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Abstract. In many applications, the polynomial eigenvalue problem, P (λ)x = 0, arises with
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tions with the same structure as P (λ) to ensure that the symmetries in the eigenvalues due to that
structure are preserved in numerical computations. In this paper we characterize all the pencils in
the family of the Fiedler pencils with repetition, introduced by Vologiannidis and Antoniou [25], asso-
ciated with a square matrix polynomial P (λ) that are block-symmetric for every matrix polynomial
P (λ). We show that this family of pencils is precisely the set of all Fiedler pencils with repetition
that are symmetric when P (λ) is. When some generic nonsingularity conditions are satisfied, these
pencils are strong linearizations of P (λ). In particular, our family strictly contains the standard
basis for DL(P ), a k-dimensional vector space of symmetric pencils introduced by Mackey, Mackey,
Mehl, and Mehrmann [20].
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1. Introduction. Let

P (λ) = Akλ
k +Ak−1λ

k−1 + · · ·+A0 (1.1)

be a matrix polynomial of degree k ≥ 2, where the coefficients Ai are n× n matrices
with entries in an arbitrary field F.

A matrix pencil L(λ) = λL1−L0, with L1, L0 ∈Mkn(F), is a linearization of P (λ)
(see [12]) if there exist two unimodular matrix polynomials (i.e. matrix polynomials
with constant nonzero determinant), U(λ) and V (λ), such that

U(λ)L(λ)V (λ) =
[
I(k−1)n 0

0 P (λ)

]
.

Here and hereafter Im denotes the m×m identity matrix. By I we denote the identity
matrix whose size is clear from the context.

Linearizations of a matrix polynomial P (λ) share the finite elementary divisors of
P (λ), among other important properties. Beside other applications, linearizations of
matrix polynomials [12] are used in the study of the polynomial eigenvalue problem
P (λ)x = 0. In the classical approach to this problem the original matrix polynomial
P (λ) is replaced by a matrix pencil LP (λ) of larger size with the same eigenvalues as
P (λ). Then, the standard methods for linear eigenvalue problems are applied.
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The reversal of the matrix polynomial P (λ) in (1.1) is the matrix polynomial
obtained by reversing the order of the coefficient matrices, that is,

rev(P (λ)) :=
k∑

i=0

λiAk−i.

A linearization L(λ) of a matrix polynomial P (λ) is called a strong linearization
of P (λ) if rev(L(λ)) is also a linearization of rev(P (λ)). Strong linearizations of P (λ)
have the same finite and infinite elementary divisors [11] as P (λ). Moreover, any lin-
earization with the same infinite elementary divisors as P (λ) is a strong linearization
[9, Theorem 4.1].

From the numerical point of view, it is not enough to have a strong linearization
of a matrix polynomial. In any computational problem it is important to take into ac-
count its conditioning, i.e. its sensitivity to perturbations. In particular, when solving
a polynomial eigenvalue problem, it is important to consider the eigenvalue condition
number. More precisely, the relation of the condition number of an eigenvalue of
the linearization and of the same eigenvalue of the matrix polynomial is relevant. It
is known that different linearizations for a given polynomial eigenvalue problem can
have very different conditioning [14, 23, 24]. This implies that numerical methods may
produce quite different results for different linearizations. Therefore, it is convenient
to have available a large class of structured linearizations that can be constructed
easily and from which a linearization as well-conditioned as the original problem can
be chosen.

For each matrix polynomial P (λ), many different linearizations can be constructed
but, in practice, those sharing the structure of P (λ) are the most convenient from the
theoretical and computational point of view, since the structure of P (λ) often implies
some symmetries in its spectrum, which are meaningful in physical applications and
that can be destroyed by numerical methods when the structure is ignored [24]. For
example, if a matrix polynomial is real symmetric or Hermitian, we have simultane-
ously that its spectrum is symmetric with respect to the real axis and the sets of left
and right eigenvectors coincide. Thus, it is important to construct linearizations that
reflect the structure of the original problem. In the literature [2, 3, 8, 15, 16, 21, 22]
different kinds of structured linearizations have been considered: palindromic, sym-
metric, skew-symmetric, alternating, etc. Among the structured linearizations, those
that are strong and can be easily constructed from the coefficients of the matrix poly-
nomial P (λ) are of particular interest [1, 2, 10, 25, 20], more precisely, those strong
linearizations LP (λ) = λL1−L0 such that each n×n block of L1 and L0 is either 0n,
±In, or ±Ai, for i = 0, 1, ..., k, when L1 and L0 are viewed as k × k block matrices.
There are some well-known families of linearizations with this property: Fiedler pen-
cils ([1],[7]), generalized Fiedler pencils ([1],[5]), and Fiedler pencils with repetition
(FPR) ([25]). We observe that, when at least one of the coefficients A0 or Ak of
the matrix polynomial P (λ) of the form (1.1) is singular, not all Fiedler pencils with
repetition L(λ) associated with P (λ) are strong linearizations of P (λ). However, some
conditions on P (λ) and L(λ) ensure that L(λ) is a strong linearization of P (λ), as
mentioned later.

In a previous paper [3], we constructed a family of strong linearizations from the
family of Fiedler pencils with repetition that preserve the palindromic (in case the
matrix polynomial has odd degree) structure of the matrix polynomial P (λ). Here
we will consider the symmetric case. In the second part of this paper [4], we will
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study the skew-symmetric and T-alternating cases. The study of the symmetric case
provides the tools to study the latter two cases.

In the literature, symmetric linearizations for symmetric matrix polynomials can
be found [1, 2, 15, 17, 18, 19, 20, 25]. We are interested in symmetric linearizations
which are easily constructed from the coefficients of the matrix polynomial. Notice
that, by Lemma 5.2, for k > 1, there are no symmetric linearizations in the fam-
ily of Fiedler pencils and the symmetric linearizations in the family of generalized
Fiedler pencils only includes a few pencils [1, 2]. Some examples of symmetric strong
linearizations in the family of Fiedler pencils with repetition associated with a sym-
metric matrix polynomial P (λ) of degree k are given in [25], where this family is
introduced. We note that in that paper it is shown that the family of FPR includes
k symmetric linearizations already presented in [17, 18, 19], which form the standard
basis of the k-dimensional vector space of symmetric pencils DL(P ) = L1(P )∩L2(P )
studied in [20, 15]. If the matrix coefficients A0 and Ak of P (λ) are nonsingular, these
pencils are strong linearizations of P (λ). Note that, although any pencil in DL(P ) is
symmetric when P (λ) is, it is not necessarily a strong linearization of P (λ). In fact,
it has been shown that when P (λ) is regular, almost all pencils in DL(P ) are strong
linearizations of P (λ) [20]. However, if P (λ) is singular, no pencil in DL(P ) is [6].

As shown in Example 8 in [25], the family of symmetric strong linearizations
among the FPR includes linearizations that had not appeared in the literature be-
fore, in particular that are not in DL(P ). While in [25] only a few examples were
constructed, in this paper we characterize all the pencils in the family of Fiedler
pencils with repetition which are symmetric when the associated matrix polynomial
P (λ) is. Although not every pencil in this family is a strong linearization of P (λ), we
give conditions on the pencils and P (λ) under which they are. In particular, when
A0 and Ak are both nonsingular, the family of symmetric FPR linearizations that
we construct are strong linearizations of P (λ) and extends the standard basis of the
space DL(P ) significantly, as Example 5.6 shows for k = 4. Notice that in this case
we get ten pencils that are distinct if Ak 6= I and A0 6= −I. In the worst scenario,
when Ak = I and A0 = −I, we still get six distinct pencils. We would also like to
point out that, applying Theorem 5.3 for k ≥ 3, we can produce examples of strong
linearizations that are not in L1(P ) and, therefore, that are not in DL(P ). This can
be checked by using the shifted sum characterization of pencils in L1 given in [20].
It remains an open problem to determine the exact number of distinct symmetric
FPR for each value of k, although it is clear that for k ≥ 4 this number is always
greater than the degree k of the matrix polynomial. We finally highlight that if k is
odd, the family of symmetric FPR always contains strong linearizations of P (λ), even
for singular matrix polynomials. The conditioning of linearizations in DL(P ) is, to
some extent, well understood [13]. The fact that the pencils that we study extend the
standard basis of DL(P ) is also promising from this point of view.

The paper is organized as follows. In Section 2, we introduce some general defi-
nitions and results regarding index tuples. Some notation used throughout the paper
is also presented. In Section 3 we focus on symmetric index tuples. More precisely,
we characterize the symmetric tuples that will be relevant in the construction of the
symmetric (Hermitian) linearizations in the family of the Fiedler pencils with rep-
etition. In Section 4 we introduce this FPR family and give some related results
that will be needed in Section 5, where we give a description of the Fiedler pencils
with repetition that are symmetric (Hermitian) strong linearizations when the matrix
polynomial P (λ) is. Additionally we provide a characterization of the FPR that are
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block-symmetric for all FPR. This characterization is crucial for the construction of
the skew-symmetric and T-alternating strong linearizations in the second part of this
paper. We close this part of the paper with a summary of the main results obtained.

2. Index Tuples. We call an index tuple any ordered tuple whose entries are
integers.

In this section we introduce some definitions and results for index tuples. In
particular, we define an equivalence relation in the set of index tuples and give a
canonical form under this equivalence relation. We also give some notation that will
be used throughout the paper.

