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Abstract 

A rotation in a binary tree is a local restructuring that changes the tree into another tree. 
Rotations are useful in the design of  data structures. The rotation distance between a pair 
of  trees is the minimum number of  rotations needed to convert one tree into the other. 
In this paper we establish a tight bound of  2 n -  6 on the maximum rotation distance 
between two n-node trees using volumetric arguments in hyperbolic 3-space. Our proof 
also gives a tight bound on the minimum number of  tetrahedra needed to cover a 
polyhedron in  the worst case, and reveals connections among binary trees, triangulations, 
polyhedra, and hyperbolic geometry. 

I .  Inlroduclion 

A to/a/ion in a binary tree is a local restructuring of  
the tree that changes it into another tree. The/'oil/ion dis- 
lance between a pair of trees is the minimum number of  
rotations needed to convert one tree into the other. The 
problem addressed in this paper is: what is the maximum 
rotation distance between any pair of  n node binary trees? 
We show that for all n > l l  this distance is at most 2n - 6  
and that for an infinite set of  values of n this bound is 
tight. To our knowledge the only published work on this 
problem is by Culik and Wood [2], who defined the con- 
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cept and showed that the maximum rotation distance is at 
most 2 n - 2 .  Leighton (private communication) showed 
that there exist trees such that the rotation distance 
between them is 7 n / 4 -  O(1) 

Our interest in this problem stems from our attempt 
to solve "the dynamic optimality conjecture" about the 
performance of splaying [7]. Splaying is a heuristic for 
modifying the structure of  a binary.tree in such a way that 
accessing and updating the information in the tree is 
efficient. Although our solution to the problem of max- 
imum rotation distance did not resolve the conjecture 
about splaying, the results in this paper are interesting for 
at least two other reasons. First, the combinatorial system 
of  trees and their rotations is a fundamental one that is 
isomorphic to other natural combinatorial systems. 
Results concerning this system are of interest from a 
purely mathematical point of  view. Second, the method 
we use to solve file problem is novel and interesting in its 
own right, and can potentially be applied to other related 
problems. 
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A system that is isomorphic to binary trees related by 
rotations is that of  triangulations o f  a polygon related by 
the diagonalflip operation. This is the operation that con- 
verts one triangulation of  a polygon into another by 
removing a diagonal in the triangulation and adding the 
diagonal that subdivides the resulting quadrilateral in the 
opposite way. This type of  move was studied by Wagner 
[11] in the context of  arbitrary triangulated planar graphs, 
and by Dewdney [3] in the case of  graphs of  genus one. 
'lhcy shuwcd that any such graph can be translhrmcd to 
ally other by diagonal flips, [)lit did not concern lhcnl- 
selves with accurately estimating how many llips arc neces- 
sary. 

Our approach to solving the rotation distance prob- 
lem is based on the observation that any sequence of diag- 
onal flips converting one triangulation of  a polygon into 
another gives a way to dissect (into tetrahedra) a 
polyhedron formed from the two triangulations. Using 
hyperbolic geometry we construct polyhedra that require 
many tetrahedra to triangulate them. (Here and hereaiter 
we use the word "triangulation" in a general sense mean- 
ing a dissection of  a polytope into simplices of  appropriate 
dimension.) These polyhedra can be used to exhibit pails 
of n node trees (for infinitely many values of n) such that 
the rotation distance between them is 2n - 6 .  

In section 2 we define the problem on trees, make the 
connection between trees and triangulations o f  a polygon, 
and show that sequences of  diagonal flips are related to 
txiangulations of  polyhedra. In section 3 we show how to 
use hyperbolic geometry to obtain a lower bound on the 
number of  tetral~edra required to triangulate any 
polyhedron. We then construct particular polyhedra that 
require many tetrahedra to triangulate them. Section 4 
contains remarks and some open problems. 

2. Definitions and Equivalences 

2.1. Binary Trees 

A binary tree is a collection of  nodes of  two types, 
external and internal, and three relations among these 
nodes: parent, left child and fight child. Every node 
except a special one called the root has a parent, and 
every internal node has a left and a right child. External 
nodes have no children. A tree is said to be of  size n if it 
has n internal nodes. A tree of  size n has n + 1 external 
nodes. (See [4] for a more complete description of  binary 
trees and tree terminology.) The number of  steps required 
to walk from the root of  the tree to a node is the depth of  
that node. (Each steo moves from a node to one of  its 
children.) 

A s:lvnmelric order travcl~al of lhe lree visits all of  the 
nodes exactly once. This order can be described by a 
recursive algorithm as follows: If the node is an internal 
node, traverse its left: subtree in symmetric order, then visit 
the node itself, then traverse its right subtree in symmetric 
order. If the node is an external node, then visit it and 
return. The order in which the nodes are visited is called 
the symmetric order permutation of  the nodes (or simply 
the symmetric order of the nodes). 

In a common computer-related application of  binary 
trees the tree is used to store an ordered collection of  
chunks of  information (called items). Each internal node 
of  the tree is labeled with an item, and the order of  the 
items is represented by the symmetric order of the nodes 
in the tree. 

A rotation is an operation that changes one binary 
tree into another. In a tree of  size n there are n - 1 possi- 
ble rotations, one corresponding to each non-root internal 
node. Figure 1 shows the general rotation rule and the 
effect of  a particular rotation on a particular tree. The 
rotation corresponding to a node changes the structure of  
the tree near that node, but leaves the structure elsewhere 
intact. A rotation maintains the symmetric order of the 
nodes of  the tree, but changes the depths o f  some of  the 
nodes. Rotations are the primitives used by most schemes 
that maintain "balance" in binary trees. [41 

rotation a t  x 

<~ rotation a t  y 

A B B C 

a be 
rotation at o ) f 

rotation at U a 

¢ 

Figure 1. a) The general definition of  a rota- 
tion. Triangles denote subtrces. The tree 
shown could be part of  a larger tree. b) A rota- 
tion in a seven node tree. External nodes are 
not shown. 
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A rotation is an invertible operation; that is, if tree T 
can be changed into T '  by a rotation, then T '  can be 
changed back into T by a rotation. The rotation graph for 
trees of  size n (denoted RG(n)) is an undirected graph 
with one vertex for each tree o f  size n, and an edge 
between nodes T and T '  if there is a rotation that changes 
T into T'. 

Any binary tree of  size n can be converted to any 
other by performing an appropriate sequence of rotations. 
Therefore the rotation graph is connected. We can define 
the rotation distance between two trees as the length of the 
shortest path in tile rotation graph between the two trees. 
This rotation distance is the minimum number of rotations 
rcquircd to convert one trcc into the other. 

2.2. I'olygon Triangulations 

The problems we study can be formulated with 
respect to a different system of combinatorial objects and 
their transformations. This alternate fon~ulation is 
perhaps more natural and also seems to supply more 
insight. 

