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Abstract. This article resolves several long-standing conjectures
about Artin groups of euclidean type. Specifically we prove that
every irreducible euclidean Artin group is a torsion-free centerless
group with a decidable word problem and a finite-dimensional clas-
sifying space. We do this by showing that each of these groups is
isomorphic to a subgroup of a group with an infinite-type Garside
structure. The Garside groups involved are introduced here for the
first time. They are constructed by applying semi-standard pro-
cedures to crystallographic groups that contain euclidean Coxeter
groups but which need not be generated by the reflections they
contain.
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Arbitrary Coxeter groups are groups defined by a particularly simple
type of presentation, but the central motivating examples that lead to
the general theory are the irreducible groups generated by reflections
that act geometrically (i.e. properly discontinuously and cocompactly
by isometries) on spheres and euclidean spaces. Presentations for these
spherical and euclidean Coxeter groups are encoded in the well-known
Dynkin diagrams and extended Dynkin diagrams, respectively.

Arbitrary Artin groups are groups defined by a modified version of
these simple presentations, a definition designed to describe the fun-
damental group of a space constructed from the complement of the
hyperplanes in a complexified version of the reflection arrangement for
the corresponding Coxeter group.

The spherical Artin groups, i.e. the Artin groups corresponding to
Coxeter groups that act geometrically on spheres, have been well un-
derstood ever since Artin groups themselves were introduced in 1972 by
Pierre Deligne [Del72] and by Egbert Brieskorn and Kyoji Saito [BS72]
in adjacent articles in the Inventiones. Given the centrality of euclidean
Coxeter groups in Coxeter theory and Lie theory more generally, it has
been somewhat surprising that the structure of most euclidean Artin
groups has remained mysterious for the past forty plus years.

In this article we clarify the structure of all euclidean Artin groups by
showing that they are isomorphic to subgroups of a new class of Garside
groups that we believe to be of independent interest. More specifically
we prove four main results. The first establishes the existence of a new
class of Garside groups based on intervals in crystallographic groups
closely related to the irreducible euclidean Coxeter groups.

Theorem A (Crystallographic Garside groups). Let W = Cox(X̃n) be
an irreducible euclidean Coxeter group and let R be its set of reflections.
For each Coxeter element w ∈W there exists a set of translations T and
a crystallographic group Cryst(X̃n,w) containing W with generating
set R ∪ T so that the weighted factorizations of w over this expanded
generating set form a balanced lattice. As a consequence, this collection
of factorizations define a group Gar(X̃n,w) with a Garside structure
of infinite-type.

The second shows that these crystallographic Garside groups contain
subgroups that we call dual euclidean Artin groups.
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Art(X̃n) ≅ Art∗(X̃n,w) ↪ Gar(X̃n,w)
↡ ↡ ↡

Cox(X̃n) ≅ Cox∗(X̃n,w) ↪ Cryst(X̃n,w)

Figure 1. For each Coxeter element w in an irreducible
euclidean Coxeter group of type X̃n we define several
related groups.

Theorem B (Dual Artin Subgroups). For each irreducible euclidean

Coxeter group Cox(X̃n) and for each choice of Coxeter element w, the

Garside group Gar(X̃n,w) is an amalgamated free product of explicit

groups with the dual Artin group Art∗(X̃n,w) as one of its factors. In

particular, the dual Artin group Art∗(X̃n,w) injects into the Garside

group Gar(X̃n,w).

The third shows that this dual euclidean Artin group is isomorphic
to the corresponding Artin group.

Theorem C (Naturally isomorphic groups). For each irreducible eu-

clidean Coxeter group W = Cox(X̃n) and for each choice of Coxeter
element w as the product of the standard Coxeter generating set S, the
Artin group A =Art(X̃n) and the dual Artin group Ww =Art∗(X̃n,w)
are naturally isomorphic.

And finally, our fourth main result uses the Garside structure of the
crystallographic Garside supergroup to derive structural consequences
for its euclidean Artin subgroup.

Theorem D (Euclidean Artin groups). Every irreducible euclidean

Artin group Art(X̃n) is a torsion-free centerless group with a solvable
word problem and a finite-dimensional classifying space.

The relations among these groups are shown in Figure 1. The nota-
tions in the middle column refer to the Coxeter group and the Artin
group as defined by their dual presentations. These dual presentations
facilitate the connection between the Coxeter group Cox(X̃n) and the

crystallographic group Cryst(X̃n,w) and between the Artin group

Art(X̃n) and the crystallographic Garside group Gar(X̃n,w).
Theorem D represents a significant advance over what was previous

known. In 1987, Craig Squier analyzed the euclidean Artin groups with
three generators: Art(Ã2), Art(C̃2) and Art(G̃2) [Squ87]. His main
technique was to analyze the presentations as amalgamated products
and HNN extensions of known groups, a technique that does not appear
to generalize to the remaining groups. The ones of type A have been
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understood via a semi-classical embedding Art(Ãn−1) ↪Art(Bn) into
a type B spherical Artin group [All02, CP03, KP02, tD98].

More recently François Digne used dual Garside structures to suc-
cessfully analyze the euclidean Artin groups of types A and C [Dig06,
Dig12]. This article is the third in a series which continues the investi-
gation along these lines. The first two papers are [BM15] and [McC15]
and there also is a survey article [McCb] that discusses the results in
all three papers. The main result of [McC15] was a negative one: types
A, C and G are the only euclidean types whose dual presentations are
Garside. The results in this article show how to overcome the deficien-
cies that arise in types B, D, E and F .

Overview: The article is divided into four parts. Part I contains basic
background definitions for posets, Coxeter groups, intervals and Gar-
side structures. Part II introduces an interesting discrete group gen-
erated by coordinate permutations and translations by integer vectors
whose structure is closely related by the Coxeter and Artin groups of
type B. These “middle groups” and the structure of their intervals play
a major role in the proofs of the main results. Part III shifts attention
to intervals in arbitrary irreducible euclidean Coxeter groups and in-
troduces various new groups including the crystallographic groups and
crystallographic Garside groups mentioned above. Part IV contains
the proofs of our four main results.

Part 1. Background

This part contains background material with one section focusing on
posets and Coxeter groups, another on intervals and Garside structures.

1. Posets and Coxeter groups

This section reviews some basic definitions for the sake of complete-
ness. Our conventions follows [Hum90], [Sta97], and [DP02].

Definition 1.1 (Coxeter groups). A Coxeter group is any group W
that can be defined by a presentation of the following form. It has a
standard finite generating set S and only two types of relations. For
each s ∈ S there is a relation s2 = 1 and for each unordered pair of
distinct elements s, t ∈ S there is at most one relation of the form
(st)m = 1 where m = m(s, t) > 1 is an integer. When no relation
involving s and t occurs we consider m(s, t) = ∞. A reflection in W
is any conjugate of an element of S and we use R to denote the set of
all reflections in W . In other words, R = {wsw−1 ∣ s ∈ S,w ∈W}. This
presentation is usually encoded in a labeled graph Γ called a Coxeter
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Ã1

∞

Ãn

C̃n

B̃n

D̃n

Figure 2. Diagrams for the four infinite families.

diagram with a vertex for each s ∈ S, an edge connecting s and t if
m(s, t) > 2 and a label on this edge if m(s, t) > 3. When every m(s, t)
is contained in the set {2,3,4,6,∞} the edges labeled 4 and 6 are
replaced with double and triple edges, respectively. The group defined
by the presentation encoded in Γ is denoted W = Cox(Γ). A Coxeter
group is irreducible when its diagram is connected.

Definition 1.2 (Artin groups). For each Coxeter diagram Γ there is an
Artin group Art(Γ) defined by a presentation with a relation for each
two-generator relation in the standard presentation of Cox(Γ). More
specifically, if (st)m = 1 is a relation in Cox(Γ) then the presentation
of Art(Γ) has a relation that equates the two length m words that
strictly alternate between s and t. Thus (st)2 = 1 becomes st = ts,
(st)3 = 1 becomes sts = tst, (st)4 = 1 becomes stst = tsts, etc. There is
no relation when m(s, t) is infinite.

The general theory of Coxeter groups is motivated by those which
act geometrically (i.e. properly discontinuously and cocompactly by
isometries) on spheres and euclidean spaces and they are classified by
the famous Dynkin diagrams and extended Dynkin diagrams, respec-
tively.

Definition 1.3 (Extended Dynkin diagrams). There are four infinite
families and five sporadic examples of irreducible euclidean Coxeter
groups. The extended Dynkin diagrams for the infinite families, in-
cluding the unusual Ã1 diagram, are shown in Figure 2 and the five
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G̃2

F̃4

Ẽ6

Ẽ7

Ẽ8

Figure 3. Diagrams for the five sporadic examples.

sporadic examples are shown in Figure 3. The large white dot con-
nected to the rest of the diagram by dashed lines is the extending root
and the diagram with this dot removed is the ordinary Dynkin diagram
for the corresponding spherical Coxeter group. The large shaded dot is
called the vertical root of the diagram. Its definition and meaning are
discussed in Section 6.

Since we do not need most of the heavy machinery developed to
study euclidean Coxeter groups, it suffices to loosely introduce some
standard terminology.

Definition 1.4 (Simplices and tilings). One way to understand the
meaning of the extended Dynkin diagrams is that they encode the
geometry of a euclidean simplex σ in which each dihedral angle is π

m for
some integer m. The vertices correspond to facets of σ and the integer
m associated to a pair of vertices encodes the dihedral angle between
these facets. The reflections that fix the facets of σ then generate a
group of isometries which tile euclidean space with copies of σ. For
example, the G̃2 diagram corresponds to a triangle in the plane with
dihedral angles π

2 , π
3 , and π

6 and the corresponding tiling is shown in
Figure 11 on page 27. The top dimensional simplices in this tiling are
called chambers.

Definition 1.5 (Roots and reflections). The root system ΦXn asso-

ciated with the X̃n tiling is a collection of pairs of antipodal vectors
called roots which includes one pair ±α normal to each infinite fam-
ily of parallel hyperplanes and the length of α encodes the consistent
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Figure 4. The G2 root system.

spacing between these hyperplanes. The G2 root system is shown in
Figure 4. The X̃n tiling can be reconstructed from ΦXn root system as
follows. For each α ∈ ΦXn and for each k ∈ Z, let Hα,k be a hyperplane
{x ∣ x ⋅ α = k} orthogonal to α and let rα,k be the reflection that fixes
Hα,k pointwise. The chambers of the tiling are the connected compo-
nents of the complement of the union of all such hyperplanes and the
set R = {rα,k} is the full set of reflections in the irreducible euclidean

Coxeter group W = Cox(X̃n). The reflections S ⊂ R that reflect in the
facets of a single chamber σ are a minimal generating set corresponding
to the vertices of the X̃n Dynkin diagram.

Definition 1.6 (Coroots and translations). One consequence of these
definitions is that a longer root corresponds to a family of hyperplanes
that are more closely spaced. Let tλ be the translation produced by
multiplying reflections associated with adjacent and parallel hyper-
planes such as rα,k+1 and rα,k. The translation vector is a multiple

of α and one can compute λ = ( 2
α⋅α

)α. This vector is called the coroot
α∨ corresponding to α. In other words, tα∨ = rα,k+1rα,k.

We also record basic terminology for lattices and posets.

Definition 1.7 (Posets). Let P be a partially ordered set. If P con-
tains both a minimum element and a maximum element then it is
bounded. For each Q ⊂ P there is an induced subposet structure on Q
by restricting the partial order on P . A subposet C in which any two
elements are comparable is called a chain and its length is ∣C ∣−1. Every
finite chain is bounded and its maximum and minimum elements are
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1

a b

c d

0

Figure 5. A bounded graded poset that is not a lattice.

its endpoints. If a finite chain C is not a subposet of a strictly larger
finite chain with the same endpoints, then C is saturated. Saturated
chains of length 1 are called covering relations. If every saturated chain
in P between the same pair of endpoints has the same finite length,
then P is graded. There is also a weighted version where one defines a
weight or length to each covering relation and calls P weighted graded
when every saturated chain in P between the same pair of endpoints
has the same total weight. When varying weights are introduced they
shall always be discrete in the sense that the set of all weights is a
discrete subset of the positive reals bounded away from zero. The dual
P ∗ of a poset P has the same underlying set but the order is reversed,
and a poset is self-dual when it and its dual are isomorphic.

Definition 1.8 (Lattices). Let Q be any subset of a poset P . A lower
bound for Q is any p ∈ P with p ≤ q for all q ∈ Q. When the set of
lower bounds for Q has a unique maximum element, this element is the
greatest lower bound or meet of Q. Upper bounds and the least upper
bound or join of Q are defined analogously. The meet and join of Q
are denoted ⋀Q and ⋁Q in general and u ∧ v and u ∨ v if u and v are
the only elements in Q. When every pair of elements has a meet and
a join, P is a lattice and when every subset has a meet and a join, it is
a complete lattice.