2.1. General definitions and notation. For the purposes of this paper, it is
important to distinguish between index tuples in which the entries are repeated or
not. This justifies the following definition.

Definition 2.1. Let t = (i1, i2, . . . , ir) be an index tuple. We say that t is simple
if ij 6= il for all j, l ∈ {1, 2, . . . , r}, j 6= l.

If i, j are integers such that j ≥ i, we denote by (i : j) the tuple (i, i+1, i+2, . . . , j).
If j < i, (i : j) denotes the empty tuple. We will refer to the simple index tuple (i : j),
j ≥ i, consisting of consecutive integers, as a string.

If i, j are integers such that j ≤ i, we denote by (i :↓ j) the tuple (i, i − 1, i −
2, . . . , j). If j > i, (i :↓ j) denotes the empty tuple.

Definition 2.2. Let t1 and t2 be two index tuples. We say that t1 is a subtuple
of t2 if t1 = t2 or if t1 can be obtained from t2 by deleting some indices in t2. If
i1, . . . , ir are distinct indices, we call the subtuple of t1 with indices from {i1, . . . , ir}
the subtuple of t1 obtained by deleting from t1 all indices distinct from i1, . . . , ir.

Example 2.3. Let t = (1, 2, 1, 3, 2, 3) be viewed as a tuple with indices from
{1, 2, 3, 4}. The subtuple of t with indices from {1, 2} is (1, 2, 1, 2); the subtuple of t
with indices from {3, 4} is (3, 3).

Note that in a subtuple of an index tuple, the indices keep their original relative
positions, that is, the order of the indices in the subtuple is not altered with respect
to the order of those indices in the original tuple.

If t = (i1, . . . , ir) is an index tuple and a is an integer, we denote by a + t the
index tuple (a+ i1, . . . , a+ ir).

Given a tuple t, we call the number of elements in t the length of t and denote
it by |t|. We denote by t[j] the tuple obtained from t by deleting the last j elements
(counting from right to left).

Definition 2.4. Let t = (a : b) be a string and l = |t|. If l > 1, we call the
reverse-complement of t the index tuple trevc

:= (t[1], . . . , t[l − 1]). If l = 1, the
reverse-complement of t is empty.

Example 2.5. The reverse-complement of t = (0 : 6) is trevc
= (0 : 5, 0 : 4, 0 :

3, 0 : 2, 0 : 1, 0); the reverse-complement of t = (0) is empty.
Definition 2.6. Given an index tuple t = (i1, . . . , ir), we define the reversal

tuple of t as rev(t) := (ir, . . . , i1).
Let t1 and t2 be two index tuples. Some immediate properties of the reversal

operation are:
• rev(rev(t1)) = t1,
• rev(t1, t2) = (rev(t2), rev(t1)).

2.2. Equivalence of tuples. We define an equivalence relation in the set of
index tuples with indices from a given set of either nonnegative or negative integers.

Definition 2.7. We say that two nonnegative indices i, j commute if |i−j| 6= 1.
4



Definition 2.8. Let t and t′ be two index tuples of nonnegative integers. We say
that t is obtained from t′ by a transposition if t is obtained from t′ by interchanging
two commuting indices in adjacent positions.

Definition 2.9. Given two index tuples t1 and t2 of nonnegative integers, we say
that t1 is equivalent to t2 if t2 can be obtained from t1 by a sequence of transpositions.
If t1 and t2 are index tuples of negative indices, we say that t1 is equivalent to t2 if
−t1 is equivalent to −t2. If t1 and t2 are equivalent index tuples, we write t1 ∼ t2,

Note that the relation ∼ is an equivalence relation.
Example 2.10. The index tuples t1 = (2, 5, 3, 1, 4) and t2 = (5, 2, 3, 4, 1) are

equivalent.
Remark 2.11. Note that if t1 and t2 are equivalent tuples with indices from

{i, i+ 1}, where i is a nonnegative integer, then t1 = t2.
Observe that, if j is a positive (resp. negative) integer and t1 and t2 are equivalent

index tuples of nonnegative (resp. negative) indices, then so are j + t1 and j + t2.

The next proposition will be very useful in the proofs of our results.
Proposition 2.12. Let t1 and t2 be two index tuples with indices from a set S

of nonnegative (resp. negative) integers. Then, t1 and t2 are equivalent if and only
if, for each i ∈ S, the subtuples of t1 and t2 with indices from {i, i+1} are the same.

Proof. If t1 and t2 are equivalent then they contain the same indices with the
same multiplicities, and, since i and i + 1 do not commute, the stated subtuples are
the same. For the converse, assume that t1 and t2 are not equivalent. If t1 and t2

do not have the same indices, clearly for some i ∈ S the subtuples with indices from
{i, i+1} are distinct. Now suppose that t1 and t2 have the same indices. Let k be the
first position (starting from the left) in which t1 and t2 differ and no transposition
applied to the indices of t2 to the right of position k − 1 can transform the index in
position k into the corresponding index in t1, say i. Since, by applying transpositions
on t2, we cannot find an equivalent tuple with i in position k (and the elements in
the positions before k are equal in both tuples) this means that i− 1 or i+ 1 appears
to the right of position k − 1 and to the left of the first i after position k in t2. But
this implies that either the subtuples of t1 and t2 with indices from {i, i− 1} or the
subtuples of t1 and t2 with indices from {i, i+ 1} are different.

The next example illustrates the application of Proposition 2.12.
Example 2.13. Consider the tuples t1 = (1, 5, 4, 2) and t2 = (5, 1, 2, 4) with

indices from S = {1, 2, 4, 5}. For each i ∈ S, the subtuples of t1 and t2 with indices
from {i, i+1} coincide and are given by (1, 2) if i = 1, (2) if i = 2, (5, 4) if i = 4, and
(5) if i = 5. Thus, by Proposition 2.12, t1 and t2 are equivalent. Now consider the
tuples t1 = (5, 6, 25) and t2 = (5, 6, 30) with indices from S = {5, 6, 25, 30}. Clearly,
the subtuples of t1 and t2 with indices from {i, i+ 1}, when i = 25, do not coincide.
Thus, by Proposition 2.12, t1 and t2 are not equivalent.

The next result is an easy consequence of the previous proposition and will be
used in the proofs of our results.

Lemma 2.14. Let q be a permutation of {0, 1, . . . , h}, h ≥ 0, and lq, rq, l′q, r
′
q be

tuples with indices from {0, 1, . . . , h − 1}. Then, (lq,q, rq) ∼ (l′q,q, r
′
q) if and only if

lq ∼ l′q and rq ∼ r′q.
Proof. Clearly, if lq ∼ l′q and rq ∼ r′q then (lq,q, rq) ∼ (l′q,q, r

′
q). Now we prove

the converse. Suppose that (lq,q, rq) ∼ (l′q,q, r
′
q). We prove that rq ∼ r′q. The proof

of lq ∼ l′q is similar. By Proposition 2.12, it is enough to show that, for any index
i ∈ {0, . . . , h−1}, the subtuples of rq and r′q with indices from {i, i+ 1} are the same.
First we prove that rq and r′q have precisely the same indices.
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In order to get a contradiction, assume that i ≤ h − 1 is the largest index such
that the subtuples of rq and r′q with indices from {i} have different lengths. Let
m denote the number of indices equal to i + 1 in rq and r′q (which can be 0). By
Proposition 2.12, the subtuples of (lq,q, rq) and (l′q,q, r

′
q) with indices from {i, i+ 1}

are the same, which gives a contradiction as the number of i′s occurring to the right
of the (m+ 1)th index equal to i + 1, counting from the right, is different in both
tuples.

Thus, we conclude that rq and r′q have precisely the same indices. Since, by
Proposition 2.12, for each i < h, the subtuples of (lq,q, rq) and (l′q,q, r

′
q) with indices

from {i, i + 1} are the same, also the corresponding subtuples of rq and r′q are the
same. Again by Proposition 2.12, the claim follows.

We now extend the definition of commuting indices to index tuples.
Definition 2.15. Let t1 and t2 be two index tuples of nonnegative (resp. neg-

ative) integers. We say that t1 and t2 commute if every index in t1 commutes with
every index in t2.

Note that, if t1 and t2 commute, then, for every index i in t1, i− 1 and i+ 1 are
not in t2. In particular, if t1 and t2 commute then (t1, t2) ∼ (t2, t1). Also, if t′1 and
t′2 are subtuples of the commuting tuples t1 and t2, then t′1 and t′2 commute.

2.3. Successor Infix Property and column standard form. In this paper
we are interested in index tuples satisfying the property called SIP that we define
below. In the case of tuples of nonnegative indices satisfying this property, we also
give a canonical form under the equivalence relation defined in the previous section.
Expressing the index tuples satisfying the SIP in this canonical form is an important
tool for proving our main results.

Definition 2.16. [25, Definition 7] Let t = (i1, i2, . . . , ir) be an index tuple of
nonnegative (resp. negative) indices. Then, t is said to satisfy the Successor Infix
Property (SIP) if for every pair of indices ia, ib ∈ t, with 1 ≤ a < b ≤ r, satisfying
ia = ib, there exists at least one index ic = ia + 1 with a < c < b.

Remark 2.17. We observe that the SIP is invariant under equivalence. More-
over, any subtuple consisting of adjacent indices from an index tuple satisfying the
SIP also satisfies the SIP. Additionally, if a tuple t satisfies the SIP, so does rev(t)
and a+ t for any integer a.