The Catalan numbers C, count the number of binary 
trees of  size n as well as file number of  planar triangula- 
tions of  a convex (n +2)-gon with no interior vertices. We 
refer to the n + 2 sides of  the polygon as edges and the 
chords that divide it into triangles as diagonals. Any tri- 
angulation of the (n +2)-gon has n -  1 diagonals and n 
triangles. We regard the polygon as having a dis- 
tinguished edge and orientation. 

A diagonalflip is an operation that transforms one tri- 
angulation of a polygon into another. The effect of  a 
diagonal flip is shown in Figure 2, and can be described as 
follows: A diagonal inside the polygon is removed, creat- 
ing a face with four sides. The opposite diagonal of  this 
quadrilateral is inserted in place of  the one removed, res- 
toring the diagram to a triangulation of  the polygon. 

Figure 2. A diagonal flip in a triangulation of  
an octagon. 

Let TG(n + 2) be a graph with one node for each tri- 
angulation of  an (n +2)-gon and an edge between two 
nodes if the two nodes are related by a diagonal flip. 

Lemma 1: The graph TG(n +2)  is isomorphic to the rota- 
tion graph RG(n). 

This fact is proven by exhibiting a one to one 
correspondence between trees of  size n and triangulations 
of an (n +2)-gon in which diagonal flips correspond to 
rotations. This correspondence is shown in Figure 3. A 
proof of  the lemma can be found in [5]. 

root 

Z ~  IAI + I " < ( ~ ) 1  

A 8 rooQ 
7 1 1 

O 2 6 

1 2 4 

Figure 3. a) The correspondence be~veen a 
tree and a triangulation, b) An example of  a 
tree and its corresponding triangulation. 

2.3. Results on Polygon Triangulations 

As we saw in Section 2.2, a study of  the rotation dis- 
tance between trees can be formulated as a study of the 
distance between triangulations under the diagonal flip 
operation. Let d(zlO- 2) be the minimum number of  
diagonal Ilips nccdcd to translbrm triangulution "rl into tri- 
al~gtllation t 2. For COliVCilicilcc, w e  shall now chatlgc our 
use of the variable "n". We consider triangulatiol~s of an 
n-gou and let d(#l) bo the nlaxhnunl distance between arty 
pair of such triangulations. That is, d(n) is tile diameter 
of TO(n) or equiwdently of RG(n-2). Figure 4 shows 
TG(6), whose vertices are the lburteen triangulations of  a 
hexagon. The greatest distance between a pair of  triangu- 
lations is four; there are several pails that achieve this dis- 
tance. 
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Figure 4. The rotation graph of  a hexagon, 
RG(6). 

The added symmetry revealed in the triangulation 
system that is hidden in the binary tree system enables us 
to improve Culik and Wood's upper bound on d(n) from 
2n - 6 to 2n - 10. 

Lemma 2: d(n) <_ 2n - lO for all n>12. 

Proof: Any triangulation of  an n-gon has n - 3  diagonals. 
Given any vertex x of  degree deg(x)< n - 3 ,  we can 
increase deg(x) by one by a suitable flip. Thus in 
n - 3 - d e g ( x )  flips we can produce the unique triangula- 
tion all of  whose diagonals have one end at x. It follows 
that given any two triangulations 7-1 and 7-2 we can convert 
rl into 7-2 in 2 n - 6 - d e g l ( X ) - d e g 2 ( x )  flips, where x is 
any vertex and the degree of x is degt(x) in 7-t and 
deg2(x) in r2. The average over vertices x of  degl(x) is 
2 - 6 / n ,  and of  degl(x)+deg2(x) is 4 - 1 2 / n .  It follows 
that if n>12, there is a vertex x such that 

degl(x)+deg2(x) > 4 .  
[] 

The following lemma about sequences of  diagonal 
flips will be useful later. 

Lemma 3: a) I f  it is possible to flip one diagonal of  7-1 
creating ~1' so that ~t' has one more diagonal in common 
with T 2 than does 7-1 then there exists a shortest path from 
7-1 go 7-2 in which the first flip creates "Q'. b) If7-1 and T 2 
have a diagonal in common, then every shortest path from 
7-1 to "r 2 never flips this diagonal. In fact, any path that 
flips this diagonal is at least two flips longer than a shortest 
path. 

I'roof: Let S be a sequence of  adjacent triangulations con- 

necling ~1 to ~2- 

S = to (=r l ) , t l , t2 , ""  , tk(= ' r2)  

Assu,ne that t I ~ 7"1'. Wc shall constrt,ct a new sequence 
of adjacent triangulations S '  also connecting 7-1 and 7-2 

whose length is no longer than the length of  S, and in 
which the fil~t flip creates ~{'. This will suffice to prove 
part 1 of  the lemma. 

Let l and r be the end points of  the diagonal that 7-{ 
and z2 but not ~'1 and z2 have in common. Any triangula- 
tion ~- can be normalized with respect to the diagonal (l,r) 
to create a new uiangulation N(7-). The diagonals of  N(7-) 
are of  three types: 1) N(7-) contains the diagonal (l,r), 2) 
N(7-) contains every diagonal of  • that does not cross the 
diagonal (l,r) (two diagonals with an endpoint in common 
are not said to cross), 3) if 7- contains a diagonal (a,b) that 
crosses the diagonal (l,r) then NG-) contains the diagonals 
(a,r) and (b,r). (See Figure 5.) 

7- N(T)  

Figure 5. A ~iangulation 7- and its normalized 
version N(r).  

Consider the sequence of  triangulations 

N = to ,N(to) ,N(Q), . . .  ,N(tk). 

A straightforward case analysis shows that successive tri- 
angulations o f  this sequence are either identical or adja- 
cent. Eliminating all but one of  each group of  identical 
consecutive triangulations in this sequence gives the 
desired sequence S ' .  A priori S '  might contain k + 2 tri- 
angulations, but this cannot be the case for the following 
reason. Consider the triangulations t i and ti+ 1 in S with 
the property that t i does not contain diagonal (l,r) and 
ti+ 1 does. (There must be such a pair since the final tri- 
angulation contains the diagonal (t,r) and the initial one 
does not.) It is easily verified that the triangulations N( t  t) 
and N(ti+ 1) must be equal, and therefore only occur once 
in S ' .  Thus S '  contains at most k +1  triangulations. Ver- 
ifying that S '  starts and ends with rt  and T2 and that its 
second triangulation is 7-1', is straightfol~vard. This com- 
pletes the proof of part a of the lemma. 

The same technique serves to prove part b of  the 
lemma. Let S = t o ( = T 1 ) , t b . . .  ,&(=7-2) be a sequence 
that translbrms ~-I into ~-2 in which the first move is one 
that Ilips a diagonal (/,r) common to both ,r I a n d  'r 2. 

Normalize this scqtlcncc with icspcct to t h e  diagonal (I,r) 
and eliminate redundancies to create a sequence S ' .  S '  
transforms 7-1 into T2 in two fewer flips than does S. The 
reason is that neither the fi~t flip of  S, that misaligns 
(l,r), nor a later flip that aligns (l,r) occurs in S' .  