Definition 1.9 (Bowties). Let P be a poset. A bowtie in P is a 4-tuple
of distinct elements (a, b ∶ c, d) such that a and b are minimal upper
bounds for c and d and c and d are maximal lower bounds for a and
b. The name reflects the fact that when edges are drawn to show that
a and b are above c and d, the configuration looks like a bowtie. See
Figure 5.

In [BM10, Proposition 1.5] Tom Brady and the first author noted
that a bounded graded poset P is a lattice if and only if P contains
no bowties. The same result holds, with the same proof, when P is
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graded with respect to a discrete weighting of its covering relations.
We reproduce the proof for completeness.

Proposition 1.10 (Lattice or bowtie). If P is a bounded poset that is
graded with respect to a set of discrete weights, then P is a lattice if
and only if P contains no bowties.

Proof. If P contains a bowtie (a, b ∶ c, d), then c and d have no join and
P is not a lattice. In the other direction, suppose P is not a lattice
because x and y have no join. An upper bound exists because P is
bounded, and a minimal upper bound exists because P is weighted
graded. Thus x and y must have more than one minimal upper bound.
Let a and b be two such minimal upper bounds and note that x and
y are lower bounds for a and b. If c is a maximal lower bound of a
and b satisfying c ≥ x and d is a maximal lower bound of a and b
satisfying d ≥ y, then (a, b ∶ c, d) is a bowtie. We know that a and b are
minimal upper bounds of c and d and that c and d are distinct since
either failure would create an upper bound of x and y that contradicts
the minimality of a and b. When x and y have no meet, the proof is
analogous. �

We conclude with a remark about subposets. Notice that bowties
remain bowties in induced subposets. Thus if P is not a lattice because
it contains a bowtie (a, b ∶ c, d) and Q is any subposet that contains all
four of these elements, then Q is also not a lattice since it contains the
same bowtie.

2. Intervals and Garside structures

As mentioned in the introduction, attempts to understand euclidean
Artin groups of euclidean type directly have only met with limited
success. The most promising progress has been by François Digne and
his approach is closely related to the dual presentations derived from
an interval in the corresponding Coxeter group [McC15]. We first recall
how a group with a fixed generating set naturally acts on a graph and
how assigning discrete weights to its generators turns this graph into a
metric space invariant under the group action.

Definition 2.1 (Marked groups). A marked group is a group G with a
fixed generating set S which, for convenience, we assume is symmetric
and injects into G. The (right) Cayley graph of G with respect to S is
a labeled directed graph denoted Cay(G,S) with vertices indexed by
G and edges indexed by G × S. The edge e(g,s) has label s, it starts
at vg and ends at vg′ where g′ = g ⋅ s. There is a natural faithful,
vertex-transitive, label and orientation preserving left action of G on
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its right Cayley graph and these are the only graph automorphisms
that preserve labels and orientations.

Definition 2.2 (Weights). Let S be a generating set for a group G.
We say S is a weighted generating set if its elements are assigned pos-
itive weights bounded away from 0 that form a discrete subset of the
positive reals. The elements s and s−1 should, of course, have the same
weight. For finite generating sets discreteness and the lower bound are
automatic but these are important restrictions when S is infinite. One
can always use a trivial weighting which assigns the same weight to
each generator. When G is generated by a weighted set S, its Cayley
graph can be made into a metric space where the length of each edge
is its weight. The length of a combinatorial path in the Cayley group
is then the sum of the weights of its edges and the distance between
two vertices is the minimum length of such a combinatorial path. For
infinite generating sets the lower bound on the weights can be used
to bound on the number of edges involved in a minimum length path
and the discreteness condition ensures that the infimum of these path
lengths is actually achieved by some path.

In any metric space, one can define the notion of an interval.

Definition 2.3 (Intervals in metric spaces). Let x, y and z be points
in a metric space (X,d). We say z is between x and y if the triangle
inequality is an equality: d(x, z) + d(z, y) = d(x, y). The interval [x, y]
is the collection of points between x and y, and note that this includes
both x and y. Intervals can also be endowed with a partial ordering by
defining u ≤ v when d(x,u) + d(u, v) + d(v, y) = d(x, y).

We are interested in intervals in groups.

Definition 2.4 (Intervals in groups). Let G be a group with a fixed
symmetric discretely weighted generated set and let d(g, h) denote the
distance between vg and vh in the corresponding metric Cayley graph.
Note that the symmetry assumption on the generating set allows us
to restrict attention to directed paths. From this metric on G we get
bounded intervals with a weighted grading: for g, h ∈ G, the interval
[g, h]G is the poset of group elements between g and h with g′ ∈ [g, h]G
when d(g, g′) + d(g′, h) = d(g, h) and g′ ≤ g′′ when d(g, g′) + d(g′, g′′) +
d(g′′, h) = d(g, h). In this article we include the superscript G as part of
the notation since we often consider similar intervals in closely related
groups.

Remark 2.5 (Intervals in Cayley graphs). The interval [g, h]G is a
bounded poset with discrete levels whose Hasse diagram is embedded
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as a subgraph of the weighted Cayley graph Cay(G,S) as the union
of all minimal length directed paths from vg to vh. This is because
g′ ∈ [g, h]G means vg′ lies on some minimal length path from vg to vh
and g′ < g′′ means that vg′ and vg′′ both occur on a common minimal
length path from vg to vh with vg′ occurring before vg′′ . Because the
structure of such a poset can be recovered from its Hasse diagram,
we let [g, h]G denote the edge-labeled directed graph that is visible
inside Cay(G,S). The left action of a group on its right Cayley graph
preserves labels and distances. Thus the interval [g, h]G is isomorphic
(as a labeled oriented directed graph) to the interval [1, g−1h]G. In
other words, every interval in the Cayley graph of G is isomorphic to
one that starts at the identity. We call g−1h the type of the interval
[g, h]G and note that intervals are isomorphic if and only if they have
the same type.

Intervals in groups can be used to construct new groups.

Definition 2.6 (Interval groups). Let G be a group generated by a
weighted set S and let g and h be distinct elements in G. The interval
group G[g,h] is defined as follows. Let S0 be the elements of S that
actually occurs as labels of edges in [g, h]G. The group G[g,h] has S0

as its generators and we impose all relations that are visible as closed
loops inside the portion of the Cayley graph of G that we call [g, h]G.
The elements in S ∖ S0 are not included since they do not occur in
any relation. More precisely, if they were included as generators, they
would generate a free group that splits off as a free factor. Thus it
is sufficient to understand the group defined above. Next note that
this group structure only depends on the type of the interval so it
is sufficient to consider interval groups of the form G[1,g]. For these
groups we simplify the notation to Gg and say that Gg is the interval
group obtained by pulling G apart at g.

The interval [1, g]G implicitly encodes a presentation of Gg and var-
ious explicit presentations can be found in [McC15] and [McCa]. Dual
Artin groups are examples of interval groups.

Definition 2.7 (Dual Artin groups). Let W = Cox(Γ) be a Coxeter
group with standard generating set S and let R be the full set of re-
flections with a trivial weighting. For any fixed total ordering of the
elements of S, the product of these generators in this order is called a
Coxeter element and for each Coxeter element w there is a dual Artin
group defined as follows. Let [1,w]W be the interval in the left Cayley
graph of W with respect to R and let R0 ⊂ R be the subset of reflec-
tions that actually occur in some minimal length factorizations of w.
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The dual Artin group with respect to w is the group Ww = Art∗(Γ,w)
generated by R0 and subject only to those relations that are visible
inside the interval [1,w]W .

An explicit presentation for the dual G̃2 Artin group is given at the
end of Section 5.

Remark 2.8 (Artin groups and dual Artin groups). In general the re-
lationship between the Artin group Art(Γ) and the dual Artin group
Art∗(Γ,w) is not yet completely clear. It is straightforward to show
using the Tits representation that the product of the elements in S
that produce w is a factorization of w into reflections of minimum
length which means that this factorization describes a directed path in
[1,w]W . As a consequence S is a subset of R0. Moreover, the standard
Artin relations are consequences of relations visible in [1,w]W (as illus-
trated in [BM00] and in Example 2.9) so that the injection of S into R0

extends to a group homomorphism from Art(Γ) to Art∗(Γ,w). See
also Proposition 10.1. When this homomorphism is an isomorphism,
we say that the interval [1,w]W encodes a dual presentation of Art(Γ).

To date, every dual Artin group that has been successfully analyzed
is isomorphic to the corresponding Artin group and as a consequence
its group structure is independent of the Coxeter element w used in
its construction. In particular, this is known to hold for all spherical
Artin groups [Bes03, BW02] and we prove it here for all euclidean Artin
groups as our third main result. It is precisely because this assertion
has not been proved in full generality that dual Artin groups deserve
a separate name. The following example illustrates the relationship
between Artin group presentations and dual presentations.

Example 2.9 (Dihedral Artin groups). The spherical Coxeter groups
with two generators are the dihedral groups. Let W be the dihedral
group of order 10 with Coxeter presentation ⟨a, b ∣ a2 = b2 = (ab)5 = 1⟩
where a and b are reflections of R2 through the origin with an angle
of π/5 between their fixed lines. The corresponding Artin group has
presentation ⟨a, b ∣ ababa = babab⟩. The set S = {a, b} is a standard
generating set for W and the set R = {a, b, c, d, e} is its full set of
reflections where these are the five reflections in W in cyclic order.
The Coxeter element w = ab is a 2π/5 rotation and its minimum length
factorizations over R are ab, bc, cd, de and ea. The dual Artin group
has presentation ⟨a, b, c, d, e ∣ ab = bc = cd = de = ea⟩. Systematically
eliminating c, d and e recovers the original Artin group presentation.

The dual presentations for the spherical Artin groups were intro-
duced and studied by David Bessis [Bes03] and by Tom Brady and
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Colum Watt [BW02]. Here we pause to record one technical fact about
Coxeter elements in the corresponding spherical Coxeter groups.

Proposition 2.10 (Spherical Coxeter elements). Let w0 be a Coxeter
element for a spherical Coxeter group W0 = Cox(Xn) and let R be its
set of reflections. For every r ∈ R there is a chamber in the correspond-
ing spherical tiling and an ordering on the reflections fixing its facets
so that (1) the product of these reflections in this order is w0 and (2)
the leftmost reflection in the list is r.

One reason that dual presentations of Artin groups are of interest is
that they satisfy almost all of the requirements of a Garside structure.
In fact, there is only one property that they might lack.

Proposition 2.11 (Garside structures). Let G be a group with a sym-
metric discretely weighted generating set that is closed under conjuga-
tion. If for some element g the weighted interval [1, g]G is a lattice,
then the group Gg is a Garside group. In particular, if W = Cox(Γ)
is a Coxeter group generated by its full set of reflections with Coxeter
element w and the interval [1,w]W is a lattice, then the dual Artin
group Ww =Art∗(Γ,w) is a Garside group.

The reader should note that we are using “Garside structure” and
“Garside group” in the expanded sense of Digne [Dig06, Dig12] rather
than the original definition that requires the generating set to be finite.
The discreteness of the grading of the interval substitutes for finiteness
of the generating set. In particular, the discreteness of the grading
forces the standard Garside algorithms to terminate. The standard
proofs are otherwise unchanged. Proposition 2.11 was stated by David
Bessis in [Bes03, Theorem 0.5.2], except for the shift from finite to
infinite discretely weighted generating sets. For a more detailed dis-
cussion see [Bes03] and particularly the book [Deh15]. Interval groups
appear in [DDM13] and in [Deh15, Chapter VI] as the “germ derived
from a groupoid”. The terminology is different but the translation is
straightforward. When an interval such as [1,w] is a lattice and it is
used to construct a Garside group, the interval [1,w] itself embeds in
the Cayley graph of the new group G and the element w, viewed as an
element in G, is called a Garside element. Being a Garside group has
many consequences.

Theorem 2.12 (Consequences). If G is a group with a Garside struc-
ture in the expanded sense of Digne, then its elements have normal
forms and it has a finite-dimensional classifying space whose dimen-
sion is equal to the length of the longest chain in its defining interval.
As a consequence, G has a decidable word problem and it is torsion-free.
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Proof. The initial consequences follow from [DP99] and [CMW04] with
minor modifications to allow for infinite discretely weighted generating
sets, and the latter ones are immediate corollaries. �

A detailed description of the Garside normal form is never needed,
but we give a coarse description sufficient to state a key property of
elements that commute with the Garside element.

Definition 2.13 (Normal forms). Let G be a Garside group in the
expanded sense used here and with Garside element w. The elements
in the interval [1,w] are called simple elements. For every u ∈ G there
is an integer n and simple elements ui such that u = wnu1u2⋯uk. If we
impose a few additional conditions, the integer n and the simples ui are
uniquely determined by u and this expression is called its (left-greedy)
normal form NF (u). Note that the integer n might be negative. When
this happens, it indicates that the word u does not belong to the pos-
itive monoid generated by the simple elements. The value of n is the
smallest integer such that w−nu lies in this positive monoid.