We now give a canonical form under equivalence for a tuple of nonnegative integers
satisfying the SIP.

Definition 2.18. Let t be an index tuple with indices from {0, 1, . . . , h}, h ≥ 0.
Then t is said to be in column standard form if t is of the form

(as : bs, as−1 : bs−1, . . . , a2 : b2, a1 : b1) , (2.1)

with h ≥ bs > bs−1 > · · · > b2 > b1 ≥ 0 and 0 ≤ aj ≤ bj, for all j = 1, . . . , s. We call
each subtuple of consecutive integers (ai : bi) a string in t.

The connection between the column standard form of an index tuple and the SIP
is shown in the following result.

Lemma 2.19. Let t = (i1, . . . , ir) be an index tuple with indices from {0, 1, . . . , h},
h ≥ 0. Then t satisfies the SIP if and only if t is equivalent to a tuple in column
standard form.

Proof. The “only if” statement follows from the proof of Theorem 2 in [25], which
is an immediate consequence of Lemma 8 in that paper.

Now we prove the “if” statement. Since, by Remark 2.17, the SIP is invariant
under equivalence, it is enough to see that a tuple in column standard form, as in
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(2.1), satisfies the SIP. Suppose that the index i occurs twice in csf(t). Then, there
exists j, k ∈ {1, 2, . . . , s}, with j < k, such that aj ≤ i ≤ bj and ak ≤ i ≤ bk. Since
bj < bk, we deduce that i ≤ bj < bk, which implies that ak ≤ i < i+ 1 ≤ bk and, thus,
i+ 1 occurs on the right of i in the string (ak : bk) in csf(t).

Taking into account Proposition 2.12, it follows that two tuples in column stan-
dard form are equivalent if and only if they coincide. We then have the following
definition.

Definition 2.20. The unique index tuple in column standard form equivalent
to an index tuple t satisfying the SIP is called the column standard form of t and is
denoted by csf(t).

Note that, in particular, if t is simple, then t satisfies the SIP and, therefore, t is
equivalent to a tuple in column standard form. In this case, if t is a permutation of
{0, 1, . . . , h}, the column standard form of t has the form

csf(t) = (tw + 1 : h, tw−1 + 1 : tw, . . . , t2 + 1 : t3, t1 + 1 : t2, 0 : t1)

for some positive integers 0 ≤ t1 < t2 < . . . < tw < h.

3. Symmetric Index Tuples. In this section we consider index tuples that are
symmetric.

Definition 3.1. We say that an index tuple t of nonnegative (resp. negative)
indices is symmetric if t ∼ rev(t).

Note that if t is a symmetric index tuple and a is an integer such that a+ t (resp.
a − t) is a tuple with either all nonnegative or all negative indices, then a + t (resp.
a−t) is also symmetric. Also, observe that any tuple equivalent to a symmetric tuple
is also symmetric.

We are interested in symmetric tuples of the form (lq,q, rq) satisfying the SIP,
where q is a permutation of {0, 1, . . . , h}, lq and rq are tuples (possibly not simple)
with indices from {0, 1, . . . , h − 1}, and (lq, rq) is also symmetric. We characterize
the symmetric tuples of this kind and give a new canonical form under equivalence
for them. The canonical form we present will be used in the construction of the
symmetric linearizations.

3.1. The S and the SS properties. Here we introduce some properties of
symmetric tuples that will be very useful in proving our results. We focus on nonneg-
ative tuples but all the results in this section can be extended to tuples of negative
indices as well.

Definition 3.2. Let t be a tuple with indices from {0, 1, ..., h}, h ≥ 0. We
say that t has the S property if, for every index i ∈ t with i < h, the subtuple of
t with indices from {i, i + 1} is symmetric. In particular, if for every index i ∈ t
with i < h such that i + 1 ∈ t, the subtuple of t with indices from {i, i + 1} is of the
form (i, i+ 1, i, i+ 1, ..., i+ 1, i) or (i+ 1, i, i+ 1, ..., i, i+ 1), we say that t has the SS
property.

Lemma 3.3. Let t be a tuple with indices from {0, 1, . . . , h}, h ≥ 0. Then, t is
symmetric if and only if t has the S property.

Proof. If t is symmetric, then it is clear that t has the S property. Now assume
that t is not symmetric in order to see that t does not satisfy the S property. Since
t and rev(t) are not equivalent, by Proposition 2.12, there is i ∈ t such that the
subtuples of t and rev(t) with indices from {i, i+ 1} are distinct. Thus, the subtuple
of t with indices from {i, i+ 1} is not symmetric, which implies the result.
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In order to characterize the index tuples (lq,q, rq) which are symmetric and such
that (lq, rq) is also symmetric, we start by considering the case when lq and rq are
disjoint tuples (that is, have no common indices).

Lemma 3.4. Let q be a permutation of {0, 1, . . . , h}, h ≥ 0, and let lq, rq be
disjoint tuples with indices from {0, 1, ..., h− 1} such that (lq,q, rq) or (lq, rq) is sym-
metric. Then, lq and rq commute.

Proof. We observe that there is no index i such that either i ∈ lq and i+ 1 ∈ rq

or i ∈ rq and i + 1 ∈ lq, as, otherwise, the subtuple of (lq,q, rq) (or (lq, rq)) with
indices from {i, i + 1} would not be symmetric, (as its first and last elements would
be different), a contradiction by Lemma 3.3.

Next we characterize, in terms of the SS property, the index tuples (lq,q, rq)
satisfying the SIP, with lq and rq disjoint and such that both (lq,q, rq) and (lq, rq)
are symmetric. Note that if (lq, rq) is symmetric and lq and rq are disjoint, from
Lemmas 3.3 and 3.4, lq and rq are symmetric as well.

Lemma 3.5. Let q be a permutation of {0, 1, . . . , h}, h ≥ 0, and let lq, rq be
disjoint tuples with indices from {0, 1, ..., h− 1} such that (lq,q, rq) satisfies the SIP.
Then, (lq,q, rq) and (lq, rq) are both symmetric if and only if (lq,q, rq) has the SS
property.

Proof. Assume that (lq,q, rq) has the SS property, which implies that (lq,q, rq)
has the S property. Then, by Lemma 3.3 and taking into account that, for every
i ∈ {0, 1, . . . , h − 1}, the subtuple of q with indices from {i, i + 1} is of the form
(i, i+ 1) or (i+ 1, i), the result follows.

Assume now that (lq,q, rq) and (lq, rq) are both symmetric. Let i ∈ {0, 1, . . . , h−
1}. By the SIP, the subtuple j of (lq,q, rq) with indices from {i, i + 1} cannot have
two adjacent i’s. We next show that j cannot have two adjacent elements equal to
i+ 1 either. Assume it does. Since q only contains one index i+ 1 and lq and rq are
disjoint, we have either i+ 1 ∈ lq or i+ 1 ∈ rq. Suppose that i+ 1 ∈ rq (which implies
that i + 1 /∈ lq). The argument is analogous if i + 1 ∈ lq. By Lemma 3.4, i /∈ lq. Let
p be the smallest positive integer such that the entries in positions p and p + 1 in j
are i + 1. Note that p ≥ 2, since q contains one i and one i + 1. Also, the entry in
position p− 1 in the subtuple of rq with indices from {i, i+ 1} (which is the entry in
position p+1 in the subtuple j) is i+1. Because (lq, rq) is symmetric and i, i+1 /∈ lq,
by Lemma 3.3, the subtuple of rq with indices from {i, i + 1} is symmetric. Thus,
the (p − 1)th element counting from right to left in rq (and, therefore, in j) is i + 1.
Since, by Lemma 3.3, the subtuple j is also symmetric, we would get that the entry in
position p−1 in j is i+ 1, a contradiction. Thus, we have shown that, in the subtuple
j, the indices i and i+ 1 alternate. Since, by Lemma 3.3, the subtuple j is symmetric,
the first and last entry of j are equal and the result follows.

3.2. Admissible Tuples. Here we introduce the concept of admissible tuple
which will allow us to find a new canonical form under equivalence for symmetric
tuples of the form (lq,q, rq). This canonical form will be very useful in the construction
of symmetric linearizations based on FPR.

Definition 3.6. Let q be a permutation of {0, 1, . . . , h}, h ≥ 0. We say that
q is an admissible tuple relative to {0, 1, . . . , h} if the sequence of the lengths of the
strings in csf(q) is of the form (2, ..., 2, l+ 1), where l ≥ 0. We call l the index of q.

From now on, in order to make our statements clearer, we will associate to an
arbitrary permutation of {0, 1, . . . , h} the letter q and to an admissible tuple the letter
w.

Example 3.7. Here we give some examples of admissible index tuples.
8



• w1 = (6 : 7, 4 : 5, 0 : 3) is an admissible tuple with index 3 relative to
{0, . . . , 7}.

• w2 = (5 : 6, 3 : 4, 1 : 2, 0) is an admissible tuple with index 0 relative to
{0, . . . , 6}.

Note that if w is an admissible tuple with index l relative to {0, 1, ..., h}, then h
and l have the same parity.

In the next definition we construct an index tuple that, when appended to an
admissible tuple, produces a symmetric index tuple. We use the notation for the
reverse-complement of a tuple introduced in Definition 2.4.

