized Fiedler pencils to solve numerically polynomial eigenvalue problems,
which can be useful, for instance, to solve symmetric and palindromic polynomial eigenvalue
problems with odd degree arising in control and in algebraic-differential ordinary equations.
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