12. 
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A refinement of  the lower bound proof in Lemma 3 
for small values of  n and a computer search have pro- 
duced the exact values of  d(n) for n <18. Here are these 
values 

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

d(n) 0 1 2 4 5 7 9 11 12 15 16 18 20 22 24 26 

2.4. Triangulations of the Sphere and the Ball 

In this section we show that the quantity d(n) is 
related to the number of  tetrahedra that are required to 
dissect certain polyhedra. First we need a more general 
definition of  a triangulation. 

A d-dimensional triangulation is a collection of  
labeled d-dimensional simplices along with a collection of  
gluing rulez Each gluing rule specifies that one of  the 
(d-D-dimensional  facets in this collection o f  simplices is 
to be identified with another (d-D-dimensional  facet in 
the collection. Each facet occurs in at most one gluing 
rule, and a facet cannot be glued to itself. (It may be pos- 
sible to represent a triangulation in d-dimensional space, 
but its mathematical structure has nothing to do with how 
it is embedded in space; e.g. the mathematical structure is 
in the gluing rules and not in the geometric realization.) 

Let T be a d-dimensional triangulation. Some of  the 
d-1-dimensional  facets of  T may not be glued to any 
other facet. These facets along with certain gluing rules 
form a d - 1  dimensional triangulation called the boundary 
of T, denoted a T. The gluing rules of  a T are of  two 
types. Two d-2-dimensional facets of  a T  are glued 
together if there is a gluing rule of  T that identifies these 
two facets of  aT  with each other (or a collection of  gluing 
rules o1" '/' that imply by transitivity the equivalence of the 
two lhccts (/1" aT). Also, ii" two d---l dimcnsitmal sim- 
Illiccs of 07' come from the same d-dimensional simplex 
of  T, then there is a rule to glue their common d - 2  
dimcnsiomd simplices together appropriately. Vigure 6 
shows an example of  a two-dimensional triangulation and 
its boundary. 

A triangulation of/he ball is a 3-dimensional triangu- 
lation that is homeomorphic to a ball. That is, there exists 
a way of  rendering each tetrahedron of the triangulation as 
a curvilinear tetrahedron so that: 1) each tetrahcdron is 
homeomorphic to a ball, 2) the interiors of  the tetrahedra 
are disjoint, 3) the union of all of the tetrahedra form the 
ball, and 4) if the faces of  two tetrahedra are to be glued 
together then these Paces must coincide. (A ball is the set 
of  points {(x,y,z)l x2 + y2 q- z 2 ~ 1 } . )  

A triangulation of the sphere is a triangulation that is 
a boundary o f  a triangulation of  the ball. (A sphere is the 
set of points {(x ,y , z ) lx2+y2+z 2 = 1}.) If o is a tri- 
angulation of the sphere then there is a way to dissect the 

Simplices: (abc) (det)  (gh i )  (jkl) 

Gluing Rules: ac ~ de 
cb ~ ef 
df ~ gh 

1 

the boundary: 
Simpqices: (1 ,2)  (3 ,4)  (5 ,6)  (7 ,8)  (9,10) (11,12) 

Gluing Rules: 2 ~ 3 
4 ~ 5 
6 ~ 1 
8 ~ 9  

lO ~ 11 
12 ~ 7 

1 6 8 9 

4 1 
Z 7 

3 12: 

Figure 6. A triangulation and its boundary. 

sphere into curvilinear triangles whose adjacency is given 
by the gluing rules of  o'. It is sometimes more convenient 
to think of  a triangulation of  the sphere as an embedded 
triangulated planar graph. This is a planar graph along 
with a permutation at each vertex specifying the clockwise 
order o f  the edges incident with that vertex, having the 
additional property that each face is a triangle. Each ver- 
tex of the triangulation is a vertex of  the graph, and each 
triangle of  the triangulation is a face of  the graph. 

The boundary of a 3-dimensional polyhedron is the 
embedded planar graph obtained by extracting from the 
polyhedron the edges and vertices and their incidence and 
embedding relationships. 

If ~ is a triangulation of  the sphere and T is a tri- 
angulation of the ball then T is an exposed triangulation of 
the ball extending (r if (r = a T  and all of  the vertices of  
T occur in o'. (None of  the vertices of  T are inside the 
ball.) 

An exposed triangulation of  the ball extending (r is 
the three dimensional analogy to a triangulation of  an n- 
gon clcscribed in previous section. In contrast to the situa- 
tion in two dimensions there may be several triangtflations 
extending a containing different tmmbcrs of  tetrahcdra. 

The union of two triangulations r] and r 2, of an n- 
gon, combined with n extra gluing rules specifying that 
the boundaries of the two n-gons must coincide gives a 
triangulation of  the sphere, which we denote by U(rl,r2). 
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For any g there is an exposed triangulation of  the 
ball extending Gr. This allows us to define t(g) to be the 
minimum number of  tetrahedra in any exposed triangula- 
tion of the ball extending or. The lbllowing lemma relates 
triangulations to rotation distance. 

kemma 4: l f  r 1 and r 2 have no diagonal in common, then 

l(U(rl,r2)) ~_ d(rl,r2). 

Proof: There exists a sequence of d(rbr 2) diagonal flips 
that changes rl  into r2. We shall describe how to extract 
from this sequence an exposed triangulation of the ball 
extending U(rl,r2) containing d(rl,r 2) tetrahedra. 

Imagine that there is a planar base with triangulation 
r 1 drawn on it. Suppose the first diagonal flip replaces 
diagonal (a,c) with diagonal (b,d). Create a flat quadrila- 
teral that is the same shape as quadrilateral (a,b,c,d). On 
the back side of  the quadrilateral draw diagonal (a,e). On 
the front draw diagonal (c,d). Now place the quadrila- 
teral onto the base in the appropriate place with diagonal 
(a,c) down and (b,d) up. Looking at the base we see a 
picture of  a triangulation which is the result of  making the 
first diagonal flip. For each successive move we create 
another quadrilateral and place it onto the base. After 
placing d(rl,r2) such quadrilaterals we will be see r 2 
when we view the base. 

The u-iangulation of  the ball that we construct has 
one tetrahedron for each quadrilateral. The gluing rules 
are taken from the way the quadrilaterals are stacked. 
Two triangles are identified with each other if they touch 
each other in the stack of  quadrilaterals. 

To finish the proof we need only verify that the 
resulting triangulation is an exposed triangulation of  the 
ball extending U(rl,r2). The [hct that is a triangulation of  
the ball is made clear by imagining ~vhat happens if each 
quadrilateral is inflated slightly. Each quadrilateral turns 
into a tetrahedron, and the resulting stack of quadrilaterals 
is slightly thick in the middle, and is thus homeomorphic 
to a ball. (This is where we use the assumption that rl  
and r 2 have no diagonal in common.) The fact that the 
triangulation extends U(rl,r2) is obvious because the 
unglued triangles are exactly those of  r 1 and r 2. 

I-1. 