One consequence of being a Garside group is that the set of simples
is closed under conjugation by w. In fact, conjugation by w is a lat-
tice isomorphism (but one that typically does not preserve edge-labels)
sending each simple to the left complement of its left complement. In
particular, the simple by simple conjugation of the normal form for u
remains in normal form, its product is uw and by the uniqueness of
normal forms, this must be the normal form for uw. In particular, this
proves the following.

Proposition 2.14 (Normal forms). Let G be a Garside group with
Garside element w. For each u ∈ G, the Garside normal form of uw is
obtained by conjugating each simple in the Garside normal form for u.
In other words, if NF (u) = wnu1u2⋯uk then NF (uw) = wnuw1 uw2⋯uwk .
In particular, an element in G commutes with w if and only if its
normal form is built out of simples that commute with w.

There is one final fact about Garside structures that we need in
the later sections, and that is an elementary observation about nicely
situated sublattices of lattices and how they relate to normal forms.

Proposition 2.15 (Injective maps). Let G′ be a subgroup of G and let
S′ and S be their conjugacy closed generating sets with S′ ⊂ S. If w
is an element of G′ and there is a weighting on S such that (1) both
[1,w]G′

and [1,w]G are lattices and (2) the inclusion map [1,w]G′ ↪
[1,w]G is a lattice homomorphism preserving meets and joins, then the
interval groups G′

w and Gw are both Garside groups and the natural
map G′

w → Gw is an injection.
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Proof. First note that there is a natural map from G′

w to Gw because
the relations defining G′

w are included among the relations that define
Gw. For injectivity, let u be a nontrivial element of G′

w with normal
form NF (u) = wnu1u2⋯uk. Suppose we view this as an expression
representing an element of Gw. The fact that the inclusion of the
smaller interval into the larger one preserves meets and joins means that
this expression remains in normal form in this new context. Therefore
the image of u in Gw is also nontrivial and the map is an injection. �

Part 2. Middle groups

This part focuses on a series of elementary groups that we call “mid-
dle groups” and it establishes their key properties.

3. Permutations and translations

The discrete group of euclidean isometries generated by all coordi-
nate permutations and all translations by vectors with integer coordi-
nates is a group that plays an important role in the proofs of our main
results. In this section we record its basic properties and relate it to
the spherical Coxeter group Cox(Bn) which encodes the symmetries
of the n-cube.

Definition 3.1 (Cubical symmetries). Let [−1,1]n denote the points
in Rn where every coordinate has absolute value at most 1. This n-
dimensional cube of side length 2 centered at the origin has isometry
group Cox(Bn) also called the signed symmetric group. It has n2

reflection symmetries. We give these reflections nonstandard names
based on an alternative realization of this group described below. Let
rij be the reflection which switches the i-th and j-th coordinates fixing
the hyperplane xi = xj and let ti denote the reflection which changes the
sign of the i-th coordinate fixing the hyperplane xi = 0. We call these
collections R and T respectively. Together they generate Cox(Bn),
but they are neither a minimal generating set nor all of the reflections.
The remaining reflections are obtained by conjugation. Conjugating rij
by ti, for example, produces an isometry which switches the i-th and
j-th coordinates and changes both signs fixing the hyperplane xi = −xj.

The unusual names for the reflections are explained by an alternative
geometric realization of Cox(Bn) as isometries of an n-torus.

Definition 3.2 (Toroidal symmetries). Let T n be the n-dimensional
torus formed by identifying opposite sides of the n-cube [−1,1]n and
note that the previously defined action of action of Cox(Bn) the n-
cube descends to T n and it permutes the 2n special points with every
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coordinate equal to ±1
2 . In fact, the action of Cox(Bn) on these 2n

special points is faithful. A new action of Cox(Bn) on T n is obtained
by leaving the action of the rij ∈ R unchanged and by replacing the “re-
flection” ti ∈ T with a “translation” which adds 1 to the i-th coordinate
mod 2. This has the net effect of switching the sign of the i-th coor-
dinate of each special point because the translation x ↦ x + 1 in R/2Z
switches 1

2 and −1
2 . Since the elements in R∪ T act on the 2n special

points as before, they generate the same group up to isomorphism.

The group we wish to discuss is generated by lifts of these toriodal
isometries to all of Rn.

Definition 3.3 (Permutations and translations). Let rij act on Rn as
before and let ti denote the translation which adds 1 to the i-th coor-
dinate leaving the others unchanged. The reflections R = {rij} and the
translations T = {ti} generate a group Mid(Bn) that we call the middle
group or more formally the annular symmetric group. The names are
explained below. The isometries in R generates the symmetric group
Symn and the isometries in T generate a free abelian group Zn. More-
over, because the Zn subgroup generated by the translations is nor-
malized by the permutations in Symn with trivial intersection, the full
group Mid(Bn) has the structure of a semidirect product Zn ⋊ Symn.
Every element of Mid(Bn) can be written uniquely in the form tλrπ
where λ ∈ Zn is a vector with integer entries and π ∈ Symn is a permu-
tation.

Definition 3.4 (Reflections). As in Cox(Bn) there are other reflec-
tions in Mid(Bn) obtained by conjugation. The basic translations in
T are closed under conjugation but infinitely many new reflections are
added to R when we close this set under conjugation. For example,
t1r12t−11 is a reflection whose fixed hyperplane is parallel to that of r12.
We call this reflection r12(1). More generally, for each integer k we de-
fine rij(k) ∶= tki rijt−ki = t−kj rijtkj . The original reflections are rij = rij(0).
Let R′ denote the set of all these reflections. The set R′ ∪ T is called
the full generating set of Mid(Bn).

The center of a middle group is easy to compute.

Proposition 3.5 (Center). The center of the middle group Mid(Bn) is
an infinite cyclic subgroup generated by the pure translation t1 = ∏n

i=1 ti.

Proof. Let u = tλrπ be an element in the center. If π is a nontrivial
permutation and i is an index that is moved by π then u conjugates
ti to tπ(i), contradiction. Thus u must be a pure translation tλ. In
order for tλ to be central λ must be orthogonal to all of the roots of the
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N

D

Figure 6. The configuration that explains the name an-
nular symmetric group.

reflections and thus in the direction 1 = ⟨1n⟩. In particular, the center
is contained in the infinite cyclic subgroup generated by t1 = ∏n

i=1 ti
which adds 1 to every coordinate. Conversely, t1 commutes with every
element of M . �

We call the spherical Artin group Art(Bn) an annular braid group
because it is the braid group of the annulus in the sense of Birman
[Bir74, p.11]. The analogous definition of an annular symmetric group
leads to an alternative perspective on the group Mid(Bn).

Definition 3.6 (Annular symmetric groups). Let N be an annulus,
let D be a disk contained in N and let pi, i ∈ {1,2, . . . , n} be a set
of n distinct points in D. See Figure 6. The annular braid group
is defined as the fundamental group of the configuration space of n
unordered distinct points in the annulus with this configuration as its
base point. It keeps track of the way in which the points braid around
each other well as how much they wind around the annulus. An annular
symmetric group ignores the braiding and only keeps track of how the
points permute and wind around the annulus. More concretely, if we
define rij as the motion which swaps pi and pj without leaving the disk
D and define ti as the motion which wraps the point pi once around the
annulusN in the direction considered positive in its fundamental group,
then the elements of this group can be identified with the elements of
Mid(Bn) and its normal form tλrπ can be recovered as follows. The
permutation π records the permutation of the points and the vector
λ is a tuple of winding numbers obtained by viewing the path of the
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Art(Ãn−1) ↪ Art(Bn) ↠ Z
↡ ↡ ∥

Cox(Ãn−1) ↪ Mid(Bn) ↠ Z
↡

Cox(Bn)

Figure 7. Middle groups and their relatives.

point pi as a (near) loop that starts and ends in the disk D and letting
its winding number be the i-th coordinate of λ.

The name “middle group” refers to its close connections with various
other groups as shown in Figure 7.

Remark 3.7 (Affine braid groups). Since the groups Cox(An−1) and
Art(An−1) are symmetric groups and braid groups, we call their nat-

ural euclidean extensions, the euclidean symmetric group Cox(Ãn−1)
and the euclidean braid group Art(Ãn−1). The name “affine braid
group” often appears in the literature but its meaning is not stable.
For geometric group theorists it refers to the euclidean braid group
Art(Ãn−1) [CP03] but for representation theorists it refers to the an-
nular braid group Art(Bn) [OR07]. Our alternative names aim to limit
this potential confusion. The adjective “euclidean” also highlights that
the Coxeter group preserves lengths and angles.

The maps in Figure 7 are easy to describe.

Definition 3.8 (Maps). The map from Mid(Bn) onto Cox(Bn) can
be seen geometrically. The squares of the basic translations in T gener-
ate a normal subgroup K ≅ (2Z)n in Mid(Bn) and if we quotient Rn by
the action of K the result is the n-torus T n. The kernel of the induced
action of Mid(Bn) on T n is K and the action itself is easily seen to
be the toroidal action of Cox(Bn) on T n. To understand the horizon-

tal map from Cox(Ãn−1) to Mid(Bn) we note that the reflections in
Mid(Bn) acting on the hyperplane in Rn perpendicular to the vector
1 = ⟨1n⟩ is the standard realization of the euclidean symmetric group

Cox(Ãn−1). Its image in Mid(Bn) is normal and the quotient sends
u ∈ Mid(Bn) to the sum of the coordinates of the image of the origin
under u. We call the map from Mid(Bn) ↠ Z the vertical displace-
ment map. The map from Art(Bn) to Mid(Bn) is clear when these are
viewed as the annular braid group and annular symmetric group and
the horizontal maps along the top row are well-known [CP03]. More
precisely, the map from Art(Bn) to Z sends elements to the sum of the
winding numbers of the various paths from the disk to itself and the
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t1 r12 r23 r34 r45

t1 r12 r23 r34 r45

t1 r12 r23 r34 r45

Figure 8. Dynkin-diagram style presentations for the
three groups Art(B5), Mid(B5) and Cox(B5). In these
diagrams solid circles indicate generators of order 2 and
empty circles indicate generators of infinite order.

kernel of this map, the set of annular braids with global winding num-
ber 0 is the group Art(Ãn−1). We call the map from Art(Bn) ↠ Z
the global winding number map.

The middle column of Figure 7 can be understood via presentations.

Definition 3.9 (Presentation). A standard minimal generating set for
Mid(Bn) consists of adjacent transpositions S = {rij ∣ j = i+1} ⊂ R and
the single translation t1. The set S generates all coordinate permuta-
tions and the other basic translations can be obtained by conjugating
t1 by a permutation. There are a number of obvious relations among
these generators in addition to the standard Coxeter presentation for
the symmetric group. For example, t1 commutes with rij for i, j > 1
and t1r12t1r12 = r12t1r12t1 since both motions are translations which
add 1 to the first two coordinates leaving the others unchanged. These
relations can be summarized in a diagram following the usual conven-
tions: generators label the vertices, vertices not connected by an edge
indicate generators which commute, vertices connect by a single edge
indicate generators a and b which “braid” (i.e. aba = bab) and vertices
connected by a double edge indicate generators a and b which satisfy
the relation abab = baba. For Coxeter groups, the generators have order
2 and for Artin groups they have infinite order. The middle groups are
a mixed case: t1 has infinite order but the adjacent transpositions have
order 2. See Figure 8. It is an easy exercise to show that the rela-
tions encoded in the diagram for Mid(Bn) are a presentation and as a
consequence the surjections from Art(Bn) to Mid(Bn) to Cox(Bn)
become clear. Also note that the composition of these maps is the
standard projection map from Art(Bn) to Cox(Bn).
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And finally we record a slightly more general context where groups
isomorphic to middle groups arise. These are the exact conditions
which occur in the later sections.

Proposition 3.10 (Recognizing middle groups). Suppose the symmet-
ric group Symn acts faithfully by isometries on an m-dimensional eu-
clidean space with root system Φ and m ≥ n. In addition, let r be an
element of a Coxeter generating set S for Symn representing one of two
ends of the corresponding Dynkin diagram (so that r does not commute
with exactly one element of S). If t = tλ is a translation such that t
does not commute with r, t does commute with the rest of S, and λ is
not in the span of root system Φ, then the group of isometries generated
by S ∪ {t} is isomorphic to Mid(Bn).