Definition 3.8. (Symmetric complement) Let w be an admissible tuple with
index l relative to {0, 1, . . . , h}, h ≥ 0. We call the symmetric complement of w the
tuple rw defined as follows:

• rw = (h− 1, h− 3, ...., l + 3, l + 1, (0 : l)revc
), if l ≥ 1,

• rw = (h− 1, h− 3, ...., 1), if l = 0.
Example 3.9. The symmetric complements of the tuples w1 and w2 given in

Example 3.7 are

rw1 = (6, 4, 0 : 2, 0 : 1, 0) and rw2 = (5, 3, 1),

respectively.
We next show that, if w is an admissible index tuple and rw is the symmetric

complement of w, then (w, rw) is symmetric. We need the following auxiliary result.
Proposition 3.10. The reverse-complement of the string t = (0 : l), l ≥ 1, is

symmetric and satisfies the SIP.
Proof. Since trevc

is in column standard form, by Lemma 2.19, it satisfies the
SIP. The rest of the proof is by induction on l. If l = 1, the result holds trivially. Now
suppose that l > 1. Let ri = (0 : i), i = 0, . . . , l − 1, so that trevc = (rl−1, . . . , r0).
Note that (0 : l − 1)revc = (rl−2, . . . , r0). By the induction hypothesis,

(rl−2, . . . , r0) ∼ rev(rl−2, . . . , r0).

Then,

rev(trevc
) = (rev(rl−2, . . . , r0), rev(rl−1))
∼ (rl−2, . . . , r0, l − 1 :↓ 0)
∼ (rl−2, l − 1, rl−3, l − 2, . . . , r0, 1, 0) = trevc

,

where the last equivalence follows from the commutativity relations for indices.
Lemma 3.11. Let w be an admissible tuple with index l relative to {0, 1, . . . , h},

h ≥ 0. Let rw be the symmetric complement of w. Then, (w, rw) is symmetric and
satisfies the SIP. Moreover, rw is symmetric.

Proof. The fact that (w, rw) satisfies the SIP follows from the definition of rw and
Proposition 3.10. Also, by Proposition 3.10 and taking into account the commutativity
relations for indices, it follows that the tuple rw is symmetric.

Now we show that (w, rw) is symmetric. Assume that csf(w) = (Bs, . . . , B0),
where Bi, i = 0, . . . , s, are the strings of csf(w). We prove the result by induction on s.
If s = 0 the claim follows from Proposition 3.10 taking into account that (w, rw) is the
reverse complement of (0 : h+1). Now suppose that s > 0. Then, w′ = (Bs−1, . . . , B0)
is an admissible tuple. Let rw′ be the symmetric complement of w′. Note that
Bs = (h− 1 : h) and rw ∼ (rw′ , h− 1). Thus,

(w, rw) ∼ (h− 1, h,w′, rw′ , h− 1)
9



So, we have

rev(w, rw) ∼ (h− 1, rev(w′, rw′), h, h− 1)
∼ (h− 1,w′, rw′ , h, h− 1)
∼ (h− 1, h,w′, rw′ , h− 1)
∼ (w, rw),

where the second equivalence follows from the induction hypothesis and the third
equivalence follows because the largest index in (w′, rw′) is h − 2 and, therefore, h
commutes with any index in (w′, rw′).

Remark 3.12. Note that, if w is an admissible tuple with indices from {0, 1, ..., h},
h < k, and rw is the corresponding symmetric complement, then (−k + w,−k + rw)
and −k + rw are symmetric.

3.3. Reduction to the Admissible Case. In this section we first prove that
every symmetric index tuple of the form (lq,q, rq) satisfying the SIP and such that
(lq, rq) is symmetric is equivalent to an index tuple of the form (rev(t), l∗q ,q, r

∗
q , t)

with l∗q and r∗q disjoint. Then we show that (l∗q ,q, r
∗
q) is equivalent to an index tuple

of the form (rev(t′),w, rw, t′), where w is an admissible tuple and rw is the associated
symmetric complement.

Lemma 3.13. Let q be a permutation of {0, 1, . . . , h}, h ≥ 0, and lq, rq be tuples
with indices from {0, 1, ..., h − 1} such that (lq,q, rq) satisfies the SIP. Suppose that
(lq,q, rq) and (lq, rq) are symmetric. Then, there exist unique (up to equivalence)
index tuples t, l∗q , r∗q , with indices from {0, . . . , h−1}, such that l∗q and r∗q are disjoint
and

(lq,q, rq) ∼ (rev(t), l∗q ,q, r
∗
q , t). (3.1)

Moreover,

lq ∼ (rev(t), l∗q) rq ∼ (r∗q , t), (3.2)

and (l∗q ,q, r
∗
q) and (l∗q , r

∗
q) are symmetric.

Proof. Assume that lq and rq are not disjoint, otherwise the existence claim follows
with t = ∅, l∗q = lq, and r∗q = rq. Let lq = (i1, l′q) for some index i1 and some index
tuple l′q. Then, because (lq,q, rq) is symmetric, we have (lq,q, rq) ∼ (i1, l′q, j, i1), for
some tuple j. Therefore, if i1 /∈ rq, then j ∼ (q′, rq), where q′ is the subtuple obtained
from q by deleting the index i1, and i1 commutes with rq. Repeating this argument,
we get that any index in lq on the left of the first index in both lq and rq, say j, should
commute with j. Thus, since lq and rq are not disjoint, we can commute the indices
in lq in order to have in the first position on the left an index in both lq and rq. So,
assume that i1 ∈ rq. Moreover, because (lq,q, rq) is symmetric, we have rq ∼ (r′q, i1)
for some index tuple r′q. Thus,

(lq,q, rq) ∼ (i1, l′q,q, r
′
q, i1).

Clearly, (l′q,q, r
′
q) and (l′q, r

′
q) are symmetric. Applying this argument inductively, we

get a tuple of the claimed form. By Lemma 2.14, (3.2) follows. By (3.1), (3.2) and
Lemma 3.3, (l∗q ,q, r

∗
q) and (l∗q , r

∗
q) are symmetric.

Finally, we prove the uniqueness of t, l∗q , r∗q . Suppose that (lq,q, rq) is equivalent
to another tuple (rev(t′′), l′′q ,q, r

′′
q , t
′′), where l′′q and r′′q are disjoint. By Lemma 2.14,
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rq ∼ (r′′q , t
′′) ∼ (r∗q , t). Analogously, lq ∼ (rev(t′′), l′′q ) ∼ (rev(t), l∗q). Since l∗q and r∗q

(resp. l′′q and r′′q ) are disjoint, it follows that the indices in t (resp. t′′) are precisely
those indices, counting multiplicities, that occur in both lq and rq. Thus, t′′ and t
have the same indices. Because (r′′q , t

′′) ∼ (r∗q , t), by Proposition 2.12, t′′ ∼ t and
r′′q ∼ r∗q . Similarly, it can be deduced that l′′q ∼ l∗q .

Example 3.14. Let q = (6, 3 : 5, 2, 0 : 1), lq = (3 : 5, 1 : 2, 0 : 1) and rq = (3 :
4, 2 : 3, 0 : 1). It is easy to check that (lq,q, rq) and (lq, rq) are both symmetric index
tuples. Note that lq and rq are not disjoint. We have

lq ∼ ((3), (4 : 5, 1 : 2, 0 : 1)) and rq ∼ ((3 : 4, 2, 0 : 1), (3)).

Then,

(4 : 5, 1 : 2, 0 : 1) ∼ ((4), (5, 1 : 2, 0 : 1)) and (3 : 4, 2, 0 : 1) ∼ ((3, 2, 0 : 1), (4)).

Also,

(5, 1 : 2, 0 : 1) ∼ ((1), (5, 2, 0 : 1)) and (3, 2, 0 : 1) ∼ ((3, 2, 0), (1)).

After two more steps, we conclude that

lq ∼ ((3, 4, 1, 2, 0), (5, 1)) and rq ∼ ((3), (0, 2, 1, 4, 3)).

Thus, (3.1) holds with t = (0, 2, 1, 4, 3), l∗q = (5, 1), and r∗q = (3).
In the previous lemma we expressed the tuple (lq,q, rq) in the form (rev(t), l∗q , q,

r∗q , t) with l∗q and r∗q disjoint. Next we find an admissible tuple w such that (l∗q , q, r
∗
q) ∼

(rev(t′),w, rw, t′), where rw is the symmetric complement of w.
Lemma 3.15. Let q be a permutation of {0, 1, . . . , h}, h ≥ 0, and lq, rq be disjoint

tuples with indices from {0, ..., h − 1}. Suppose that (lq,q, rq) is a symmetric tuple
satisfying the SIP and (lq, rq) is symmetric. Then, there exist an admissible tuple w
relative to {0, 1, ..., h} and an index tuple t with indices from {0, . . . , h− 1} such that

(lq,q, rq) ∼ (rev(t),w, rw, t) (3.3)

and

(lq, rq) ∼ (rev(t), rw, t), (3.4)

where rw is the symmetric complement of w.
Proof. In order to make the proof clearer, we assume h ≥ 2. For h < 2 the

result can be easily checked. The proof is by induction on the number of strings
in csf(q). Let csf(q) = (Bs, ..., B1, B0), where Bi, i = 0, 1, .., s, are the strings of
csf(q). Assume that s = 0, that is, csf(q) has only one string. Then, q = (0 : h),
which is an admissible tuple. Note that, because of the SIP, lq = ∅. Let r′q be the
symmetric complement of q. By Lemma 3.11, (q, r′q) satisfies the SIP, is symmetric,
and r′q is symmetric. We now show that rq ∼ r′q, which implies the result. By Lemma
3.5, (q, rq) and (q, r′q) satisfy the SS property. By Proposition 2.12, it is enough to
show that for any 0 ≤ i < h, the subtuples of rq and r′q with indices from {i, i+1} are
the same. Note that in both tuples the first and last indices are equal to i. Because of
the SIP, h− 1 occurs exactly once in rq and r′q. Then, h− 2 occurs exactly twice. In
general, h− k occurs exactly k times in rq and r′q. Thus, the claimed subtuples of rq

and r′q with indices from {i, i+ 1} coincide for each i, which implies, by Proposition
2.12, that rq ∼ r′q.
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Assume now that s > 0, that is, csf(q) has more than one string. Note that,
by Lemma 3.4, lq and rq commute. In the rest of the proof we use some notation
introduced in Subsection 2.1.