What the proof of  Lemma 4 tells us is that for every 
sequence of  diagonal flips from rl to r2 there is an 
exposed triangulation of  the ball extending U(rl,r2). In 
fact, the same triangulation of  the ball may result from 
many different sequences of  moves from rl  to r2. It is not 
the case that every exposed triangulation of  the ball 
extending U(rl,r2) comes from a sequence of  diagonal 
flips. In fact, it is possible to construct exposed triangula- 
tions of  the ball with the property that no tetrahedron 
touches the boundary on more than one face, whereas in a 

triangulation obtained by the construction in the proof of  
Lemma 4 some tetrahedra touch the  boundary on at least 
two faces. 

Let t(n) be the maximum over all n-vertex four- 
connected triangulations of  the sphere cr of  the quantity 
t(~). 
kemma 5." t(n) < d(n). 
Proof: Let ~ be an n-vertex four-connected triangulation 
of  the sphere such that l(~) is maximized. By Tutte's 
theorem [10] this four-connected triangulated graph must 
have a Hamiltonian circuit. Draw the triangulation on a 
sphere. Cut the sphere along the edges of the Hamil- 
tonian circuit. This separates the sphere into two disks, 
each of  which is triangulated. Let these two triangulations 
be r l  and r 2. Now ¢r = U(rbr2). By the preceding dis- 
cussion and Lemma 4, 

t(n) = t(~) = t(U(rl,r2)) < d(rl,r2) < d(n). 

To make these concepts more concrete consider the 
two triangulations r I and r 2 o f  a hexagon whose diagonals 
form a triangle. (See Figure 7.) The triangtflation 
obtained by gluing r 1 and r 2 together is the boundary of  
the octahedmn. There are six paths of  length four 
between r 1 and r2 (see Figure 4). Each of  these paths 
gives rise to a triangulation of  the octahedmn. Three 
different trianguhltions of  the octahedron are obtained in 
this way. (Each is produced by two different paths from 
r l to r2.) These triangulations are the ones in which a 
single edge has been added between a pair of  opposite 
vertices. The octahedron cannot be triangulated with 
fewer than four tetrahedra because no tetrahedron can 
contact more than two faces of  the boundary. 

1 2 1 2 1 2 1 2 1 2 

3 6 3 6 6 3 - - - ~  

5 5 4 5 4 5 4 5 4 
(1 3 5 S) (1 2 3 e)  (6  3 4 S) (6 2 3 4) 

3 

, . - -  --°:! i - ' "  
i 2 

| I  

t ¢ 

6 

t h e  f o u r  t e t r a h e d r a :  3 6 1 5 ,  3 6 2 1, 3 6 4 2 ,  3 6 5 4 

Figure 7. A sequence of diagonal flips and the 
triangulation that it gives. 
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By Lemma 5, an upper bound on d(n) is an upper 
bound on t(n), and a lower bound on t(n) is a lower 
bound on d(n). In tile remainder of  this paper we show 
that 2 n - 1 0  < t(n) (for infinitely many n). Combining 
this with Lemma 2 gives t (n)= d(n)= 2 n - 1 0  for 
infinitely many n. 

3. Lower Bounds on t(n) 
Our approach to deriving accurate lower bounds on 

t(n) is geometric rather than combinatorial. We convert 
the combinatorial objects described in the previous section 
into geometric objects. We then infer properties of  the 
combinatorial objects from the properties of  the geometric 
objects. 

Let a be a triangulation of  the sphere that is four- 
connected Suppose ~r is the boundary of  a polyhedron P 
in three dimensional Euclidean space with vertices on the 
unit sphere. Let T be an exposed triangulation of  the ball 
extending or. For each tetrahedron A of  T there is a 
geometric tetrahedron A' whose vertices are the appropri- 
ate vertices of  P .  (By a geometric tetrahedron we mean 
what one normally means by a tetrahedron, a polyhedron 
with four fiat faces. We will use the word geometric trian- 
gle analogously.) The union of  the geometric tetrahedra 
must contain the polyhedron P.  (This will be proven in 
section 3.2.) Thus the sums of the volumes of  the 
geometric tctrahedra must be at least tile volume of P. 
Let V a be tile volume of the largest tctrahcdron that can 
be inscribed in a sphere. Let vol(P) be the volume of  P. 
We know that at least vol(P)/Va tetrahedra are required 
to cover P. In other words: 

vol(P) < t(n) 
VA - -  

In Euclidean space, this technique does not give 
interesting bounds because the ratio of  the volume of  a 
sphere to the volume of  the largest tetrahedron inscribed 
in the sphere is a small constant. However in hyperbolic 
space this method does lead to useful results. This is 
because in hyperbolic space the volume of  a tetrahedron is 
bounded above a constant V 0, while the volume of  a 
polyhedron can grow as a function of  the number of  ver- 
tices. Our problem is thus reduced to finding a 
polyhedron P with n vertices in hyperbolic space that has 
large volume. 

First we present the necessary fundamentals of  hyper- 
bolic geometry. These ideas can be found described in 
more detail in Coxeter's book [1], Milnor's paper [6], and 
an expository article by Thurston and Weeks [9]. 

3.1. Hyperbolic Geometry 

In hyperbolic geometry there many lines through a 
given point parallel to a given line, the sum of  the angles 
of  a triangle add to less than 180 degrees, and the cir- 
cumference o f  a circle is greater than 7r times the diame- 
ter. There are various ways of mapping hyperbolic space 
into Euclidean space. These mappings enable us to draw 
pictures of  hyperbolic polyhedra,, but these pictures are 
distorted; two congruent hyperbolic triangles many not 
look congruent when mapped into Euclidean space. 

One mapping of two-dimensional hyperbolic space 
into the Euclidean plane is called the upper halfplane 
model. In this model all o f  hyperbolic space is mapped 
into the upper half of  the complex plane (the points with 
non-negative imaginary parts) and a point at infinity. This 
mapping is conformal, which means that angles are 
preserved. The geodesics (slraight lines) in hyperbolic 
space arc nlapped into lhe sclnicirclcs I~Crl~cndicular to the 
real axis, and tile vertical lines i~crl~cndicular to tile real 
axis. Most of the area of hyperbolic space is mapped into 
the region near the real axis. See kigure 8. 

~ ' ~ d e a l  
hexagon 

an ideal tnJangle a t r iangle 

Figure 8. The tipper half-plane model o f  two- 
dimensional hyperbolic space. 

The area of  a triangle in hyperbolic space is r r -Y. ,  
where E is the sum of the angles. An ideal triangle is one 
with three distinct veiliccs on the real axis or at infinity. 
All ideal triangles have area ~r. In fact all ideal triangles 
are congruent, that is, any ideal uiangle can be 
transformed to any other by a rigid motion. (The rigid 
motions of  the space fo~xn a group known as the group of  
orientation-preserving isometries.) 