Proof. Let G be the group generated by these elements. First pick
a point fixed by Symn to serve as our origin and consider the n-
dimensional subspace of Rm through this point spanned by the vectors
Φ∪ {λ}. Because S ∪ {t} preserves this subspace and fixes its orthogo-
nal complement, the same is true for the group G that these isometries
generate. Thus we may restrict our attention to this subspace. Next
establish a coordinate system on this Rn so that Symn is acting by
coordinate permutations with the elements of S switching adjacent co-
ordinates and r = r12. From the conditions imposed on t we know that
in this coordinate system λ = (a, b, b, . . . , b) with a ≠ b. Finally, note
that the generators of G (and thus every element of G) commute with
the linear maps which fix the codimension one subspace spanned by Φ
and rescale the vectors perpendicular to this subspace, i.e. the vectors
with all coordinates equal. After conjugating G by the appropriate
such map, we get the standard realization of Mid(Bn) and because
this conjugation is reversible the groups are isomorphic. �

4. Intervals and noncrossing partitions

Section 3 discussed the groups Cox(Bn), Mid(Bn) and Art(Bn),
the maps between them, and a consistently labeled minimal generating
set {t1} ∪ S with S = {rij ∣ j = i + 1}. In this section we investigate
intervals in these groups and relate them to noncrossing partitions.

Definition 4.1 (Special elements). Recall that a Coxeter element is a
element obtained by multiplying together the elements of some Coxeter
generating set in a Coxeter group in some order and that for spherical
Coxeter groups, or more generally for Coxeter groups whose Dynkin
diagram is a tree, all Coxeter elements belong to a single conjugacy
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−e1

e5

e4e3

e2

e1

−e5

−e4 −e3

−e2

Figure 9. A centrally symmetric noncrossing partition
in a regular convex decagon.

class. For the group Cox(Bn) we pick as our standard Coxeter ele-
ment w the product on the standard minimal generating set in the
order they appear in the Dynkin diagram: t1, r12, r23, and so on.
Thus, for Cox(B5), shown in Figure 8, we have w = t1r12r23r34r45 and
since we compose these as functions (from right to left) the element
w sends the point (x1, x2, x3, x4, x5) to the point (−x5, x1, x2, x3, x4).
The groups Mid(Bn) and Art(Bn) have analogues of the standard
Coxeter element obtained by multiplying the corresponding generators
together in the same fashion. In Mid(B5) the resulting euclidean isom-
etry w = t1r12r23r34r45 sends the point (x1, x2, x3, x4, x5) to the point
(x5 + 1, x1, x2, x3, x4) which is consistent with the reinterpretation of t1
as a translation. We call w the special element in all three contexts
but in Cox(Bn) it is more properly called a Coxeter element and in
Art(Bn) it is a dual Garside element.

Definition 4.2 (Noncrossing partitions). A noncrossing partition is a
partition of the vertices of a regular convex polygon so that the convex
hulls of distinct blocks are disjoint. A noncrossing partition of type B
is a noncrossing partition of an even-sided polygon whose blocks are
symmetric with respect to a π-rotation about its center. Figure 9 shows
a type B noncrossing partition. One partition is below another if every
block of the first is contained in some block of the second. Thus the
partition where every block is a singleton is the minimum element and
the partition with only one block is the maximum element.
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It is well-known, at this point, that the type B noncrossing partitions
correspond to the special interval in the type B Coxeter group [Rei97].

Lemma 4.3 (Type B intervals). If W = Cox(Bn) is the type B Cox-
eter group generated by all of its reflections and w is its special element,
then there is a natural identification of the interval [1,w]W and the type
B noncrossing partitions of a 2n-gon.

Proof. Every element in W is determined by how it permutes the 2n
unit vectors {±ei} on the coordinate axes and under the element w
these form a single cycle of length 2n: it sends ±ei to ±ei+1 for i < n
and ±en to ∓e1. If we label the vertices of a 2n-gon with the vectors in
{±ei} so that w permutes them in a clockwise fashion (the case n = 5 is
shown in Figure 9), then the interval [1,w]W is isomorphic as a poset
to the type B noncrossing partitions of this 2n-gon. The identification
goes as follows: associate to each type B noncrossing partition the
unique element of W which sends the vector ei to the vector which
occurs next in clockwise order in the boundary of the block to which
ei belongs. For example, the element u corresponding to the partition
shown in Figure 9 sends e1 to e1, e2 to −e4, e3 to −e3 and e4 to e5 and
e5 to −e2. Conversely, u ∈ W lies in the interval [1,w]W if and only
if the orbits of these vectors under u form noncrossing blocks which u
rotates in a clockwise manner. �

The following is thus only a minor extension of known results.

Theorem 4.4 (Special intervals). Let W = Cox(Bn), M = Mid(Bn)
and A = Art(Bn) be the Coxeter group of type B, the middle group,
and the Artin group of type B with their standard full generating sets
and let w denote the special element in all three contexts. The intervals
[1,w]W , [1,w]M and [1,w]A are isomorphic as labeled posets and their
common underlying poset structure is that of the type B noncrossing
partition lattice. As a consequence, the group obtained by pulling a
middle group apart at its special element is an annular braid group.

Proof. It is well known that the intervals [1,w]W and [1,w]A are iso-
morphic as labeled posets, that their common underlying poset is the
type B noncrossing partition lattice and that A is the group whose pre-
sentation is encoded in [1,w]W . This is essentially what is meant when
we say that spherical Artin groups have dual Garside presentations. In
particular, the final assertion is immediate once we show that [1,w]M
is isomorphic to the others as a labeled poset. Showing that all the
factorizations in [1,w]W lift from a factorization of an isometry of the
n-torus T n to a factorization of the corresponding isometry of Rn and
that no new factorizations arise is an easy exercise. �
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These noncrossing diagrams make it easy to show that very few sim-
ples commute with the special element.

Proposition 4.5 (Commuting with w). Let G be the group Cox(Bn),
Mid(Bn) or Art(Bn) with its standard generating set and let w be its
special element. The only elements in [1,w]G that commute with w are
the bounding elements 1 and w.

Proof. If an element u in [1,w]G commutes with w then it must cor-
respond to a centrally symmetric noncrossing partition of a 2n-gon
that is invariant under a π

n -rotation since this is how conjugation by
w acts on the type B noncrossing partitions. The only noncrossing
partitions left invariant under this action are the partition in which
every vertex belongs to a distinct block and the partition in which all
the vertices belong to single block, and these correspond to 1 and w
respectively. �

Remark 4.6 (Generators and relations). The generators and rela-
tions visible inside [1,w]M can be given more explicitly. The edge
labels in the interval [1,w]W are exactly the n2 reflection generators of
W = Cox(Bn) but this finite set is far from the full (infinite) generat-
ing set of M = Mid(Bn). In fact, the only elements which appear are
T = {ti}, R = {rij} and the set R(1) = {rij(1)}. The element ti corre-
sponds to the diagonal edge connecting ei and −ei, the element rij corre-
sponds to the pair of edges connecting ±ei to ±ej and the element rij(1)
corresponds to the pair of edges connecting ±ei to ∓ej. If two generators
correspond to edges which are completely disjoint, then there exists a
commutation relation visible in the interval [1,w]M . For example, the
length four cycle t1r23 = r23t1 can be found inside [1,w]M . If two gener-
ators correspond to pairs of nondiagonal edges with only one endpoint
in common, then dual braid relations are visible inside [1,w]M of the
following form: there are three generators a, b and c with ab = bc = ca
visible in the interval. To illustrate, the generators r45 and r25(1) share
an endpoint and we have relations r45r25(1) = r25(1)r24(1) = r24(1)r45
and so r45 and r25(1) braid in the corresponding interval group. Fi-
nally, the generators ti, rij, tj and rij(1) (with i < j) satisfy a dual
Artin relation of length 4: tirij = rijtj = tjrij(1) = rij(1)ti. These re-
lations, taken together, are a complete presentation for the spherical
Artin group Art(Bn).

Our final result in this section gives a new perspective on the hori-
zontal maps between the first two columns of Figure 7.

Proposition 4.7 (Horizontal maps). If M = Mid(Bn) is a middle
group with special element w, then (1) the reflections labeling edges in
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[1,w]M generate a copy of Cox(Ãn−1) inside M , (2) the group gen-
erated by these elements and subject only to the relations among them
visible in [1,w]M is isomorphic to Art(Ãn−1), and (3) the natural pro-
jection map from this group to M factors through and injects into the
annular braid group Art(Bn).

Proof. The reflections labeling an edge in [1,w]M are {rij} ∪ {rij(1)}
and the subset {rij ∣ j = i+1}∪{r1n(1)} is already sufficient to generate

the Cox(Ãn−1) subgroup of M since they bound a chamber in the Ãn−1
tiling of the hyperplane orthogonal to the vector 1 = ⟨1n⟩. Next, notice
that these elements correspond to the boundary edges of the 2n-gon for
w. As such they never cross and either braid or commute depending
on whether or not they have endpoints in common. Thus the group
defined by just these generators and relations is isomorphic to the group
Art(Ãn−1). It is now straightforward to check the other generators
and relations are consistent with this identification and what we have
described is the standard copy of Art(Ãn−1) inside Art(Bn). �

Part 3. New Groups

In this part we introduce several new groups closely related to each
irreducible euclidean Coxeter group and its corresponding Artin group.

5. Intervals in euclidean Coxeter groups

Let W = Cox(X̃n) be an irreducible euclidean Coxeter group with
reflections R and Coxeter element w. The coarse structure of the inter-
val [1,w]W was determined in the earlier articles [BM15] and [McC15]
and in this section we recall the revelant definitions and results. The
first article, by Noel Brady and the first author characterized the set
of all possible minimum length factorizations of a fixed euclidean isom-
etry into arbitrary reflections and the second showed that Coxeter in-
tervals in irreducible euclidean Coxeter groups are subposets of the
unrestricted intervals analyzed in the first article. We begin by recall-
ing the distinction between points and vectors.

Definition 5.1 (Points and vectors). Let V denote an n-dimensional
real vector space with the standard positive definite inner product and
let E be the corresponding euclidean analogue where the location of
the origin has been forgotten leaving only a simply transitive action of
V on E. The elements of V are called vectors and the elements of E
are called points. Ordered pairs of points in E determine a vector in V .

In [BM15] euclidean isometries are analyzed in terms of their two
basic invariants: min-sets in E and move-sets in V .
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Definition 5.2 (Basic invariants). Let u be an isometry of E. If λ
is the vector from x to u(x) then we say that x is moved by λ under
u. The collection Mov(u) = {λ ∣ x + λ = u(x)} ⊂ V of all such vectors
is the move-set of u. The subset Mov(u) is an affine subspace of V
and for each λ ∈ Mov(u) the points of E moved by λ form an affine
subspace of E [BM15, Proposition 3.2]. In particular, there is a unique
vector µ in Mov(u) of minimal length and the corresponding points
in E form the min-set of u, Min(u). An isometry u is elliptic under
the equivalent conditions that the vector µ is trivial, Mov(u) contains
the origin in V and there are points fixed by u. For elliptic isometries
we sometimes write Fix(u) instead of Min(u). Isometries that are not
elliptic are called hyperbolic.

Let L = Isom(E) be the Lie group of all euclidean isometries. The
main results in [BM15] analyze the structure of the intervals in Isom(E)
with all reflections as its (trivially weighted) generating set. We call
the interval [1,w]L an ellptic or hyperbolic interval depending on the
nature of w. In both cases, the elements of the intervals and the order-
ing can be precisely described in terms of their basic invariants. See
[BM15] for details. In this article we only need the coarse structure of
hyperbolic intervals where w has maximal reflection length, and in this
context we define horizontal and vertical directions.

Definition 5.3 (Horizontal and vertical). If w is a hyperbolic isometry
whose min-set is a line, then the direction this line is translated is
declared to be vertical and the orthogonal directions are horizontal. A
reflection, or more generally an elliptic isometry is called horizontal if
every point moves in a horizontal direction and it is vertical otherwise.
Thus a vertical elliptic isometry merely needs to have some vertical
component to the motion of some point.

A Coxeter element for the G̃2 tiling is a glide reflection and thus
an isometry of this type (see Figure 11). Of the 6 families of parallel
reflections there is one family of horizontal reflections and five families
of vertical reflections. These can be distinquished by whether or not
their fixed hyperplanes cross the glide axis.

Definition 5.4 (Coarse structure). Let L = Isom(E) be the Lie group
of all euclidean isometries and let w be a hyperbolic euclidean isometry
whose min-set is a line. For each element u in the interval [1,w]L we
consider the pair (u, v) where uv = w. There are exactly three possible
cases: (1) u is a horizontal elliptic isometry and v is hyperbolic, (2) both
u and v are vertical elliptic isometries, and (3) u is hyperbolic and v is
horizontal elliptic. These form the three rows of the coarse structure of
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Figure 10. Coarse structure of a hyperbolic interval.

the interval arranged from bottom to top and shown in Figure 10. The
bottom row is graded by the dimension of the fixed set of u from the
identity element on the left to the elliptics fixing only a vertical line on
the right. The middle row has a similar grading: from those that fix
a non-vertically invariant hyperplane on the left to those fixing only a
single point on the right. Alternatively, we could focus on v instead of
u. The v on the left end of the middle row fix only a point and the v on
the right fix a non-vertically invariant hyperplane. Finally, the top row
is also graded by the fixed set of v: from v fixing a vertical line on the
left to v equal to the identity on the right. For every affine subspace of
E there is exactly one elliptic u in one of the bottom two rows whose
fix-set is this subspace. Similarly, there is exactly one elliptic v in one
of the top two rows whose fix-set is this subspace. Covering relations
correspond to one horizontal or one vertical step in this grid. Elements
higher in the poset order are above and/or to the right while those
lower down are down and/or to the left. Finally, note that the second
box on the bottom row contains the horizontal reflections, the first box
in the middle row contains the vertical reflections, and the first box on
the top row contains pure translations.