Case 1: Suppose that q = (h :↓ 0). Then, by Lemma 3.5, the subtuple of (lq,q, rq)
with indices from {h − 1, h} must be of the form (h − 1, h, h − 1), since (h, h − 1) is
a subtuple of q. Thus, h− 1 ∈ lq. Note that, because of the SIP, lq has at most one
index equal to h − 1. Applying Lemma 3.5 to the subtuple of (lq,q, rq) with indices
from {h−2, h−1}, we deduce that the subtuple of lq with indices from {h−2, h−1} is
(h−2, h−1, h−2). By repeating this argument we conclude that lq ∼ (l′q, h−1 :↓ 0),
for some tuple l′q ⊂ {0, . . . , h− 2}. Since rq and lq are disjoint and have indices from
{0, . . . , h − 1}, we deduce that rq = ∅. Because lq = (lq, rq) is symmetric, it follows
that

lq ∼ (0 : h− 2, l′′q , h− 1 :↓ 0),

for some symmetric tuple l′′q ⊂ {0, . . . , h−3}. Note that, because of the SIP, h−1, h−
2 /∈ l′′q . Therefore,

(lq,q, rq) ∼ (0 : h− 2, l′′q , h− 1 :↓ 0, h :↓ 0)

∼ (0 : h,
(
l′′q , h− 2 :↓ 0

)
, h− 1 :↓ 0).

Because (lq,q, rq) is symmetric, so is (l′′q , h − 2 :↓ 0). Thus, the tuple (l′′q , h − 2 :↓ 0)
satisfies the conditions of the theorem. By the induction hypothesis, there exist an
admissible tuple w∗ relative to {0, 1, ..., h − 2} and an index tuple t∗ with indices
from {0, 1, ..., h− 3} such that (l′′q , h− 2 :↓ 0) ∼ (rev(t∗),w∗, r∗w, t

∗), where r∗w is the
symmetric complement of w∗ and l′′q ∼ (rev(t∗), r∗w, t

∗). Then,

(lq,q, rq) ∼ (0 : h, rev(t∗),w∗, r∗w, t
∗, h− 1 :↓ 0)

∼ (0 : h− 2, rev(t∗), (h− 1 : h,w∗), (r∗w, h− 1), t∗, h− 2 :↓ 0),

and (3.3) holds with t = (t∗, h − 2 :↓ 0), rw = (h − 1, r∗w) and w = (h − 1 : h,w∗).
Condition (3.4) can be easily verified.

Case 2: Suppose that Bs = (h) and |Bi| > 1 for some i = 0, . . . , s− 1. Let j < s
be the largest integer such that |Bs| = · · · = |Bs−j | = 1. Then,

csf(q) = (h :↓ h− j, h− r : h− j − 1, Bs−j−2, ..., B0),

for some r > j + 1. By Lemma 3.5, using an argument similar to that in Case 1,
lq ∼ (l′q, h− 1 :↓ h− j − 1), for some tuple l′q ⊂ {0, . . . , h− 2}. Note that, because of
the SIP, h−1 /∈ l′q. Since (lq, rq) is symmetric and, by Lemma 3.4, lq and rq commute,
we have that lq is also symmetric, which implies

lq ∼ (h− j − 1 : h− 2, l′′q , h− 1 :↓ h− j − 1),

for some symmetric tuple l′′q ⊂ {0, . . . , h−3}. Note that, by the SIP, h−1 /∈ l′′q . Also,
for j > 0, again by the SIP, h− 2 /∈ l′′q ; when j = 0 the same conclusion follows from
the symmetry of lq. Therefore,

(lq ,q, rq) ∼ (h− j − 1 : h− 2, l′′q , h− 1 :↓ h− j − 1,q, rq)

∼ (h− j − 1 : h,
`
l′′q , h− 2 :↓ h− j − 1, B′s−j−1, Bs−j−2, ..., B0, rq

´
, h− 1 :↓ h− j − 1),
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where B′s−j−1 := Bs−j−1[1]. Observe that, since lq and rq commute, so do (h −
1 :↓ h − j − 1) and rq. As lq and rq are disjoint and h − 1 ∈ lq, by Lemma 3.4,
h − 2, h − 1 /∈ rq. Thus, the tuple

(
l′′q , h− 2 :↓ h− j − 1, B′s−j−1, Bs−j−2, ..., B0, rq

)
satisfies the conditions of the theorem. By the induction hypothesis, there exist an
admissible tuple w∗ relative to {0, 1, ..., h−2} and an index tuple t∗ with indices from
{0, 1, ..., h− 3} such that(

l′′q , h− 2 :↓ h− j − 1, B′s−j−1, Bs−j−2, ..., B0, rq

)
∼ (rev(t∗),w∗, r∗w, t

∗)

and (l′′q , rq) ∼ (rev(t∗), r∗w, t
∗), where r∗w is the symmetric complement of w∗. Then,

(lq,q, rq) ∼ (h− j − 1 : h, rev(t∗),w∗, r∗w, t∗, h− 1 :↓ h− j − 1)

∼ (h− j − 1 : h− 2, rev(t∗), (h− 1 : h,w∗), (r∗w, h− 1), t∗, h− 2 :↓ h− j − 1),

and (3.3) holds with t = (t∗, h−2 :↓ h−j−1), rw = (h−1, r∗w) and w = (h−1 : h,w∗).
Condition (3.4) can be easily verified.

Case 3: Suppose that Bs = (h − r : h), for some r ≥ 1. By Lemma 3.5, using
an argument similar to that in Case 1, rq ∼ (h − r : h − 1, r′q) for some tuple
r′q ⊂ {0, . . . , h − 2}. Because (lq, rq) is symmetric and lq and rq commute, the index
tuple rq is symmetric, which implies

rq ∼ (h− r : h− 1, r
′′

q , h− 2 :↓ h− r),

for some symmetric tuple r′′q ⊂ {0, . . . , h−3}. Note that, because of the SIP, h−1 /∈ r′′q .
For r > 1, again by the SIP, h − 2 /∈ r′′q ; for r = 1 the same conclusion follows from
the symmetry of rq. Therefore,

(lq,q, rq) ∼ (lq, h− r : h,Bs−1, h− r : h− 2, Bs−2, ..., B0, h− 1, r′q)

∼ (h− r : h, lq, (Bs−1, h− r : h− 2, Bs−2, ..., B0), r′′q , h− 1 :↓ h− r).

Observe that, since lq and rq commute, so do (h−r : h−1) and lq. Also, since h−1 is
not in lq, h commutes with lq. As lq and rq are disjoint and h−1 ∈ rq, by Lemma 3.4,
h − 2, h − 1 /∈ lq. Thus, by the induction hypothesis, there exist an admissible tuple
w∗ relative to {0, 1, ..., h− 2} and an index tuple t∗ with indices from {0, 1, ..., h− 3}
such that

(lq, (Bs−1, h− r : h− 2, Bs−2, ..., B0), r′′q ) ∼ (rev(t∗),w∗, r∗w, t
∗)

and (lq, r′′q ) ∼ (rev(t∗), r∗w, t
∗), where r∗w is the symmetric complement of w∗. Then,

(lq,q, rq) ∼ (h− r : h, rev(t∗),w∗, r∗w, t
∗, h− 1 :↓ h− r)

∼ (h− r : h− 2, rev(t∗), (h− 1 : h,w∗), (r∗w, h− 1), t∗, h− 2 :↓ h− r),

and (3.3) holds with t = (t∗, h− 2 :↓ h− r), rw = (h− 1, r∗w) and w = (h− 1 : h,w∗).
Condition (3.4) can be easily verified.

Example 3.16. Consider the tuples lq,q, rq given in Example 3.14. We showed
that

(lq,q, rq) ∼ ((rev(0, 2, 1, 4, 3), (5, 1), (6, 3 : 5, 2, 0 : 1), 3, (0, 2, 1, 4, 3)).

We also have

((5, 1), (6, 3 : 5, 2, 0 : 1), 3) ∼ ((5 : 6, 3 : 5, 1 : 2, 0 : 1), 3) ∼ ((5 : 6, 3 : 4, 1 : 2, 0), (5, 1, 3)).

13



Thus,

(lq,q, rq) ∼ ((rev(0, 2, 1, 4, 3), (5 : 6, 3 : 4, 1 : 2, 0), (5, 1, 3), (0, 2, 1, 4, 3)).