The upper half-space model of  three-dimensional 
hyperbolic space consists of  the complex plane plus all the 
points above the plane in Euclidean three-space plus a 
point at infinity. The complex plane plus the point at 
infinity is sometimes called the sphere at #Unity. A geo- 
desic in hyperbolic three-space is mapped to a semi-circle 
perpendicular to the complex plane, or a straight line per- 
pendicular to the complex plane going to infinity. The 
geodesic, surfaces are mapped to hemispherical bubbles 
orthogonal to the complex plane, or planes orthogonal to 
the complex plane. 
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An ideal hyperbolic tetrahedron is a tetrahedron in 
which all the vertices are distinct and on the sphere at 
infinity. Any hyperbolic tetrahedron can be transformed 
by a rigid motion to one in which three of the vertices are 
at 0, 1, and co and the other vertex is at a point z in the 
complex plane. (This motion is possible because all four 
of  the triangles of  the tetrahedron are ideal and any ideal 
triangle can be moved to any other.. Note that despite this 
fact, not all hyperbolic tetrahedra are congruent.) The 
tetrahedron then looks like three vertical flat walls above 
the Euclidean triangle (0,1,z) bounded below by part of  a 
hemispherical bubble. 

The hyperbolic cross-section of the vertical chimney, 
in the hyperbolic metric, scales in a way that decreases 
with increasing height. (Most & t h e  volume of hyperbolic 
space is near the complex plane.) It can be seen by 

intcgratillg that the voluinc of an ideal tctrahcdron is 
finite, l.et this voltnnc bc denoted by v(z). There are 
explicit fbrmulas for v(z), fionl which it can be seen that 
the maximum is attained at the point z = w, where aJ is 
defined as 

= e2~ril6 

(See [6] for a discussion of how to compute hyperbolic 
volumes.) The tetrahedron of maximum volume is the 
most symmetrical one. Its base triangle (0,1,c0) is equila- 
teral, its dihedral angles are all 60 degrees, and its volume 
is v(~o) = V 0 = 1 .0149""  

3.2. The Volume of Hyperbolic Polyhedra 

In order to follow through with the approach outlined 
at the beginning of section 3, we must justify our conten- 
tion that if P is a polyhedron, a is its boundary, and T is 
an exposed triangulation of the ball extending a then the 
geometric tetrahedra of  T must cover P.  To do this we 
need to define the volume of non-simple polyhedra, ones 
in which the surface may be self-intersecting. (The ideas 
we develop are the same ones used to prove Brewer's 
fixed point theorem.) 

Let a be a triangulation of the sphere. For concrete- 
ness think of a as though it is embedded in the sphere in 
some particular way. For any mapping of the vertices of  

to distinct points in three-dimensional hyperbolic space 
(or Euclidean space for the purposes of  this discussion), 
there is a continuous map f from the sphere into hyper- 
bolic space that 1) maps the vertices of  a to the appropri- 
ate places, and 2) maps every triangle of  a one-to-one 
onto a geometric triangle in hyperbolic space. In other 
words f maps the surface of the sphere into the surface of 
some hyperbolic polyhedron. Let the symbol f ( a )  denote 
the image of the triangles of  a mapped by f into hyper- 
bolic space. 

Imagine that a circulation direction has been chosen 
on each triangle of tr so that when that triangle is viewed 
from outside of  the sphere the circulation is clockwise. 
These circulations when mapped by f determine the 
circulations of  the triangles of./'(t~). This set of  triangles 
and their circulations thai)It us to dcline the nulnher of 
limes the polyhedron "wraps around" a point x, ~illd from 
this we define the volume of  the polyhedron. 

Consider any continuous path from a point y to a 
point x. (Assume that the path does not pass through the 
boundary of any triangle, and that x and y are not in any 
triangle.) If the path passes through exactly one triangle 
and the circulation direction is clockwise when looking 
along the path from y to x,  then x is deemed to be inside 
of  the polyhedron, and f is said to wrap around x once. 

In general, the wrapping number (or degree ) of f ( a )  
about a point x with respect to a point y (x and y not in 
any triangle), w(f(a),x,y) is defined as follows: 

Choose some continuous pat1 p from y to x that 
does not pass through the edges or vertices of  any tri- 
angle. Each time the path passes through a triangle 
the circulation direction of the triangle (looking along 
p) is either clockwise or counterclockwise. The wrap- 
ping number at x is the number of  times p passes 
through a triangle in a clockwise fashion, minus the 
number of  times p passes through a triangle in a 
cotlnterclockwise fashion. 

This number only depends on f ( a ) ,  x and y, and is 
independent of  the path from y to x. This is because the 
circulations were chosen consistently on the triangles of  a, 
and tr is a triangulation of the sphere. Furthermore a 
different choice of  the point y will add an integer 
(independent of  x) to the value of  the wrapping function. 
There is a natural way to eliminate the dependence of  the 
wrapping function on y. For a particular choice of  y the 
wrapping function divides space into regions of  constant 
wrapping function value. At least one of  these regions 
must have infinite volume, since the space has infinite 
volume. The natural wrapping function is one where y is 
chosen in the region of infinite volume. The wrapping 
function is thus zero in the infinite region. Denote this 
wrapping function by w(f(a),x). (If there is more than 
one infinite region, or if there are infinitely many regions, 
then the wrapping number is undefined.) 

The vohlnlC of the polyhedron to which J" lnaps the 
sphere is defined to be the integral over hyperbolic space 
of w(f(a),x)dV, where dV is the hyperbolic volunle ele- 
ment. This generalized definition of  volume agrees with 
the intuitive one for a simple polyhedron in which the 
wrapping function only takes on the values of  zero or one. 
It also gives us a notion of volume for more complicated 
collections of  triangles, and facilitates the proof of  the fol- 
lowing lemma. 
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Lemma 6: Let P be a polyhedron in hyperbolic space 
whose boundao; tr, is a triangulation of lhe sphere. Let 
vol(P) be the volume of P. Then 

vol(l") < t(~). 
Vo 

Proof: Let T be an exposed triangulation of  the ball 
extending a with t(a) tetrahedra. To be concrete, assume 
that T and cr have been embedded into the ball in some 
particular way. Let f be a map from the vertices of ~r to 
the vertices of  P as described above with the additional 
property that it maps all of  the triangles of  all of the 
tetrahedra of  T to geometric triangles in hyperbolic space. 
(It is clear that such a function exists because in the 
embedding of  T into the ball each tetrahedron is 
homeomorphic to a geometric tetrahedron.) 

For each tetrahedron A of  T choose a circulation on 
its triangles that is clockwise when looking at it from out- 
side of  it in its embedding into the ball. For each such 
tetrahedron there is a wrapping function w(f(A),x) in 
hyperbolic space which is +_1 inside the image of  A and 
zero outside. The following equation is the key fact we 
need about wrapping numbers. 

wff(ff),x) = E wff(a),x) 
AeT 

To prove this, we choose a point y outside of  all the 
tetrahedra f ( k ) ,  choose a particular path from y to x, and 
evaluate both sides of the equation. The left hand side is 
the sum of the circulations of  the triangles of  f(rr)  punc- 
tured by the path. The fight hand side is the sane except 
it includes more triangles. It includes all the triangles of  
J(cr) phis all the triangles that come fronl the interior of  
the ball. I-Iowcvcr, those that conic fiom the interior of  
the ball come in pairs, one from each of lhc two tclrahc- 
dra bounding that triangle. The triangles of  a pair are the 
same except that they have opposite circulation directions. 
Their effects on the wrapping number cancel out. Only 
the triangles on the boundary matter. This justifies the 
equation. Figure 9 illustrates the analogous situation in 
two-dimensions. 