It turns out that for any irreducible euclidean Coxeter group W =
Cox(X̃n) with reflections R and Coxeter element w, the Coxeter in-
terval [1,w]W is a subposet of the corresponding hyperbolic interval
in the full euclidean isometry group [McC15]. In particular, it has the
same basic structure.

Definition 5.5 (Coxeter intervals). As described in [McC15], the min-
set of the Coxeter element w is a line ` called the Coxeter axis. Every
point on this line is contained in the interior of some top-dimensional
simplex, except for a discrete set of equally spaced points xi for i ∈ Z.
The simplices through which ` passes are called axial simplices and the
vertices of these simplices are axial vertices. The reflections which occur
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Figure 11. The G̃2 tiling of the plane with annotations
corresponding to a particular Coxeter element w.

as edge labels in the interval [1,w]W are precisely those that contain
an axial vertex in its fixed hyperplane [McC15, Theorem 9.6]. This
includes all of the vertical reflections in W but only a finite number
of the horizontal ones. We call these sets RV and RH respectively.
Since the Coxeter axis passes through the interior of top-dimensional
simplices, it does not lie on the hyperplane of any horizontal reflection.
For each family of parallel horizontal reflections, the only ones in the
interval are the ones determined by the adjacent pair of hyperplanes
which contain the Coxeter axis between them. In other words, there
are precisely two horizontal reflections in the interval for each antipodal
pair of horizontal roots in the root system.

The next lemma records a slightly technical fact about roots and
axial vertices that generalizes the observation above about horizontal
reflections. It was verified by computer for the sporadic types and by
hand for the infinite families.

Lemma 5.6 (Convexity). Let W = Cox(X̃n) be an irreducible eu-
clidean Coxeter group with Coxeter element w and let r be a reflection
that contains at least one axial vertex in its fixed hyperplane H. If α is
a root in the type Xn root system such that α has a positive dot product
with the direction of the Coxeter axis and the image of α under the
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Figure 12. Coarse structure of the G̃2 interval.

reflection r has a negative dot product with the direction of the Coxeter
axis, then the convex hull of the axial vertices contained in H lies be-
tween two consecutive hyperplanes in the Coxeter complex with normal
vector α.

Heuristically, the reason why Lemma 5.6 is true is that there are
Coxeter elements whose axial vertices overlap with this set of axial
vertices in the hyperplane H and in this alternative world, the consec-
utive reflections with normal vector α are horizontal with respect to
the other Coxeter element and bound its column of axial vertices.

Example 5.7 (G̃2 interval). The G̃2 tiling of the plane is shown in
Figure 11 with various aspects highlighted. The Coxeter element w is
a glide reflection whose glide axis is its min-set. This is shown as a
dashed line. The heavily shaded triangles are the axial simplices of w
and the large dots indicate the axial vertices. The lightly shaded verti-
cal strip is the convex hull of the axial vertices and it is bounded by the
only two horizontal reflections which occur in the Coxeter interval. The
coarse structure of the interval is shown in Figure 12. The numbers
along the top and bottom rows represent the finite number of elements
of each type in the interval. Thus, RH contain two horizontal reflec-
tions and T contains two pure translations. The middle row requires
a more detailed explanation. The convex hull has a structure which
repeats vertically and the numbers in the middle row record how many
distinct local situations there are in each box. For example, there are
infintely many vertical reflections in the interval but only six different
types and there are infinitely many elliptic isometries in the interval
that fix a single point but only six different types. In the former case
the reflections are mostly distinguished by their slope but there are
two with horizontal fixed lines that have distinct local neighborhoods.
Similarly, in the latter case the rotations are mostly distinguished by
the horizontal displacement of their fixed point except that there are
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Figure 13. Coarse structure of the Ẽ8 interval.

two distinct types of fixed points along the Coxeter axis itself. Both of
these are π-rotations about their fixed point but they have distinct local
neighborhoods and thus decompose into distinct types of reflections.

The coarse structure of the Coxeter interval in the largest of the
sporadic euclidean Coxeter groups offers a more substantial illustration.

Example 5.8 (Ẽ8 interval). The coarse structure of the Coxeter in-

terval [1,w]W for the group W = Cox(Ẽ8) is shown in Figure 13.
From the figure we see that it contains 28 horizontal reflections, 30
pure translations and 270 infinite families of similarly situated vertical
reflections. In general, the numbers along the top and bottom refer
to the number of individual elements in that box and the numbers in
the middle row refer to number of infinite families of similarly situ-
ated elliptic elements. We should note representatives of the roughly
quarter-million types summarized in the figure were computed by a
program euclid.sage written by the first author and available upon
request.

We conclude this section by reviewing an explicit presentation for
the dual euclidean Artin group derived from the Hurwitz action of the
braid group on factorizations of w.

Definition 5.9 (Hurwitz action). Because reflections in W are closed
under conjugation, factorizations in [1,w]W can be rewritten in many
ways and, in fact, there is an action of the braid group on the minimal
length factorizations of w called the Hurwitz action. The i-th standard
braid generator replaces the two letter subword ab in positions i and
i+1 with the subword ca where c = aba−1 and it leaves the letters in the
other positions unchanged. It is easy to check that this action satisfies
the relations in the standard presentation of the braid group.

When a standard braid generator replaces ab with ca inside a minimal
length factorization of w, the relation ab = ca is visible in [1,w]W . Such



30 JON MCCAMMOND AND ROBERT SULWAY

a relation is called a Hurwitz relation or a dual braid relation. When
the Hurwitz action is transitive on factorizations, these relations are
sufficient to define the interval group Ww [McC15, Proposition 3.2]
and we call this the Hurwitz presentation. In 2010 Igusa and Schiffler
proved transitivity of the Hurwitz action on reflection factorizations of
Coxeter elements in Coxeter groups in complete generality [IS10] and
in 2014 a short proof of this general fact was posted by Baumeister,
Dyer, Stump and Wegener [BDSW14]. As an illustration, we give the

Hurwitz presentation of the dual G̃2 Artin group. We start with the
generators. The dual generators are closely connected to the Coxeter
axis of w and we introduce a notation that reflects this fact.

Definition 5.10 (Dual G̃2 generators). In the case of G̃2 we use the
letters a through f to indicate the slope of its fixed line in the ascend-
ing order: −

√
3, −1

√

3
, 0, 1

√

3
,
√

3 and ∞, respectively. See Figure 11.

Next, recall that the hyperplanes of the vertical reflections intersect
the axis in an equally spaced set of points xi for i ∈ Z [McC15, Sec-
tion 8]. We use subscripts on the vertical reflections that indicates
which xi its hyperplane contains. Note that not every combination of
letter and subscript actually occurs. For G̃2 we let x0 be the intersec-
tion of one of the horizontal lines with the axis, specifically one which
intersects an axial vertex on the lefthand side of the shaded vertical
strip. There are only two horizontal reflections in the interval [1,w]W
and we call these f− and f+. Putting this all together, the dual genera-
tors of Art∗(G̃2,w) are the set {ai, bj, ck, di, ej, f`} where i = 1 mod 4,
j = 3 mod 4, k = 0 mod 2 and ` ∈ {+,−}.

The periodicity of the subscripts corresponds to the fact that there
is a power of w which acts as a pure translation in the direction of the
Coxeter axis. In Cox(G̃2) this power is w2 and the action of w2 on the
plane shifts the point xi to xi+4.

Definition 5.11 (Dual G̃2 relations). The dual braid relations in the

G̃2 case are obtained by factoring the elements in the interval [1,w]W of
reflection length 2. In the coarse structure, the elements to be factored
belong to the third box in the bottom row, the second box in the
middle row and the first box in the top row. The first type does not
occur in G̃2. The third type are the pure translations and they have
infinitely many factorizations. In the case of G̃2 there are exactly two
translations in the interval and their factorizations are as follows.

(1)
⋯ = a9a5 = a5a1 = a1a−3 = a−3a−7 = ⋯
⋯ = e11e7 = e7e3 = e3e−1 = e−1e−5 = ⋯
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It only remains to list the factorizations of the 6 infinite families of el-
liptic elements that correspond to the second box in the middle row. In
the G̃2 case, these are rotations that fix a single point. Representative
sets of equations are as follows.

(2)

a1d1 = d1a1
b3e3 = e3b3

c2a1 = e3c2 = a1e3
a1c0 = e−1a1 = c0e1

a−3f− = b−1a−3 = c0b−1 = d1c0 = e3d1 = f−e3
e−1f+ = d1e−1 = c2d1 = b3c2 = a5b3 = f+a5

To get all of the equations in the six infinite families, one should pick
an arbitrary multiple of 4 and consistently add it to each of the sub-
scripts in each of six lines of equations above. This corresonds to the
vertical shift which conjugation by w2 produces. The +/− subscripts
remain underchanged since these reflections are invariant under vertical
translation.

6. Horizontal roots and factored translations

In this section we describe the roots that are horizontal with respect
to the axis of a Coxeter element and we use their geometry to define
a series of crystallographic groups acting geometrically on euclidean
space. Although Coxeter elements are usually defined as a product
of the reflections fixing the facets of a chamber in the Coxeter tiling,
there are other factorizations and one in particular where most of the
reflections are horizontal with respect to its axis.

Definition 6.1 (Horizontal roots). If w is a Coxeter element for the

irreducible euclidean Coxeter group W = Cox(X̃n), then w has a fac-
torization into a pure translation and n−1 horizontal reflections. To see
this we start with a standard factorization such as w = rα,1w0 where
rα,1 is the reflection corresponding to the root α used to extend the
Dynkin diagram Xn shifted so it does not fix the origin and w0 is a
Coxeter element of the spherical Coxeter group W0 = Cox(Xn). By
Proposition 2.10 we can find an alternative factorization of w0 as the
product of a Coxeter generating set whose leftmost reflection is rα.
Thus we can write w0 = rαwh where wh is a Coxeter element of a max-
imal parabolic subgroup of W0. This means that w = rα,1rαwh = tα∨wh.
Since the element wh is an elliptic isometry fixing a line and t = tα∨ is
a pure translation, the fixed line of wh must be parallel to the Coxeter
axis of w. As a consequence the n − 1 reflections multiplied together
to produce wh are horizontal with respect to the axis of w. Moreover,
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since the fixed line of wh passes through the fixed point of w0 and every
family of parallel hyperplanes contains one which passes through this
fixed point, these n−1 horizontal reflections generate a group Wh with
one representative from every parallel family of horizontal reflections
in W . In other words, all reflections in Wh are horizontal and every
horizontal reflection is parallel to one in Wh. We call Wh the horizontal
Coxeter group and w = tα∨wh a horizontal factorization of w. The hor-
izontal roots associated to these reflections are a root system described
by the diagram for Wh, and this diagram is the diagram for W0 with
an additional vertex removed, the one shown in Figures 2 and 3 as a
large shaded dot. We call the corresponding root the vertical root.

Remark 6.2 (Finding vertical roots). The vertical roots were first
found in [McC15] on a case-by-case basis but once the principles are
clear they can be easily spotted. Because the simple system for W0

used to create the horizontal factorization spans a positive cone, the
vertical root should be as close to horizontal as possible. This favors
branch points and vertices involved in multiple bonds, specifically the
end corresponding to the longer root. This rule uniquely determines
the vertice root in all cases except in type A where there are distinct
conjugacy classes of Coxeter element that lead to distinct choices of
vertical root.

The next proposition records some basic facts about the pure trans-
lations that occur in the interval [1,w]W of an irreducible euclidean
Coxeter group W . These are easily checked by hand for the infinite
families and by computer for the sporadic types.

Proposition 6.3 (Pure translations below w). If W = Cox(X̃n) is an
irreducible euclidean Coxeter group with Coxeter element w, then every
pure translation t contained in the interval [1,w]W is the translation
part of some horizontal factorization of w. Moreover, if t = r′r is a
factorization of t into a pair of reflections, then r′ = (wp)r(w−p) where
wp is the smallest power of w which acts on the Coxeter complex as a
pure translation. In fact, all factorizations of t in [1,w]W are of the
form t = ri+1ri where ri = (wip)r(w−ip) for some integer i.