Note that (5 : 6, 3 : 4, 1 : 2, 0) is an admissible index tuple and (5, 3, 1) is the corre-
sponding symmetric complement.

The next theorem is the main result of this section and provides a full character-
ization of the symmetric tuples (lq,q, rq) satisfying the SIP, with (lq, rq) symmetric,
in terms of admissible tuples.

Theorem 3.17. Let q be a permutation of {0, 1, . . . , h}, h ≥ 0, and lq, rq be index
tuples with indices from {0, 1, ..., h − 1} such that (lq,q, rq) satisfies the SIP. Then,
(lq,q, rq) is a symmetric tuple, with (lq, rq) symmetric, if and only if there exist an
admissible tuple w relative to {0, 1, .., h} and a tuple t with indices from {0, 1, ..., h−1}
such that (lq,q, rq) ∼ (rev(t),w, rw, t) and (lq, rq) ∼ (rev(t), rw, t), where rw is the
symmetric complement of w.

Proof. Assume that (lq,q, rq) is a symmetric tuple, with (lq, rq) symmetric. Then,
the claim follows from Lemmas 3.13 and 3.15.

The converse follows from the fact that, by Lemma 3.11, (w, rw) and rw are
symmetric.

Taking into account the previous theorem, to obtain all possible symmetric tuples
(lq,q, rq) satisfying the SIP and such that (lq, rq) is symmetric, it is enough to consider
all admissible tuples w and all tuples t such that (rev(t),w, rw, t) satisfies the SIP,
where rw is the symmetric complement of w. Next we characterize all tuples t with
such property.

Definition 3.18. Let w be an admissible tuple relative to {0, 1, . . . , h}, h ≥ 0,
and rw be the symmetric complement of w. We say that a tuple t with indices from
{0, . . . , h − 1} is w-compatible if, for any index i occurring in both rw and t, the
subtuple of t with indices from {i, i+ 1} starts with i+ 1.

Lemma 3.19. Let w be an admissible tuple relative to {0, . . . , h}, h ≥ 0. Let rw

be the symmetric complement of w and t be a tuple with indices from {0, . . . , h− 1}.
Then, (rev(t),w, rw, t) satisfies the SIP if and only if

i) t satisfies the SIP
ii) t is w-compatible.

Proof. Assume that (rev(t),w, rw, t) satisfies the SIP. By Remark 2.17, condition
i) holds. Condition ii) follows because, by definition of rw, for any index i in rw, the
subtuple of rw with indices from {i, i+ 1} finishes with i.

Assume that t satisfies the SIP and is w-compatible. Since (w, rw) and t satisfy
the SIP, it is enough to check that between any two indices equal to i, one appearing
in (w, rw) and the other in t, there is an index i + 1. But this follows from ii) if i is
in rw. If i < h is in w but not in rw then i+ 1 is in rw, by definition of rw, and the
result follows.

Note that if (rev(t),w, rw, t) satisfies the SIP, because h − 1 is in rw and h is
neither in t nor in rw, then h− 1 is not in t.

The next example describes, up to equivalence, all tuples t such that (rev(t),w,
rw, t) satisfies the SIP, for a given admissible tuple w.

Example 3.20. Consider the admissible tuple w = (5 : 6, 3 : 4, 0 : 2) and its
symmetric complement rw = (5, 3, 0, 1, 0). We describe, up to equivalence, the tuples
t with indices from {0, . . . , 5} such that (rev(t),w, rw, t) satisfies the SIP. Note that
5 /∈ t.
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Suppose that 4 ∈ t. Then, because 5 /∈ t and t satisfies the SIP, 4 occurs exactly
once. Thus the subtuple of t with indices from {4} is of the form

(4).

Suppose that 3 ∈ t. Then, because 3 ∈ rw, by Lemma 3.19, 4 ∈ t and occurs
before the first occurrence of 3. Thus, the subtuple of t with indices from {3, 4} is of
the form

(4, 3).

Suppose that 2 ∈ t. If 3 ∈ t, by the previous case, the subtuple of t with indices
from {2, 3, 4} has one of the following forms:

(2, 4, 3), (2, 4, 3, 2), (4, 3, 2).

If 3 /∈ t, the subtuple with indices from {2, 3, 4} has one of the following forms:

(2), (2, 4).

Suppose that 1 ∈ t. Then, by Lemma 3.19, 2 ∈ t occurs before the first occurrence
of 1. Thus, the subtuple of t with indices from {1, 2, 3, 4} has one of the following
forms:

(2, 1, 4, 3), (2, 1, 4, 3, 2), (2, 1, 4, 3, 2, 1),
(2, 4, 3, 2, 1), (4, 3, 2, 1), (2, 1), (2, 1, 4).

Finally, suppose that 0 ∈ t. Then, by Lemma 3.19, 1 ∈ t occurs before the first
occurrence of 0. Thus, the subtuple of t with indices from {0, 1, 2, 3, 4} has one of the
following forms:

(2, 1, 0, 4, 3), (2, 1, 0, 4, 3, 2), (2, 1, 0, 4, 3, 2, 1),
(2, 1, 4, 3, 2, 1, 0), (2, 1, 0, 4, 3, 2, 1, 0), (2, 4, 3, 2, 1, 0),
(4, 3, 2, 1, 0), (2, 1, 0), (2, 1, 4, 0).

The twenty three displayed tuples are all possible tuples t, up to equivalence, such that
(rev(t),w, rw, t) satisfies the SIP.

4. Fiedler pencils with repetitions . Let P (λ) be an n×n matrix polynomial
of degree k as in (1.1). The family of Fiedler pencils with repetition (FPR) associated
with P (λ) was defined in [25]. In this paper, we describe the FPR that are symmetric
when P (λ) is. Before introducing this definition, we consider the elementary matrices
used in their construction.

4.1. The matrices Mi. We start by defining the matrices Mi(P ), depending on
the coefficients of the matrix polynomial P (λ), which appear as factors of the coeffi-
cients of a FPR. These matrices Mi(P ) are presented as block matrices partitioned
into k×k blocks of size n×n. Unless the context makes it ambiguous, we will denote
these matrices by Mi instead of Mi(P ).

Define

M0 :=
[
I(k−1)n 0

0 −A0

]
, M−k :=

[
Ak 0
0 I(k−1)n

]
,
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and

Mi :=


I(k−i−1)n 0 0 0

0 −Ai In 0
0 In 0 0
0 0 0 I(i−1)n

 , i = 1, . . . , k − 1. (4.1)

The matrices Mi in (4.1) are always invertible and their inverses are given by

M−i := M−1
i =


I(k−i−1)n 0 0 0

0 0 In 0
0 In Ai 0
0 0 0 I(i−1)n

 .
The matrices M0 and M−k are invertible if and only if A0 and Ak, respectively,

are.
Let t = (i1, i2, . . . , ir) be an index tuple with indices from {0, 1, ..., k − 1,−1

, ...,−k}. We denote Mt := Mi1Mi2 · · ·Mir . If t is empty, then Mt = Ikn. We also use
the following notation: revtr(Mt) = MT

i1
· · ·MT

ir
. Note that, if t is symmetric, then

MT
t = revtr(Mt).

In [25] it was proven that if t is an index tuple from {0, ..., k−1} (resp. {−k, ...,−1})
satisfying the SIP then all the n×n blocks in Mt are of the form 0, I and −Ai (resp.
0, I and Ai). It is also noteworthy that, when performing the products in Mt, no
cancellations occur.

Remark 4.1. It is easy to check that the commutativity relations

Mi(P )Mj(P ) = Mj(P )Mi(P ), for any P (λ), (4.2)

hold if and only if ||i| − |j|| 6= 1.
Lemma 4.2. Let t1 and t2 be two index tuples with the same indices from either

{0, 1, . . . , k − 1} or {−k, . . . ,−1}. Assume that t1 and t2 satisfy the SIP. Then,
i) If t1 is equivalent to t2 then Mt1(P ) = Mt2(P ) for any matrix polynomial
P (λ) of the form (1.1);

ii) If Mt1(P ) = Mt2(P ) for some matrix polynomial P (λ) of the form (1.1) with
A0 nonsingular and Ai 6= −In, for i = 0, . . . , k, then t1 is equivalent to t2.

Proof. We consider the case when t1 and t2 have indices from {0, 1, . . . , k − 1}.
The proof is similar if the indices are from {−k, . . . ,−1}.

By Remark 4.1, the matricesMi andMj commute for any matrix polynomial P (λ)
if and only if the indices i and j commute. Thus, if t1 ∼ t2, then Mt1(P ) = Mt2(P )
for any matrix polynomial P (λ) and i) follows.

Assume now that t1 and t2 are not equivalent in order to prove ii). Since t1 and
t2 satisfy the SIP, they are equivalent to tuples in column standard form, which also
satisfy the SIP. Let csf(t1) = (Bm1 , ..., B1, B0) and csf(t2) = (B̃m2 , ..., B̃1, B̃0). If
Bm1 and B̃m2 are distinct, let r = 0. Otherwise, let r be the largest positive integer
such that Bm1−i+1 = B̃m2−i+1, i = 1, . . . , r. Since t1 and t2 have the same indices,
we deduce that (Bm1−r, ..., B0) and (B̃m2−r, ..., B̃0) have the same indices as well.
By the SIP, the largest index in a tuple occurs exactly once, and, by definition of
column standard form, it appears in the first string (counting from left to right).
Thus, Bm1−r = (a : b) and B̃m2−r = (a′ : b) for some a, a′, and b with a 6= a′. Since
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any index in (Bm1−r−1, . . . , B0) is smaller than b, we have that MBm1−r−1,...,B0(P ) is
of the form [

In(k−b) 0
0 ?