Now we can bound the volume of  P. 

v(P) = f w(f(~r),x)dV 

= f E w(f (b) ,x)dV 
,% T 

= E f w ( f ( a ) , x ) d V  
AeT 

< 2g Vo = t(~)Vo. 
AeT 

[] 

We have now reduced the problem of  finding lower 
bounds on t(n) to that of  finding n vertex hyperbolic 
polyhedra with large volumes. The remainder of  this sec- 
tion is devoted to constructing such polyhedra. 

1 2 

a triangulation 

5 4 

an embedding of the 1 ~ ~  ~ ' ~  
triangulation with \ ~ - ~ ~ - ~ _ 
geometric t r i a n g l e s . ~  

6 

>, 
k 

\ 

\ 

k 
\ 

\ 

" ~ 3 

Figure 9. A two-dimensional velsion o f  the 
wrapping function used in the proof of  Lemma 
6. 

3.3. First Examples: 2 n -  O(n 1/2) 
There is a tessellation of  hyperbolic: space consisting 

of  copies of  the simplex of  maximal volmne. This tessella- 
tion can be constructed by choosing a maximal simplex to 
start with, reflecting it through its faces, reflecting these 
through their faces, etc. For any finite union of  these 
tetrahedra whose boundary is a sphere, we obtain a 
polyhedron. The triangulation we have is automatically 
minimal since all the simplices are disjoint and have maxi- 
mal volume. 

Consider the special case when all the simplices have 
a common vertex. We may assume that this point is the 
point at infinity in the upper half space model. Each of  
the tetrahedra lies above an equilateral triangle in the 
tessellation of  the plane by equilateral triangles. Any set 

of  triangles whose union is honlconlorphic to a disk will 
dctcrn}ine such a polyhedron. Consider the case ~v;lcn the 
polygon is hexagonal, with k edges on a side. The hexa- 
gon has 6k 2 triangles, hence the polyhedron has 6k 2 
tetrahcdra. (See Figure 10.) The hexagon has 3k2+ 3k + 1 
vertices, so tim polyhedron has 3 k 2 + 3 k + 2  vertices 
(including the one at infinity.) In particular we obtain 

I(n) Z 2tl--o(nl/2). 
Note that we actually get explicit lower bounds for each 
n, not just those n of the lbnn 3k2+3k +2  by using other 
triangulations. 
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( / 
Figure 10. The boundary of the polyhedron 
used to show that t(n) > 2n-O(nll2). 

3.4. Better Lower bound: 2n - O ( l o g n )  

To construct polyhedra that require more simplices 
for a given number of  vertices we must eliminate the ver- 
tex of  high degree. (Roughly speaking, polyhedra in 
which the vertices are spread over the sphere at infinity as 
uniformly as possible have the largest volumes.) A natural 
sequence of triangulations for this purpose can be derived 
fi'om a regular icosahedron. Divide each face of  the 
icosahedron into k 2 equilateral triangles, giving 20k 2 trian- 
gles in all, and n =10k2+2  vertices. 

This gives a combinatorial definition of a likely ui- 
angulation. How can it be mapped into hyperbolic space 
So as to enclose a large volume? The Riemann mapping 
theorem gives us a way to do this. Corresponding to the 
icosahedron, there is a subdivision of  the sphere into trian- 
gles bounded by segments of  great circles, obtained by 
projecting the edges of  the icosahedron out to the sphere. 
The Riemann mapping theorem implies that there is a 
unique conformal map of the faces of  the icosahedron to 
the spherical triangles, sending vertices of  the icosahedron 
to the corresponding vertices of the spherical triangles. By 
symmetry, these maps determined on individual triangles 
piece together to give a map h of  the entire surface of  the 
icosahedron to the sphere. This map is conformal every- 
where except at the verdces of  the icosahedron. Note that 
it is conformal even on the edges of the icosahedron 
because they can be flattened out (locally) in the plane. 
Define the ideal hyperbolic polyhedron P(k) to have its 
verliccs at thosc places on the sphere al infinity in hyper- 
bolic space to which h maps the vcrticcs of thc sttbdividcd 
icosahcdron. 

Lemma 7: The vohune of P(k) is 2nVo-O(Iogn), Mwre 
n = 10k 2 + 2. 

Proof: To nlake the estimate of voltime, pick a vertex of 
P(k) of order 6 which is as far as possible fi'om vertices of 
order 5, and arrange this vertex to be at infinity in the 

upper half-space model. (This is a rigid rotation of P(k) 
in hyperbolic space.) Triangulate P(k) as thc union of  
cones from the vertex at infinity to the triangles with finite 
vertices. (This is called a cone-type triangulation. ) Call a 
vertex of P(k) "bad" if it is a vertex of  the icosahedron or 
if it is the vertex mapped to infinity. Now h can be 
thought of  as a map from the icosahedron to C (the com- 
plex plane) that is conformal everywhere except at the bad 
vertices. For large k the triangles far away from bad ver- 
tices get mapped by h to triangles that are nearly equila- 
teral (because h is conformal). Figure 11 shows how the 
vertices of  P(k) near a vertex of  the icosahedron get 
mapped to the complex plane by h. If  the vertices were 
vertices of  true equilateral triangles then the tetrahedra 
formed by coning them to infinity would all be congruent 
to the tetrahedron of  maximal volume. We must show 
that the deficit caused by the fact that the triangles are not 
quite equilateral is small. 

The shape of  a triangle A with vertices p,q,r is 

( r -p)  (The described by the complex number s(A) = ( q _ p ) .  

triangle (0,1,s(A)) is congruent to A.) The volume of  the 
hyperbolic tetrahedron C(A) formed by coning A to the 
point at infinity depends only on the shape parameter of  
A. The volume deficit of  C(A), defined as V o- vol(C(A)) 
(where V 0 is the maximum volume of  a tetrahedron), 
satisfies 

v0 - rot ( c  (A)) = Xl (  I s ( A ) -  ,o I 2) + O ( I s ( a ) -  ,o 13) 

for some constant K 1. Our goal is to show that the eumu- 

Figure 11. The vertices of  P(k) near a vertex 
of  the icosahedron. 
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lative volume deficit is O(log(n) )=O( log(1 /e ) )  where e is 
the side length of  a triangle in P ( k ) .  We will now digress 
to evaluate the deficit of  a triangle obtained by applying 
an arhitrary complex analytic function f to the vertices of  
an equilateral triangle. Suhscqucntly we will apply tiffs 
result using the map h. 