Definition 6.4 (Components). The structure of the horizontal root
system is listed in Table 1 for each irreducible type and note that
the number of irreducible components varies from one to three. The
groups of type C̃n, Ãn (with q = 1) and G̃2 have a single component,

the groups of type B̃n, Ãn (with q ≥ 2) and F̃4 have two components,

and the groups of type D̃n, Ẽ6, Ẽ7 and Ẽ8 have three components.
We orthogonally decompose the space V of vectors into components as
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Type Horizontal root system
An ΦAp−1 ∪ΦAq−1

Cn ΦAn−1

Bn ΦA1 ∪ΦAn−2

Dn ΦA1 ∪ΦA1 ∪ΦAn−3

G2 ΦA1

F4 ΦA1 ∪ΦA2

E6 ΦA1 ∪ΦA2 ∪ΦA2

E7 ΦA1 ∪ΦA2 ∪ΦA3

E8 ΦA1 ∪ΦA2 ∪ΦA4

Table 1. The structure of the horizontal root system
for each irreducible euclidean Coxeter group Cox(X̃n).
For the group of type An we list the structure of system
of roots horizontal with respect to the axis of the (p, q)-
bigon Coxeter elements defined in [McC15].

follows: V = V0 ⊕⋯⊕ Vk where V0 is the line spanned by the direction
of the Coxeter axis and the components Vi for 1 ≤ i ≤ k correspond to
the subspaces spanned by the irreducible components of the horizontal
root system. Since every horizontal reflection corresponds to a root in
exactly one of component Vi, we can partition any minimal Coxeter
generating set SH for Wh and the full set of reflections RH into disjoint

subsets S
(i)
H and R

(i)
H .

It was an early hope that every dual Artin group would be a Garside
group, but it was shown in [McC15] that this is not always the case,
even when attention is restricted to Artin groups of euclidean type. It
turns out that the number of components of the horizontal root system
is crucial.

Remark 6.5 (Garside structures). In [McC15] the first author proved

that the unique dual presentation of Art(X̃n) is a Garside structure
when X is C or G and it is not a Garside structure when X is B, D, E
or F . When the group has type A there are distinct dual presentations
and the one investigated by Digne is the only one that is a Garside
structure. The positive results for types A and C are due to Digne. The
negative results are a direct consequence of horizontal root systems with
more than one irreducible component. The reducibility leads directly
to a failure of the lattice condition [McC15, Theorem 10.3]. Knowing
explicitly how and why the lattice property fails led to the groups we
introduce below. The second author worked out the structure of the
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Name Symbol Generating set
Coxeter W RH ∪RV (∪ T )

Horizontal H RH

Diagonal D RH ∪ T
Factorable F RH ∪ TF (∪ T )

Crystallographic C RH ∪RV ∪ TF (∪ T )
Table 2. Five euclidean isometry groups.

Artin group of type B̃3 along the lines presented here in his dissertation
under the supervision of the first author and it is these arguments that
have now been generalized to arbitrary Artin groups of euclidean type
[Sul10].

Definition 6.6 (Diagonal translations). Let w be a Coxeter element in

an irreducible euclidean Coxeter group W = Cox(X̃n) and let w = tλwh
be a horizontal factorization of w. We call the translation tλ a diagonal
translation because λ projects nontrivially to each of the components
Vi 0 ≤ i ≤ k. The vector λ projects nontrivially to V0, the direction
of the Coxeter axis, because w translates the axis vertically but the
element wh only moves points horizontally. And λ projects nontrivially
to each horizontal component Vi with i > 0 because the vertical root is
connected by an edge to each component of the horizontal root system
in the diagram Xn. Also note that tλ is not orthogonal to exactly one
reflection in each horizontal component.

Definition 6.7 (Factored translations). Let w be Coxeter element in

an irreducible euclidean Coxeter group W = Cox(X̃n) with a fixed
horizontal factorization of w and let k be the number of horizontal
components. Let tλ be the corresponding vertical root translation and
let λi = projVi(λ) denote the nontrivial projection vectors to each sub-

space Vi. Finally let ti = tλi + 1
k tλ0 so that t = ∏k

i=1 ti. The translations
ti are called factored translations. If we do this for every translation in
the interval [1,w]W then we get a collection TF of all factored trans-
lations. Like the horizontal reflections, they can be partitioned into

subsets T
(i)
F based on the particular component of the horizontal root

system involved so that T
(i)
F contains the factored translations whose

displacement vector lies in V0 ⊕ Vi.

For each Coxeter element in an irreducible euclidean Coxeter group
there are five closely related euclidean isometry groups that are involved
in our proofs.
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Definition 6.8 (Five euclidean isometry groups). Let W = Cox(X̃n)
be an irreducible euclidean Coxeter group. For each choice of Coxeter
element w, we have defined four sets of euclidean isometries: the hori-
zontal reflections RH and the vertical reflections RV labeling edges in
the interval [1,w]W , the translations T and the factored translations
TF . Various combinations of these sets generate five euclidean isometry
groups as shown in Table 2. The horizontal group H is the euclidean
isometry group generated by the set RH of horizontal reflections below
w. It contains but is bigger than the group Wh because it contains two
horizontal reflections for each horizontal root. The diagonal group D
is the euclidean isometry group generated by RH ∪ T , the horizontal
reflections and the pure translations below w. The factorable group F
is the euclidean isometry group generated by RH ∪ TF . And the crys-
tallographic group C = Cryst(X̃n,w) is the group generated by the
union of all four sets. Since every diagonal translation can be written
either as a product of two parallel vertical reflections or as a product
of k factored translations, the set T can be optionally included in the
generating sets for W , F and C without altering the group.

The crystallographic group C = Cryst(X̃n,w) and the Coxeter

group W = Cox(X̃n) have a very similar structure.

Remark 6.9 (Crystallographic). Recall that a group action on a met-
ric space is geometric when the group acts properly discontinuously and
cocompactly by isometries and that a group acting geometrically on a
finite dimensional euclidean space is a crystallographic group. This cat-
egory includes but is larger than the class of euclidean Coxeter groups
since crystallographic groups do not need to be generated by reflec-
tions. For example, most of the 17 distinct wallpaper groups acting
geometrically on the plane are not euclidean Coxeter groups. The
group C = Cryst(X̃n,w) is crystallographic because its structure is

essentially the same as that of the Coxeter group W = Cox(X̃n,w). In
particular, it has a normal translation subgroup with quotient spheri-
cal Coxeter group W0 = Cox(Xn). The only difference is that the new
translation subgroup is slightly bigger: the old translation subgroup is
finite index in the new one.

7. Intervals in the new groups

In this section we define and analyze intervals in four of the groups
introduced in the previous section. We begin by extending our system
of weights to the larger generating sets.
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Hw Dw Ww

Fw Cw

F C

H D W

Figure 14. Ten groups defined for each choice of a Cox-
eter element in an irreducible euclidean Coxeter group
and some of the maps between them.

Definition 7.1 (Weights). We extend the trivial weighting on the full
set R of reflections so that the new factorizations preserve length. The
natural weights assign 1 to each horizontal and vertical reflection, 2 to
each diagonal translation and 2

k to each factored translation where k is
the number of components of the horizontal root system.

With this system of weights, the intervals behave as expected. There
are inclusions among the intervals [1,w]X where X is D, F , W or C,
that mimic the relations between the groups as shown in Figure 14.
The next lemma records additional relations among these intervals.

Lemma 7.2 (Interval relations). For each choice of a Coxeter element
w in an irreducible euclidean Coxeter group, the intervals described
above are related as follows:

[1,w]C = [1,w]W ∪ [1,w]F

[1,w]D = [1,w]W ∩ [1,w]F

Proof. The second equality is an immediate consequence of the rela-
tions among the generating sets, as is the fact that [1,w]C ⊃ [1,w]W ∪
[1,w]F . It only remains to show that there does not exist a minimal
length factorization of w in C that includes both a factored translation
and a vertical reflection. To see this consider the map from C to W0

obtained by quotienting out its normal subgroup of pure translations.
The image of w under this map is a Coxeter element for the horizontal
Coxeter group Wh. It fixes a line parallel to the Coxeter axis through
the unique point fixed by all of W0. Since its move-set is (n − 1)-
dimensional, its minimal reflection length is n − 1, and this length is
only possible if each of the n − 1 reflections in the product contain the
fixed line in their fixed hyperplane. In other words, this happens only
when they are all horizontal reflections. When this minimum is not
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Top

Middle Factored

Bottom

Figure 15. A very coarse overview of the structure of
the interval [1,w]C .

achieved, at least n+1 reflections are involved because of parity issues.
If we start with a factorization of w that contains a factored transla-
tion, then its image in W0 has length strictly less than n + 1, and as a
consequence all of the reflections involved are horizontal. �

Using Lemma 7.2 we extend the notion of a coarse structure to these
new intervals.

Remark 7.3 (Coarse structure). The crystallographic interval [1,w]C
is obtained by adding additional elements to the original three rows in
the coarse structure of the Coxeter interval [1,w]W . This is schemat-
ically shown in Figure 15 but the reader should note that the box
labeled Factored is not a single row but rather it includes all factor-
ization pairs (u, v) with uv = w where both u and v require a factored
translation in their construction. The original Coxeter interval [1,w]W
is the subposet containing the top, middle and bottom portion, the
diagonal interval [1,w]D is the poset containing only the top and bot-
tom rows, and the factor interval [1,w]F is the subposet containing
only the top, bottom and factored portions. One consequence of this is
that the groups D (and the pulled apart group Dw defined below) have
alternate generating sets. Instead of using RH ∪T we could instead use
RH∪{w}. This is because every element in the bottom row is a product
of horizontal reflections and every element in the top row differs from
w by a product of horizontal reflections.

There are other properties that are nearly immediate.

Proposition 7.4 (Balanced and self-dual). For each choice of a Cox-
eter element w in an irreducible euclidean Coxeter group, the interval
between 1 and w in each of D, W , F and C is a balanced and self-dual
poset.
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Proof. Each interval is balanced because the generating sets are closed
under local conjugations. This also means that the map sending u to
its left complement is an order-reversing poset isomorphism. �

Using these intervals we can create new groups.

Definition 7.5 (Five groups via presentations). Four of the groups on
the top level of Figure 14 are interval groups obtained by pulling apart
the corresponding groups on bottom level. The exception is Hw. We
define this group as the group generated by the horizontal reflections
RH in the interval [1,w]W and subject only to the relations among
them that are visible there. There is not a natural interval group here
because w itself is not an element of H; it is merely the horizontal
portion of the other groups on the top level. Finally, we should note
that the groups Cw and Ww turn out to be the Garside group described
in the introduction and the Artin group Art(X̃n) respectively.

The inclusion relations among the various generating sets suffice to
establish the injections shown on the lower level of Figure 14 and inclu-
sions among the sets of relations induce the homomorphisms on the top
level. It turns out that all the maps on the top level are also injective
but this is not immediately clear. Several of these groups are easily
identified.

Proposition 7.6 (Products). If W = Cox(X̃n) is an irreducible eu-
clidean Coxeter group with Coxeter element w and k horizontal com-
ponents, then the interval [1,w]F is a direct product of k type B non-
crossing partition lattices and F is a central product of k middle groups.
As a consequence:

(1) Fw is a direct product of k annular braid groups,
(2) Hw is a direct product of k euclidean braid groups, and
(3) H is a direct product of k euclidean symmetric groups.

Proof. The group F is minimally generated by the set SH ∪ {ti} con-
tained inside RH ∪ TF (with the ti being the factors of the diagonal
translation tλ as described in Definition 6.7) and note that both SH
and {ti} can be partitioned based on the unique component of the
horizontal root system involved in each motion. By Proposition 3.10
the elements associated with each component generate a middle group.
Moreover, since generators associated to different components commute
and w can be factored into a product of special elements for these mid-
dle groups, the interval [1,w]F is a direct product of special intervals in
middle groups. By Theorem 4.4 each of these is a type B noncrossing
partition lattice. This also means that F is almost, but not quite, a
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direct product of these middle groups because these groups have a non-
trivial intersection. They overlap in elements whose motions lie solely
in the V0 direction, a description which only applies to the pure trans-
lations that form their centers. Thus F is a central product rather
than a direct product. On the other hand, since [1,w]F is a direct
product of lattices with disjoint edge labels, Fw is a direct product of
annular braid groups. The group Hw and H are identified by applying
Proposition 4.7 to each factor. �

We illustrate Proposition 7.6 with a concrete example.

Example 7.7 (Ẽ8 groups). Since the horizontal E8 root system decom-
poses as ΦA1 ∪ΦA2 ∪ΦA4 (Table 1), the group F is a central product of
Mid(B2), Mid(B3) and Mid(B5). In addition,

● [1,w]F ≅ NCB2 ×NCB3 ×NCB5 ,
● Fw ≅Art(B2) ×Art(B3) ×Art(B5),
● Hw ≅Art(Ã1) ×Art(Ã2) ×Art(Ã4), and

● H ≅ Cox(Ã1) ×Cox(Ã2) ×Cox(Ã4).