]
, (4.3)

where ? denotes unspecified entries. On the other hand, a calculation shows that

MBm1−r
(P ) =



In(k−b−1) 0 0 0
0 −Ab ? 0
0 −Ab−1 ? 0
...

...
...

...
0 −Aa ? 0
0 In ? 0
0 0 0 ?


(4.4)

if a 6= 0, and

MBm1−r
(P ) =



In(k−b−1) 0 0
0 −Ab ?
0 −Ab−1 ?
...

...
...

0 −A1 ?
0 −A0 ?


, (4.5)

if a = 0. Therefore, taking into account (4.3) and the form of MBm1−r
(P ), it follows

that the matrix M1 := MBm1−r,...,B0(P ) is still of the form (4.4) if a 6= 0 and of the
form (4.5) if a = 0. A similar form can be obtained for M2 := MB̃m2−r,...,B̃0

(P ).
Since a 6= a′, we deduce that MBm1−r,...,B0(P ) 6= MB̃m2−r,..., ˜,B0

(P ) as long as P (λ)
is a matrix polynomial of the form (1.1) with A0 6= 0 and all its coefficient matrices
different from −In.

Clearly, if r = 0, we have that Mt1(P ) 6= Mt2(P ) for some matrix polyno-
mial P (λ). Now suppose that r > 0. If P (λ) is such that A0 is nonsingular and
MBm1−r,...,B0(P ) 6= MB̃m2−r,... ˜,B0

(P ) then, sinceMBm1 ,...,Bm1−r+1(P )(= MB̃m2 ,...,B̃m2−r+1
(P ))

is nonsingular, we have that Mt1(P ) 6= Mt2(P ) for that P (λ). Thus, in any case ii)
follows.

4.2. Definition of FPR. We now define the family of Fiedler pencils with
repetition, from which we construct the new structured linearizations.

Definition 4.3. (FPR). Let P (λ) be a matrix polynomial of degree k, as in
(1.1). Let h ∈ {0, 1, . . . , k − 1} . Let q and z be permutations of {0, 1, . . . , h} and
{−k,−k + 1, . . . ,−h− 1} , respectively. Let lq and rq be index tuples from
{0, 1, . . . , h− 1} such that (lq,q, rq) satisfies the SIP. Let lz and rz be index tuples
from {−k,−k + 1, . . . , − h− 2} such that (lz, z, rz) satisfies the SIP. Then, the pencil

L(λ) = λMlq,lz,z,rz,rq
−Mlq,lz,q,rz,rq

(4.6)

is called a Fiedler pencil with repetition (FPR) associated with P (λ).
When convenient and in order to make explicit the dependence of L(λ) on the

matrix polynomial P (λ), for fixed tuples lq,q, rq, lz, z, rz, we denote by LP (λ) the
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pencil of the form (4.6), with the blocks Ai being the coefficients of P (λ), where P (λ)
is an arbitrary matrix polynomial of degree k.

We observe that Mlq and Mrq
commute with each factor in MlzMzMrz

. Analo-
gously, Mlz and Mrz commute with each factor in MlqMqMrq .

A FPR as in (4.6) can be expressed as Mlq,lz (λMz−Mq)Mrq,rz . The pencil λMz−
Mq is a generalized Fiedler pencil [1, 2], which is known to be a strong linearization
of P (λ) [5]. Therefore, we have the following result.

Lemma 4.4. Let P (λ) be a matrix polynomial and LP (λ) be a FPR as in (4.6).
Then, LP (λ) is a strong linearization of P (λ), unless one of the following conditions
holds:

i) 0 is an index in lq or rq and A0 is singular;
ii) −k is an index in lz or rz and Ak is singular.

Thus, in order to obtain the symmetric linearizations from FPR we will assume
that none of the conditions i) and ii) in Lemma 4.5 hold.

Definition 4.5. Let P (λ) be a matrix polynomial of degree k, as in (1.1), and
LP (λ) be a FPR as in (4.6). We say that LP (λ) satisfies the nonsingularity conditions
if neither of the conditions i) and ii) in Lemma 4.5 holds.

The blocks that appear in the coefficients of the pencil (4.6) are of the form 0,
In, and −Ai for some i’s [25].

We finish this section by observing that in [25] the coefficients of the FPR are
products of the matrices RMiR, instead of Mi, where R is the nk × nk matrix

R :=

 0 In

. .
.

In 0

 . (4.7)

Therefore, if the linearizations in Definition 4.4 are multiplied on the left and on the
right by the matrix R, the linearizations constructed in [25] are obtained.

5. Symmetric Linearizations. In Theorem 5.3 in this section we characterize
all FPR that are symmetric when the matrix polynomial P (λ) of degree k is, which
we prove to be equivalent to the characterization of all FPR that are block-symmetric
for every matrix polynomial P (λ).

We observe that an analog of Theorem 5.3 holds in the Hermitian case. Namely,
if P (λ) is a Hermitian matrix polynomial of degree k of the form (1.1), then the pencil
P (λ) given in (5.1) is a Hermitian strong linearization of P (λ), provided that LP (λ)
satisfies the nonsingularity conditions. The proof of this claim is similar to the one of
Theorem 5.3, noting that a result analog to Lemma 5.2 holds in the Hermitian case,
that is, if t is a tuple as in the lemma, then Mt is Hermitian for any Hermitian P (λ)
of degree k if and only if t is symmetric.

Recall that a matrix polynomial P (λ) as in (1.1) is symmetric if AT
i = Ai, i =

0, 1, . . . , k. Thus, when P (λ) is symmetric, the matrices Mi and M−i defined in
Section 4 are symmetric for i = 0, 1, . . . , k.

We next present a lemma which is crucial in the proof of our main result. Recall
the notation introduced in Section 4.

Lemma 5.1. Let t be a tuple satisfying the SIP with indices from either {0, 1, . . . , k−
1} or {−k, . . . ,−1}. Then, Mt(P ) is symmetric for any symmetric matrix polynomial
P (λ) of degree k if and only if t is symmetric.

Proof. Assume that t is symmetric and P (λ) is symmetric. By Lemma 4.2,
Mt(P ) = Mrev(t)(P ), which implies MT

t (P ) = revtr(Mrev(t)(P )) = revtr(Mt(P )) =
Mt(P ), where the last equality follows from the fact that P (λ) is symmetric.
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Assume now that Mt(P ) is symmetric for any symmetric matrix polynomial P (λ).
Then, Mt(P ) = MT

t (P ) = revtr(Mrev(t)(P )) = Mrev(t)(P ). Again, by Lemma 4.2
again, the result follows.

We now state our main result. It characterizes all the FPR that are symmetric
when P (λ) is.

Theorem 5.2. A pencil LP (λ) of the form (4.6) is symmetric for any symmetric
matrix polynomial P (λ) as in (1.1) if and only if it can be expressed as

LP (λ) = λMrev(tw),rev(tz),z,rz,tz,rw,tw
−Mrev(tw),rev(tz),w,rz,tz,rw,tw

, (5.1)

where w and w′ are admissible tuples relative to {0, . . . , h} and {0, . . . , k − h − 1},
respectively, rw, rw′ are the symmetric complements of w and w′, respectively, tw ⊂
{0, . . . , h − 1} and tw′ ⊂ {0, . . . , k − h − 2} are index tuples satisfying the SIP and
such that tw is w-compatible and tw′ is w′-compatible, z = −k + w′, rz = −k + rw′

and tz = −k + tw′ .
Proof. Consider the FPR LP (λ) given in (4.6), associated with the matrix poly-

nomial P (λ), as in (1.1). Then, LP (λ) is symmetric if and only if Mlq,lz,z,rz,rq
and

Mlq,lz,q,rz,rq are symmetric or, equivalently, if the tuples

Mlq,rq , Mlz,z,rz
, Mlz,rz

, Mlq,q,rq

are symmetric. Taking into account Lemma 5.2, it follows that LP (λ) is symmetric
for any symmetric P (λ) if and only if (lq,q, rq), (lq, rq), (lz, z, rz), and (lz, rz) are
symmetric. Now the result follows from Remark 2.17, Theorem 3.17 and Lemma
3.19.

Taking into account Theorem 5.3 and Lemma 4.5, we obtain the next corollary,
which gives symmetric strong linearizations of symmetric matrix polynomials.

Corollary 5.3. Let P (λ) be a symmetric matrix polynomial as in (1.1) and
LP (λ) be a pencil of the form (5.1), as described in Theorem 5.3. If LP (λ) satisfies
the nonsingularity conditions then LP (λ) is a symmetric strong linearization of P (λ).

Remark 5.4. When k is even and both coefficients A0 and Ak of P (λ) are
singular, no pencil LP (λ) given in Theorem 5.3 satisfies the nonsingularity conditions,
since h and k−h−1 cannot be both even and, therefore, either w or w′ has odd index,
which implies that either −k is in rz or 0 is in rw. Thus, in this case the theorem does
not give symmetric FPR that are strong linearizations of P (λ). If k is even and not
both A0 and Ak are singular, Theorem 5.3 produces symmetric strong linearizations.
In fact, if A0 is singular and Ak is nonsingular, by choosing h even, w of index 0
and tw not containing 0, the pencil (5.1) satisfies the nonsingularity conditions. If
A0 is nonsingular and Ak is singular, by choosing h odd (so that k − h− 1 is even),
w′ of index 0 and tw′ not containing 0, the pencil (5.1) satisfies the nonsingularity
conditions. When k is odd Theorem 5.3 produces symmetric strong linearizations for
any symmetric P (λ) of degree k.