Consider the equilateral triangle A t with vertices 0, t, 
and wt in the complex plane, and suppose that f is a 
holomorphic (complex analytic, or confonnal) embedding 
of the disk of  radius R > I t l  about 0 into the complex 
plane. How can we estimate the volume deficit of  the 
tetrahedron spanned by oo together with f of the vertices 
of A? 

In the general, we may change f by postcomposing 
with a translation so that f fixes the origin. Let us expand 
f as a power series 

f ( z )  : az + bz 2 ÷ cz 3 ÷ " ' "  

and solve for the coefficients of  the power series expansion 
of the shape parameter s ( t )  = f ( w t ) / f ( t )  of the image 
ta'iangle. We can write 

s ( t )  = w + At + Bi 2 + . . .  

a w t  + b ~ 2 t  2 + c w 3 t  3 + . . .  

at + bl 2 + cl 3 ÷ . . . .  

and solve for the coefficients. We obtain 

wb + Aa = b w 2 

and 

wc + Ab + Ba = c w  3. 

The term of real interest is 

- b f"(O) 
A - 

a 2 f  '(0) 

since ~a 2 -  ~ = - 1. The next term is 

b 2 
B = l(c(w3-W)-a -bb)a = - ( w + l ) C a  + ~ -"  

Thus, the shape of the image triangle is 

,Z39L S(t)  = 6 o -  "2f ' (0)  + O(t2)" 

How docs the error term depend on J"? First, we 
claim that the error is uniformly botlndcd by O(12 ) 
indcpcndcnt o f f  defined on a []xcd disk of  radius R. In 
fact, the set of all holomorphic embcddings of  the disk of  
radius R into C is compact in the appropriate topology, 
that is, any sequence of  embeddings has a subscquence 
which converges to an embedding. The erro~ could not 
get worse and worse, or else the limit fimction would not 
have an estimate of  the form O(t2). 

The dependence of the error tem~ on R can now be 
easily deduced. A disk o f  radius R can be mapped to a 
disk of  radius S by a complex affine map --- that is, a 
complex linear map followed by a t~anslation. The 
parameter t is multiplied by the ratio of the radii of  the 
disks under such an affine map. Consequently, the error 
term above is O(( t /R)2 ) .  

Now we return to the estimate of  the volume deficit. 
Suppose we have a triangle in some subdivision of  the 
icosahedron that has no vertices in common with the 
icosahedron, and no vertex mapped to infinity. Let R be 
the distance of the triangle from the nearest bad vertex in 
the met, ic of  the icosahedron, and let e be the size of  a 
side of  the triangle (in the metric of  the icosahedron). 

h" Then its volume deficit is K2(e 2 ] ~ [2) .4- O((~-)3). 

Since e2 is proportional to the area of  the triangle, 
the total volume deficit can be approximated by an 
integral. 

f K31 12dA + 0(1). 
good triangles 

By good triangles, we mean those that have no bad vertex. 
The contribution of  the bad triangles (those with a bad 
vertex) is only a constant, and has been included in the 
O(1) error term. The contribution of  the part o f  the 
icosahedron that is farther than a fixed distance e 0 away 
from a bad vertex is also bounded by a constant. This is 
because the integrand is continuous and bounded except 
near the bad vertices. The only contribution left to evalu- 
ate is that of the annular regions of inner radius e and 
outer radius e0 centered on the bad vertices. (Where e is 
the triangle mesh size.) 

Near the bad vertices h behaves like zl~ where 
= 6/5 if the had vertex is an icosaheclron vertex and 

,8 = - 1  if the bad vertex is the one nmpped to infinity. 
(The local coordinates are chosen so that the bad point is 
at the origin.) The entire deficit is estim~;ted to within an 
additive constant by the sum (over bad vertices) of  the 

integrals of  K3~- ( f l - l )2 -~ -~  -, over annular regions cen- 

tered at the bad vertices with fixed outer radius e 0 and 
inner radius approximately equal to the mesh size e. The 
wdue of  each of  these integrals is 

Ky~-(fll _l)22~r(lne ° - lne). 

Since - l n e  = In(l/e) = O(logn), we have bounded the 
deficit by O(logn). This completes the proof that 
v o l ( e ( k  )) = n V O-  0 (log(n)). 
[] 
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3.5. The structure of minimal triangulations 

We will now apply the fact that P(k) has a volume 
deficit which is small compared to the number of  tetrahe- 
dra to completely determine the minimal extensions of  
P(k) to the ball, provided k is sufficiently large. 

Theorem 1: For suOTcienlly large k the exposed triangula- 
tion of the ball extending the boundary of P(k) having the 
minimum number of tetrahedra is a cone-type triangulation. 

Proof: Suppose that T is any minimal exposed triangula- 
tion of the ball extending the boundary of  P(k). For any 
fixed e, at most O(logn) of  the simplices of  T can have 
volume less than V 0 -  e. In particular, only 0 (logn) of  its 
simplices can touch the boundary on two faces, since such 
simplices have volume roughly (2/3)V 0. For every sim- 
plex that does not touch the boundary on any face, there 
must be one that touches on two faces, so the number of  
such simplices is also bounded by O(logn). Furthermore 
only O(logn) of the simplices can have four or more 
edges common with the boundary for their deficit is also 
large. 

A "good" simplex is one wilh exactly one of its Faces 
and three of  its edges on the botmdary. A simplex is 
"bad" if it is not good. Fronl the preceding paragraph we 
conchtde that there are O(logn) bad simplices, thus there 
are tit least 2 n - O ( I o g n )  good simplices. Let m be a map 
fi'om the good faces of  the polyhedron to the vertices of 
the polyhedron. (A face of P(k) is good if it is covered 
by a good simplex.) The vertex m(J')  is the fourth veitex 
of  the simplex with t]ace f on the boundary of  P(k). 

If f and g are adjacent good faces of  the boundary, 
and if re(f )am(g), then there is a bad simplex which 
contains the common edge of f and g. (It is bad because 
if one of  its triangles is on the boundary then four of its 
edges must be on the boundary.) In this situation call the 
common edge o f f  and g a "bad" edge; there are at most 
O(logn) bad edges, because for each one there is a bad 
simplex. Each component of the union of bad faces and 
bad edges is contained in a disk of radius 

O(logn) = O(logk) with respect to the metric of  the 
k k 

icosahedron. Therefore the union of  bad faces and edges 
is contained in a disjoint union B of such disks. 

Let G be the union of those good tetrahedra whose 
face on P(k) does not intersect B. Since the total number 
of  bad faces and edges is considerably smaller than the 
diameter of  the sphere, there is one big component of  G 
and possibly a bunch of smaller components. We throw 
out the smaller components from G. G agrees with a 
cone-type triangulation C(v*), coned to a single dis- 
tinguished vertex v*, and G contains most of  the tetrahe- 
dra of T. 