Part 4. Main Theorems

In this final part we prove our four main results.

8. Proof of Theorem A: Crystallographic Garside groups

In this section we prove our first main result, that for every choice
of a Coxeter element w in an irreducible euclidean Coxeter group W =
Cox(X̃n), the group Cw = Gar(X̃n,w) is a Garside group. The most
difficult step is to establish the lattice property and we begin with a
lemma which show that in discretely graded posets, it is sufficient to
work inductively and to establish that all pairs of atoms have a well-
defined join.

Lemma 8.1 (Atoms and subintervals). Let P be a bounded poset that
is graded with respect to a discrete weighting. If all pairs of atoms in P
have well-defined joins and P is not a lattice, then P contains a proper
subinterval that is not a lattice.

Proof. Since P is not a lattice, it contains a bowtie (a, b ∶ c, d) by
Proposition 1.10. Let e and f be atoms in P below c and d respectively.
By assumption atoms e and f have a join g = e ∨ f and since a and b
are upper bounds for e and f , we have a ≥ g and b ≥ g by definition of
being a join. Finally, let h a maximal lower bound for a and b that is
above g. See Figure 16 and note that such e, f and h exist because of
the discreteness of the grading. If h ≠ c, then (a, b ∶ c, h) is a bowtie in
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Figure 16. Posets elements used in the proof of Lemma 8.1.

the proper subinterval [e,1], if h ≠ d, then (a, b ∶ h, d) is a bowtie in the
proper subinterval [f,1], and one of these conditions holds because c
and d are distinct. �

The following corollary restates Lemma 8.1 as a positive assertion.

Corollary 8.2 (Lattice induction). If P is a discretely graded bounded
poset in which all atoms have joins and all proper subintervals are
lattices, then P itself is a lattice.

In order to help investigate the lattice question in this context, the
first author wrote a program euclid.sage which is available upon
request. Using this program we verified that these intervals are lattices
up through dimensions 9 and we record this fact as a proposition.

Proposition 8.3 (Low rank). Let w be a Coxeter element in an irre-

ducible euclidean Coxeter group Cox(X̃n). If n ≤ 9 then the interval
[1,w]C is a lattice in the corresponding crystallographic group.

Since all five sporadic examples of irreducible euclidean Coxeter
groups are covered by Proposition 8.3, we may turn our attention to the
four infinite families. Before considering joins of atoms in the intervals
for the infinite euclidean families, it might be useful to consider the
properties of atomic joins in the Coxeter intervals of the most classical
spherical family.

Remark 8.4 (Atomic joins in the symmetric group). If W is the sym-
metric group, i.e. the spherical Coxeter group of type A, then its
Coxeter element is an n-cycle and the interval [1,w]W is the lattice of
noncrossing partitions. The atoms in this case are the transpositions
and these are represented as boundary edges or diagonals in the cor-
responding convex n-gon. Notice that the join of two atoms always



EUCLIDEAN ARTIN GROUPS 41

has very low rank: it is reflection length 2 or 3 regardless of n. It has
length 2 when the edges are noncrossing or share an endpoint and it
has length 3 when they cross. In all three situations the join is below
the element that corresponds to the triangle or square which is the
convex hull of the union of their endpoints.

The situation in the infinite euclidean families is very similar in the
sense that joins of atoms are of uniformly low rank and they live in
subposets defined by the endpoints, or equivalently the coordinates,
involved. The first crucial fact is that there is a well-defined projection
from the middle row to the top and from the middle row to the bottom
row.

Lemma 8.5 (Projection). Let w be a Coxeter element in an irreducible

euclidean Coxeter group W = Cox(X̃n). For each element u in the
middle row of the coarse structure of [1,w]W , the set of elements in the
top row that are above u have a unique minimum element. Similarly,
the set of elements in the bottom row that are below u have a unique
maximum element.

Proof. For the five sporadic examples and the beginnings of the infinite
families, we verified these assertions using the program euclid.sage.
Next we consider the elements in the first box of the middle row, the
ones corresponding to vertical reflections. Because of the explicit and
regular nature of the infinite families (as illustrated by the computa-
tions given in [McC15, Section 11]), the list of top row elements above
each vertical reflection can be explicitly written down and a unique
minimal top element identified. In type A, regardless of choice of Cox-
eter element, each vertical reflection is below a unique top row element
in first box (i.e. a pure translation). In type C, some vertical transla-
tions project upwards to elements in the first box of the row and other
to the second. In type B, each vertical translation projects upwards to
a unique element in either the first, the second or the third box in the
top row. And in type D, each vertical translation projects upwards to
a unique element in either the first or the fourth box in the top row.

Finally, let u be an arbitrary element of the middle row and let a be
one of the vertical reflections below u. Such a reflection must exists in
any factorization of u because, by definition of the middle row, some
point experiences a vertical motion under u. We claim that the unique
minimum top row element above u is the join of u and the projection
of a to the top row inside the interval [a,w]W . Because a is a vertical
reflection, its complement is also a vertical elliptic isometry and the
interval [a,w]W is that of spherical type, thus a lattice, and so the join
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of these two elements is well-defined. This element is clearly in the top
row (because it is above the upward projection of a) and above u. It is
the minimum such element because any v in the top row that is above
u is also above a, thus above the upward projection of a, and so above
the join of u and the upward projection of a. The second assertion
follows immediately from the first because these posets are self-dual
(Proposition 7.4). �

Using Lemma 8.5 we define an upward projection map from [1,w]C
to [1,w]F which is the identity on [1,w]F and sends elements in the
middle row to the elements described in the lemma. It can be used to
show that the meets and joins that exist in the factor interval [1,w]F
remain meets and joins inside the crystallographic interval [1,w]C .

Lemma 8.6 (Factor meets and joins). For each choice of Coxeter el-

ement w in an irreducible euclidean Coxeter group W = Cox(X̃n), the
inclusion of the factor lattice [1,w]F into the crystallographic interval
[1,w]C preserves meets and joins. In particular, any two elements in
[1,w]F have a well-defined meet in [1,w]C that agrees with their meet
in [1,w]F and a well-defined join in [1,w]C that agrees with their join
in [1,w]F

Proof. Let P = [1,w]C be the crystallographic interval, let Q = [1,w]F
be the factor subposet and suppose that u and v are elements in Q
with a maximal lower bound a in P that is not their meet b = u ∧Q v
in Q. If a is in Q then a = b because Q is a lattice, in particular a
product of type B noncrossing partiition lattices. Thus a is not in Q
and must lie in the middle row of the coarse structure. This means that
u and v, being both above a and in Q, must both lie in the top row.
By Lemma 8.5 there is a unique minimum top row element c above a
which would, by definition, be below both u and v, contradicting the
maximality of a as a lower bound for these elements. Thus no such u
and v exist. The assertion involving joins is true by duality. �

Lemma 8.5 can also be used to show that joins with factored trans-
lations are well-defined.

Lemma 8.7 (Translation joins). Let w be a Coxeter element in an

irreducible euclidean Coxeter group W = Cox(X̃n). If a and b are
atoms in the crystallographic interval [1,w]C and one of them is a
factored translation then their join is well-defined.

Proof. Let b ∈ TF be the factored translation. If a is in F then by
Lemma 8.6 the join of a and b is well-defined. The only remaining
case is where a is in the middle row of the coarse structure and we
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claim that the join of b with the upward projection of a to the top row
(Lemma 8.5) is the join of a and b. In this case, the only upper bounds
for a and b are to be found in the top row of the coarse structure and
any such element is above the projection of a by definition and thus
above its join with b. This completes the proof. �

And finally, we consider the case where both atoms are reflections.

Lemma 8.8 (Reflection joins). Let w be a Coxeter element in an ir-

reducible euclidean Coxeter group W = Cox(X̃n). If a and b are re-
flections in the interval [1,w]C and a is a vertical reflection then their
join is well-defined.

Proof. If a and b have no upper bounds in the middle row of the coarse
structure then their join is the join of their images under the upward
projection map by Lemma 8.5 and Lemma 8.6. If W is of sporadic
type then the join of a and b exists by Proposition 8.3. And finally,
if W belongs to one of the infinite euclidean families, one can use
properties of the noncrossing partition lattices in the spherical infinite
families, and properties of the upward projection map to show that
every possible minimal upper bound for a and b is below a low-rank
top row element solely defined by the set of coordinates involved in the
roots of a and b and the type of W . This is the euclidean analogue of
the situation described in Remark 8.4. In other words, if there is a pair
of reflection atoms in a crystallographic interval for one of the infinite
families that has no well-defined join, then there is such a pair in such
an interval where the rank is low and uniformly bounded. And since
no such pair exists in low rank (Proposition 8.3), no such pair exists at
all. �

Combining these lemmas establishes the following.

Theorem 8.9 (Lattice). For each choice of Coxeter element w in

an irreducible euclidean Coxeter group W = Cox(X̃n), the crystal-
lographic interval [1,w]C, in the corresponding crystallographic group

C = Cryst(X̃n), is a lattice.

Proof. Proposition 8.3 covers the five sporadic examples. and for the
four infinite families we proceed by induction. The base cases are again
covered by Proposition 8.3, so suppose by induction that X is A, B, C
or D and that all crystallographic intervals are lattices for k < n. Atoms
in [1,w]C correspond to elements in RH ∪ RV ∪ TF and all possible
combinations of pairs of atoms are covered by Lemma 8.6, Lemma 8.7,
or Lemma 8.8. Thus all pairs of atoms have well-defined joins and the
interval is a lattice by Corollary 8.2. �
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Theorem 8.9 and Proposition 7.4 show that Proposition 2.11 can be
applied and this immediately proves the following slightly more explicit
version of Theorem A.

Theorem 8.10 (Crystallographic Garside groups). Let w be a Cox-

eter element in an irreducible euclidean Coxeter group W = Cox(X̃n)
and let C = Cryst(X̃n,w) be the corresponding crystallographic group
with its natural weighted generating set. The interval [1,w]C is a
balanced lattice and, as a consequence, it defines an interval group
Cw =Gar(X̃n,w) with a Garside structure of infinite type.

9. Proof of Theorem B: Dual Artin subgroups

In this section we prove Theorem B by showing that the Garside
group Gar(X̃n,w) is an amalgamated free product with the dual Artin

group Art∗(X̃n,w) as one of its factors. The proof begins by noting
the immediate consequences of Lemma 7.2 on the level of presentations.

Lemma 9.1 (Presentation). For each choice of Coxeter element w

in an irreducible euclidean Coxeter group W = Cox(X̃n), the Gar-

side group Cw =Gar(X̃n,w) has a presentation whose generators and
relations are obtained as a union of the generators and relations for
presentations for Dw, Fw and Ww.

Proposition 9.2 (Pushout). For each irreducible euclidean Coxeter
group and for each choice of Coxeter element w, the Garside group Cw
is the pushout of the diagram Fw ←Dw →Ww. If the maps from Dw to
Fw and Ww are both injective, then Cw is an amalgamated free product
of Fw and Ww over Dw and, in particular, Ww injects into Cw.

We now show that these maps are injective.

Lemma 9.3 (Hw ↪ Fw). For each irreducible euclidean Coxeter group
and for each choice of Coxeter element w, the horizontal group Hw

injects into the factorable interval group Fw. As a consequence, the
horizontal group Hw also injects into the diagonal interval group Dw.

Proof. The first assertion is a consequence of Proposition 4.7 applied to
each factor and the second assertion follows immediately sinceHw ↪ Fw
factors through Dw. �

Lemma 9.4 (Dw ↪ Fw). For each irreducible euclidean Coxeter group
and for each choice of Coxeter element w, the diagonal interval group
Dw injects into the factorable interval group Fw.
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Proof. Recall that RH ∪ {w} is one possible generating set for the di-
agonal interval group Dw (Remark 7.3) and let U be a word in these
generators that represents an element u ∈ Dw. If u is in the kernel
of the map Dw → Fw, then u is also in the kernel of the composite
map Dw → Fw → F → Z where the middle map is the natural projec-
tion and the final map to Z is the vertical displacement map. Since
this composition sends each horizontal reflection to 0 and each w to a
nonzero integer, we conclude that the exponent sum of the w’s inside
U is zero. Using the relations in Dw which describe how w conjugates
the elements of RH , we can then find a word U ′ with no w’s which still
represents u in Dw. This means that u is in the subgroup generated
by elements of RH which by Lemma 9.3 we can identify with Hw. In
particular, u is in the kernel of the map Hw → Fw which is trivial by
Lemma 9.3 proving Dw ↪ Fw. �

Lemma 9.5 (Dw ↪Ww). For each irreducible euclidean Coxeter group
and for each choice of Coxeter element w, the factorable interval group
Fw injects into the Garside group Cw. As a consequence, the diagonal
interval group Dw injects into the Artin group Ww.