We now give an alternative statement to Theorem 5.3 in terms of block-symmetry,
which will be a key result for the construction of skew-symmetric and T-alternating
strong linearizations in the second part of this paper. We first recall the definition of
block-symmetry.

Let A ∈Mnk be a k× k block-matrix consisting of block entries Aij of size n×n.
We say that A is block-symmetric if Aij = Aji for all i, j = 1, . . . , k.

Lemma 5.5. Let s be a tuple satisfying the SIP with indices from either {0, 1, . . . , k−
1} or {−k, . . . ,−1}. Then, Ms(P ) is symmetric for any symmetric P (λ) of degree k
if and only if Ms(P ) is block-symmetric for any P (λ) of degree k.
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Proof. The claim can be easily verified taking into account that, since s satisfies
the SIP, all blocks in Ms(P ) are of the form 0, In, or ±Ai.

We then have the following consequence of Theorem 5.3 and Lemma 5.1, which
characterizes all FPR that are block-symmetric for any P (λ).

Corollary 5.6. A pencil LP (λ) of the form (4.6) is block-symmetric for any
matrix polynomial P (λ) as in (1.1) if and only if it can be expressed as a pencil of the
form (5.1) as described in Theorem 5.3.

We observe that if P (λ) is a matrix polynomial whose coefficient matrices are in
an arbitrary ring with a multiplicative identity element, not necessarily Fn×n, with F
a field, and we define a FPR as before but now considering the blocks of the matrices
Mi in such a ring, the “if” claim in the previous corollary, as well as in Theorem 5.3,
will hold. In fact, all the results in Sections 2 and 3 are on index tuples and, therefore,
are independent of P (λ). Also, the ”if” claim in Lemma 5.2 holds when we consider
such a ring, as claim i) in Lemma 4.2 holds.

Next we show that the pencils in the standard basis for DL(P ) are block-symmetric
FPR. This result was proven in [25, Corollary 1]; however, since the notation and ap-
proach used in that paper is slightly different than ours, we include here a description
for clarification.

Suppose that P (λ) is given by (1.1). For j = 1, . . . , k, let

Lj(P ) =


0 0 · · · Ak

0 . .
.

Ak−1

... . .
.

. .
. ...

Ak Ak−1 . . . Ak−j+1

 , Uj(P ) =


Aj−1 . . . A1 A0

... . .
.

. .
. ...

A1 . .
.

0
A0 · · · 0 0


Let Xm := Lm(P ) ⊕ −Uk−m(P ), for m = 0, . . . , k. Then, the so-called standard

basis for DL(P ) is {D1(λ, P ), . . . , Dk(λ, P )}, with

Dm(λ, P ) = λXm −Xm−1, for m = 1, . . . , k.

Note that Dm(λ, P ) is the pencil in DL(P ) with ansatz vector em, where ei ∈ Fk

denotes the ith vector of the standard basis for Fk.
Lemma 5.7. Let P (λ) be a matrix polynomial of degree k as in (1.1). Then, the

pencil Dm(λ, P ), m = 1, . . . , k, is the FPR of the form (5.1), where w and k + z are
the admissible tuples of index 0 or 1 associated with k −m and m − 1, respectively,
rw and k + rz are the symmetric complements of w and k + z, respectively, and

tw = rev

(
0 : k −m− 2, 0 : k −m− 4, . . . , 0 : k −m− 2

⌊
k −m

2

⌋)
,

k + tz = rev

(
0 : m− 3, 0 : m− 5, . . . , 0 : m− 1− 2

⌊
m− 1

2

⌋)
.

Proof. A computation shows that

Dm(λ, P ) = λM(0:k−m)revc
M−k+(0:m)revc

−M(0:k−m+1)revc
M−k+(0:m−1)revc

.

Now the result follows from Lemma 4.2 and the fact that (rev(tw),w, rw, tw) ∼ (0 :
k−m+1)revc

, (rev(tw), rw, tw) ∼ (0 : k−m)revc
, (rev(tz), z, rz, tz) ∼ −k+(0 : m)revc

,
and (rev(tz), rz, tz) ∼ −k + (0 : m− 1)revc

.
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Table 5.1
Example 5.6

w rw tw

0 ∅ ∅
(0:1) (0) ∅

(1:2,0) (1) ∅, (0)
(2:3,0:1) (2, 0) ∅, (1), (1,0)

Table 5.2
Example 5.6

z rz tz

-4 ∅ ∅
(-4:-3) (-4) ∅

(-3:-2, -4) (-3) ∅ , (-4)
(-2:-1, -4:-3) (-2, -4) ∅, (-3), (-3, -4)

We finish this section with an application of Theorem 5.3.
Example 5.8. Let P (λ) be a symmetric matrix polynomial of degree k = 4. We

construct all possible symmetric strong linearizations of P (λ) in the family of FPR.
We assume that A0 (resp. Ak) is invertible if 0 is an index in (rw, tw) (resp. −k is
an index in (rz, tz)), so that each given pencil satisfies the nonsingularity conditions.
Tables 5.1 and 5.2 provide the necessary tuples to construct those pencils.

Thus, the appropriate combination of the tuples in Tables 5.1 and 5.2 produces,
in total, ten symmetric FPR. Note that these pencils are distinct if and only if A4 6= I
and A0 6= −I.

The first four linearizations L1(λ), L2(λ), L3(λ), and L4(λ) in our list are those
obtained by taking, respectively,

w = (0), tw = ∅, z = (−2 : −1,−4 : −3), tz = (−3,−4),
w = (0 : 1), tw = ∅, z = (−3 : −2,−4), tz = (−4),
w = (1 : 2, 0), tw = (0), z = (−4 : −3), tz = ∅,
w = (2 : 3, 0 : 1), tw = (1, 0), z = (−4), tz = ∅,

and are the pencils in the standard basis of DL(P ). Next we give the explicit expression
of the other pencils.

Next we give the explicit expression of these pencils. We first list the four lin-
earizations in the basis of DL(P ) given in [20].

• Let w = (0), tw = ∅, z = (−2 : −1,−4 : −3), tz = (−3). Then, we get

L5(λ) = λ


0 0 0 I
0 0 A4 A3

0 A4 A3 A2

I A3 A2 A1

−


0 0 I 0
0 A4 A3 0
I A3 A2 0
0 0 0 −A0

 .
• Let w = (0 : 1), tw = ∅, z = (−3 : −2,−4), tz = ∅. Then, we get

L6(λ) = λ


0 0 I 0
0 A4 A3 0
I A3 A2 0
0 0 0 −A0

−


0 I 0 0
I A3 0 0
0 0 −A1 −A0

0 0 −A0 0

 .
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• Let w = (1 : 2, 0), tw = ∅, z = (−4 : −3), tz = ∅. Then, we get

L7(λ) = λ


0 A4 0 0
A4 A3 0 0
0 0 −A1 I
0 0 I 0

−

A4 0 0 0
0 −A2 −A1 I
0 −A1 −A0 0
0 I 0 0

 .
• Let w = (2 : 3, 0 : 1), tw = (1), z = (−4), tz = ∅. Then, we get

L8(λ) = λ


A4 0 0 0
0 −A2 −A1 I
0 −A1 −A0 0
0 I 0 0

−

−A3 −A2 −A1 I
−A2 −A1 −A0 0
−A1 −A0 0 0
I 0 0 0

 .
• Let w = (0), tw = ∅, z = (−2 : −1,−4 : −3), tz = ∅. Then, we get

L9(λ) = λ


0 0 A4 0
0 0 0 I
A4 0 A3 A2

0 I A2 A1

−

A4 0 0 0
0 0 I 0
0 I A2 0
0 0 0 −A0

 .
• Let w = (2 : 3, 0 : 1), tw = ∅, z = (−4), tz = ∅. Then, we get

L10(λ) = λ


A4 0 0 0
0 −A2 I 0
0 I 0 0
0 0 0 −A0

−

−A3 −A2 I 0
−A2 −A1 0 −A0

I 0 0 0
0 −A0 0 0

 .
6. Conclusions. In this paper we have studied the Fiedler pencils with repeti-

tion which are symmetric whenever the matrix polynomial P (λ) is. We have charac-
terized all such pencils and have also given sufficient conditions for them to be strong
linearizations of P (λ). When the matrix polynomial P (λ) has degree k and the co-
efficients of the terms of degree 0 and k are nonsingular, our family is a nontrivial
extension of the standard basis of the k-dimensional vector space DL(P ) studied in
[15, 20]. It is still an open question the exact number of distinct pencils in our family.
However we observe that this number depends on the specific values of the coefficients
of the matrix polynomial P (λ). We finally note that our family contains symmetric
strong linearizations for symmetric singular matrix polynomials when k is odd. Note
that while for regular matrix polynomials P (λ) almost all pencils in DL(P ) are strong
linearizations of P (λ), there are no strong linearizations in DL(P ) for singular matrix
polynomials P (λ) [6].
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