What remains are a number of  blemishes -- com- 
ponents where T does not agree with C(v*), each having 
a known boundary triangulation but a mysterious interior 
triangulation with at most O(log(k) 2) simplices. To com- 
plete the analysis, we will show that the triangulations of  
these blemishes in fact must also agree with C(v*), given 
that they are minimal triangulations. 

The blemishes can be sorted into three types, depend- 
ing on their intersection with P(k). Any blemish which 
does not exactly fit these types can be enlarged until it 
does, using portions of the known triangulation t.7, pro- 
vided k is large enough. Here are the three kinds of  
boundary triangulations for possible blemishes, tip to iso + 
morphism: 

(a) A portion of the triangulation of the plane by 
equilateral triangles, with one extra vertex v* 
coned to its boundary. 

(b) A triangulation obtained from a regular penta- 
gon by first subdividing into five triangles, then 
subdividing these into congruent subtfiangles, 
then coning its boundary to one extra vertex v*. 

(c) A blemish coming from the vicinity of v* on 
P(k) ,  which is obtained from a portion of  the 
triangulation of the plane with equilateral trian- 
gles by coning its boundary to a vertex v* of  the 
triangulation. Note that in this case, the boun- 
dary of the blemish is not a sphere; it may be 
chosen to be homeomorphic with a sphere with 
the north pole and the south pole identified. 

Case (a) is easiest to take care of. The triangulation 
C(v*) of the interior of  the blemish has all its interior 
edges of  order 6. This triangulation is isomorphic to a 
portion of  the triangulation of hyperbolic space by sim- 
plices of  maximal volume, as described in section 3.3. 
Any triangulation other than the one where all the sim- 
plices are coned to v* would involve a simplex of  less 
than maximum volume, therefore at least one extra sim- 
plex would be required. 

Case (c) is also easy to take care of, with a simple 
observation. We may embed the boundary of  the blemish 
first so all its vertices except v* agree with the vertices of  
the equilateral triangulation of  the plane, but v* is 
mapped to the point at infinity in upper half space. Now 
each simplex of  the cone triangulation C(v*) has maximal 
volume. Again, this is must be a minimal triangulation, 
and furthermore it is the only possible minimal triangula- 
tion extending the boundary of the blemish. 

What remains to examine are the possible 12 blem- 
ishes of type (b). We can embed the boundary Of any 
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such blemish in hyperbolic space as Ibllows. The vertex 
v * is mapped to the point at infinity. We slit open the 
pentagon along a line segment flom its center to a vertex, 
lay out the restllt to a portion of the triangulation of the 
plane by equilateral triangles with the vertex of the slit at 
the origin, and raise to the 6/5 power to close up the slit 
again. 

In this embedding, the simpliccs of  the cone triangu- 
lation C(v ~) are not regular, but they are nearly regular, 
and numerics comes to the rescue. Let j be the number 
of  edges in the subdivision of each edge of the pentagon, 
so that the triangulation of  the pentagon has 5j 2 triangles. 
Then when the constants are evaluated in the method 
above, the volume deficit is estimated by 

Deft j )  = ~olog( j )  + 0(1).  

Here is a table giving values of  the volume deficit, the 
estimatcd deficit, and the error. 

Triangles Deficit Estimated Error J 
1 
2 
4 
8 

16 
32 
64 

5 .087935 .000000 .087935 
20 .122353 .036293 .086060 
80 .158141 .072586 .085554 

320 .194304 .108879 .085424 
1280 .230564 .145172 .085391 
5120 .266849 .181466 .085383 

20480 .303140 .217759 .085381 

The deficit increases by about .0363 each time j is 
doubled. The value of j when the deficit finally reaches 1 
is therefore greater than 225. At that time, when the direct 
volume estimate finally would admit one tetrahedron less, 
the number of  tetrahedra would be more than 5.25°. 

A simple recursive argument finishes the proof. We 
will show that the only minimal triangulation of the type 
(b) blemish is C(v*). In a minimal triangulation there can 
only be a tiny proportion of tetrahedra which touch the 
boundary at at two adjacent triangles of  the pentagon, 
since the deficit is quite small. In fact if the number of  
triangles is less than 5-250 then the numerical calculation 

above shows that the minimal triangulation must be 
C(v*). This is because any simplex that does cone from a 
triangle to vertex v * has a deficit of  about 1/3, and that is 
more than the total deficit allowed. 

If the number of  triangles is much more than 5.250 
then there may be some simplices that do not touch any 
triangle of  the pentagon, but only a tiny fraction of the 
simplices can do this. Almost all tile triangles of the pen- 
tagon around its boundary are faces of  tetrahedra with the 
fourth vertex at v*, since otherwise tile tetrahedra whose 
faces are the "vertical" faces from an edge along the pen- 
tagon to v* do not have a face within the pentagon. As 
before, it follows that all but a tiny fraction of the triangles 

in the blemish are faces of  tetmhedra which have a fourth 
vertex at v *. 

Thus, the blemish is triangulated by a cone-type tri- 
angulation to v* except for small type (a) and type (b) 
subblemishes within it. The previous argument shows that 
the only way to triangulate the type (a) subblemished 
minimally is to cone to v*. The type (b) subblemish is 
smaller than the one we started with, so by induction the 
only way to triangulate it minimally is to cone to v*. 
[] 

If  the sizes of  the deficits were not quite so small, this 
argument would not work for small j ,  and we could only 
deduce that the minimal number of  sircplices was within 
an additive constant of  the number for C(v*). For exam- 
ple, consider the sequence of subdivisions of  the 
tetrahedron or of  the octahedron instead of the 
icosahedron. For a tetrahedron, the numbers do not work 
out: in fact, the cone-type triangulations of  subdivisions of  
the tetrahedron can be improved by first knocking out the 
comers. This fact manifests itself in a table in which the 
deficit is more than 1 even for small values of  j .  For an 
octalaedron the numbers do work, and we could have used 
this instead of  the icosahedron to prove a similar theorem. 

The following theorem is an immediate consequence 
of Theorem 1. 

Theorem 2: t(n) = 2n- lO for sufficiemly large values of 
n of the form n =10k2+2.  

4. llemarks and Questions 

It remains open what size n must be before 2n - 10 is 
the maxinlum distance between triangulations. We con- 
jecture that this is the correct answer for all n>12. 

We can prove a slightly stronger result than Theorem 
2 by chopping the surface of the icosahedron tip into tri- 
angles in different ways. In this way we can extend the 
result to some values of  n not of  the form 10k2+2. For 
positive integers i and j we can chop each face of  the 
icosahedron into three j by j triangles and an i by i trian- 
gle. (This technique is like Escher's way of  generating one 
tessellation of the plane from another by changing the 
shape of the pieces.) The number of  fac,es in the restllting 
triangulation of  the ball is 20(i2+3j2). The number of  
vertices is 10i2+30j2+62-60i if i ~ j  and is 
10i 2+30j  2 + 6 2 -  30j if i < j .  Our proof is valid for all 
sufficiently large values of  n of  this form. 

Problem: find a purely combinatorial proof. 
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