Proof. The interval [1,w]F is a lattice because it is a product of type B
partition lattices and [1,w]C is a lattice by Theorem 8.10. That they
are balanced follows immediately from the fact that the corresponding
generating sets in F and C are closed under conjugation. Finally, by
Lemma 8.6 the inclusion of the former into the latter preserves meets
and joins. Thus by Proposition 2.15 the induced map from Fw to Cw
is injective. Since Dw ↪ Fw by Lemma 9.4, the composition injects Dw

into Cw. But Dw ↪ Cw factors through Ww, so the map Dw → Ww is
also one-to-one. �

Proposition 9.2 combined with Lemmas 9.4 and 9.5 immediately
prove the following slightly more explicit version of Theorem B.

Theorem 9.6 (Amalgamated free product). For each irreducible eu-

clidean Coxeter group Cox(X̃n) and for each choice of Coxeter element

w, the Garside group G = Gar(X̃n,w) can be written as an amalga-
mated free product of Ww and Fw amalgamated over Dw where Ww is
the dual Artin group Art∗(X̃n,w), Fw is the factorable inteval group,
and Dw is the diagonal interval group. As a consequence, the dual
Artin group Ww injects into the Garside group G.

Note that when the horizontal root system has only a single compo-
nent, T ≅ TF , Dw ≅ Fw and Ww ≅ Cw. This occurs in types C and G
and in type A when q = 1.
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10. Proof of Theorem C: Naturally isomorphic groups

In this section we prove that the dual Artin group Art∗(X̃n,w)
is isomorphic to the Artin group Art(X̃n). The first step is to find
homomorphisms between them. In one direction this is easy to do.

Proposition 10.1 (A↠Ww). For every irreducible euclidean Coxeter

group W = Cox(X̃n) and for each choice of Coxeter element w as the
product of the standard Coxeter generating set S, there is a natural
map from the Artin group A = Art(X̃n) onto the dual Artin group

Ww = Art∗(X̃n,w) which extends the identification of the generators
of A with the subset of generators of Ww indexed by S.

Proof. For every pair of elements in S, there is a rewritten factorization
of w where they occur successively and then the Hurwitz action on this
pair produces the dual dihedral Artin relations corresponding to the
angle between these two facets of σ (Example 2.9). Systematically
eliminating the other variables shows that these two elements in the
dual Artin group satisfy the appropriate Artin relation. This shows
that the function injecting the generating set of the Artin group into
the dual Artin group extends to a group homomoprhism. The fact that
it is onto is a consequence of the transitivity of the Hurwitz action. �

Remark 10.2 (A G̃2 map). As an example of such a homomorphism,

consider the simplex in the G̃2 tiling bounded by the lines c0, a1 and
d1 with bipartite Coxeter element w = a1d1c0 in the notation of Def-
inition 5.10. Proposition 10.1 gives a homomorphism from the Artin
group Art(G̃2) with generators that we call a, c and d satisfying the
relations aca = cac, ad = da and cdcdcd = dcdcdc to the dual Artin
group Art∗(G̃2,w) extending the map sending a, c and d to a1, c0 and
d1, respectively.

Defining a homomorphism in the other direction is more difficult
because we need to describe where the infinitely many generators are
to be sent and we need to check that infinitely many dual braid relations
are satisfied. The first step is to describe certain portions of the Cayley
graph of an irreducible Artin group that are already well understood.
These are portions of the Coxeter group Cayley graph that lift to the
Artin group.

Definition 10.3 (Cayley graphs and Coxeter groups). The standard
way to view the right Cayley graph of an irreducible euclidean Coxeter
group with respect to a Coxeter generating set S is to consider the
cell complex dual to the Coxeter complex. The dual complex for the
Ã2 Coxeter group, for example, is a hexagonal tiling of R2. The dual
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complex has one vertex for each chamber of the Coxeter complex (and
thus one vertex for each element of W ) and it is convenient to place
this vertex at the center of the insphere of this simplex so that it is
equidistant from each facet. Once labels are added to the edges of the
1-skeleton of the dual cell complex, this becomes either the full right
Cayley graph of W with respect a simple system S, or it is a portion
of the left Cayley graph with respect to the set of all reflections. To
get the full right Cayley graph we label the edges leaving a particular
chamber σ and then propigate the labels so that they are invariant
under the group action. To get a portion of the left Cayley graph
we label the edges dual to the facets of the simplices by the unique
hyperplane the facet determines.

Converting between left Cayley graph labels and right Cayley graph
labels is a matter of conjugation.

Remark 10.4 (Converting Labels). Suppose that we have picked a
vertex corresponding to a chamber as our basepoint and indexed the
vertices by the unique group element in W which takes our base vertex
to this vertex and suppose further that a, c and d are part of the
standard generating set leaving our base vertex v1. In the right Cayley
graph the edge connecting the adjacent vertices vac and vacd is labeled
by d but in the corresponding portion of the left Cayley graph, its label
is the reflection (ac)d(ac)−1. This is because this is the reflection we
multiply by on the left to get from ac to acd. Geometrically we are
conjugating the label in the right Cayley graph by the path in the right
Cayley graph from v1 to its starting vertex.

There are a variety of ways that the unoriented right Cayley graph
for an irreducible euclidean Coxeter group can be converted into a
portion of the right Cayley graph for the corresponding Artin group.
We describe two such procedures.

Definition 10.5 (Standard flats). Let W = Cox(X̃n) be an irreducible

euclidean Coxeter group and let A = Art(X̃n) be the corresponding
Artin group. If we pick a vector γ that is generic in the sense that none
of the roots of the hyperplanes of W are orthogonal to γ, then we can
orient the edges of the right Cayley graph of W (which are transverse to
the hyperplanes) according to the direction that forms an acute angle
with γ. Such a Morse function turns the boundary of every 2-cell in the
dual cell complex into an Artin relation. In particular, the 2-skeleton
of the dual cell complex is simply connected and its labeled oriented
1-skeleton is a portion of the right Cayley graph of A that we call a
standard flat. The terminology reflects the fact that the polytopes in
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the dual cell complex with labelled oriented edges can be added to
the presentation complex for the Artin group A without changing its
fundamental group. The universal cover of the result is known as the
Salvetti complex [Sal87, Sal94]. If each polytope is given the natural
euclidean metric that it inherits, then a standard flat represents the
1-skeleton of a metric copy of Rn inside the Salvetti complex.

An easy way to create a standard flat is to let γ be a generic pertur-
bation of the direction of the Coxeter axis. What we really need is a
slight variation of this procedure.

Definition 10.6 (Axial flats). Let W = Cox(X̃n) be an irreducible

euclidean Coxeter group with Coxeter element w and let A =Art(X̃n)
be the corresponding Artin group. Orient the edges of the dual cell
complex as follows. For hyperplanes that cross the Coxeter axis, orient
the transverse edges so that their direction vector forms an acute angle
with the direction of the Coxeter axis. For the other hyperplanes with
horizontal normal vectors, orient the transverse edges to point to the
side that does not contain the Coxeter axis. We call such an oriented
1-skeleton an axial flat. As before every 2-cell in the dual cell complex
has a boundary labelled by an Artin relation so this simply-connected
2-complex lives in the Salvetti complex for A. In fact, it is easy to
see that it can be constructed by assembling sectors of standard flats
around the column containing the Coxeter axis.

Next we use axial flats to define reflections in euclidean Artin groups.

Definition 10.7 (Facets and reflections). Let W = Cox(X̃n) be an
irreducible euclidean Coxeter group with Coxeter element w and fix
a simplex σ in the Coxeter complex or, equivalently, fix a vertex in
the dual cell complex. For each facet of each simplex in the Coxeter
complex we define a reflection in the corresponding Artin group A =
Art(X̃n) as follows. Orient the edges of the dual cell complex so that
it is the axial flat for w and then conjugate the labelled oriented edge
transverse to the specified facet by a path in the axial flat from the
fixed basepoint to the start of the transverse edge.

Many of the facets belonging to a common hyperplane determine the
same reflection in the Artin group but describing which ones are equal
is slightly subtle.

Lemma 10.8 (Consistency). Let W = Cox(X̃n) be an irreducible eu-
clidean Coxeter group with Coxeter element w and a fixed base simplex.
Let H be a hyperplane in the Coxeter complex, let P be convex hull of
the axial vertices in H and suppose that P contains at least one facet
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of a chamber. If σ1 and σ2 are simplices on the same side of H and
P ∩ σi is a facet of σi for i = 1,2, then the reflections r1 and r2 that
they define in the axial flat are equal in the Artin group A =Art(X̃n).

Proof. The idea of the proof is straightforward. Let p be a path in the
axial flat from the fixed base simplex to σ1 and let q be a path from σ1
to σ2 (also in the axial flat) that is as short as possible. By construc-
tion r1 = (p)s1(p)−1 and r2 = (pq)s2(pq)−1 for appropriate standard
generators s1 and s2. Because q is as short as possible, it only crosses
the hyperplanes that separate σ1 from σ2 and by Lemma 5.6 this only
includes hyperplanes whose normal vectors do not change sign in the
axial flat when reflected across the hyperplane H. In particular, the
path qs2q−1s−11 is visible as a closed loop in the axial flat. As a conse-
quence it is trivial in A and this relation shows that the elements r1
and r2 are equal. �

The necessity of the specificity given in Lemma 10.8 can be seen even
in the G̃2 case. We continue to use the notation of Definition 5.10.

Remark 10.9 (Consistency). Consider the four line segments of the
hyperplane e3 inside the lightly shaded strip of Figure 11. The reflec-
tions in Art(G̃2) that they determine are (d)c(d)−1, (dac)a(dac)−1,
(dacd)a(dacd)−1 and (dacdca)c(dacdca)−1. All four belong to the con-
vex hull of the axial vertices in the e3 hyperplane and it is straightfor-
ward to show that all four expressions represent the same group ele-
ment in Art(G̃2). On the other hand, consider the two line segments
of the c2 hyperplane inside the lightly shaded strip. The reflections in
Art(G̃2) that they determine are (ad)c(ad)−1 and (dc)a(dc)−1. The
first is bounded by two axial vertices, the second is not and these two
reflections are not equal in the Artin group.

Fortunately the level of consistency available is sufficient to establish
the homomorphism we require.

Definition 10.10 (Dual reflections in the Artin group). Let W =
Cox(X̃n) be an irreducible euclidean Coxeter group with Coxeter el-
ement w and a fixed base simplex. For each reflection labeling an
edge in the interval [1,w]W we define an element of the Artin group

A = Art(X̃n) as follows. When the axial vertices in the fixed hyper-
plane of a reflection r have a convex hull which contains a facet of a
simplex, we define the corresponding reflection in A as described in
Definition 10.7. By Lemma 10.8 the element defined is independent of
the facet in the convex hull that we use. This applies to all vertical
reflections and to those horizontal reflections which contain a facet of



50 JON MCCAMMOND AND ROBERT SULWAY

the boundary of the convex hull of all axial vertices. We call these
the standard horizontal reflections. For the nonstandard horizontal re-
flections we proceed as follows. By Proposition 7.6 the subgroup Hw

generated by the horizontal reflections can be identified with a product
of k euclidean braid groups. From this identification it is clear that the
standard horizontal reflections generate. Next, in the axial flat we can
see that the reflections in A corresponding to the standard horizon-
tal reflections satisfy the Artin relations associated with the dihedral
angles between their hyperplanes. This means that there is a natural
homomorphism from the subgroup of Hw to the subgroup generated by
the images of the standard horizontal reflections in A. We use this map
to define the images of the nonstandard horizontal reflections in A.

Proposition 10.11 (Pure Coxeter element). Let W = Cox(X̃n) be an
irreducible euclidean Coxeter group with Coxeter element w and a fixed
base simplex. If wp is the smallest power of w which acts on the Coxeter
complex as a pure translation and r is a standard horizontal reflection
in the Artin group A = Art(X̃n), then wp and r (viewed as elements
in A) commute. As a consequence, wp centralizes the full subgroup of
A generated by these standard horizontal reflections.

Proof. This follows immediately from Lemma 10.8. The convex hull of
all axial vertices is, metrically speaking, a product of simplices cross
the reals and the convex hull P of the axial vertices contained in the
fixed hyperplane of r is one facet of this product of simplices cross the
reals. The entire configuration in the axial flat is invariant under the
vertical translation induced by wp and thus r and (wp)r(wp)−1 define
the same reflection in A. �

We are now ready to define a homomorphism from the dual Artin
group to the Artin group.

Proposition 10.12 (Ww ↠ A). For every irreducible euclidean Cox-

eter group W = Cox(X̃n) for every choice of Coxeter element w as the
product of the standard Coxeter generating set S, the map on genera-
tors described above extends to a group homomorphism from the dual
Artin group Ww =Art∗(X̃n,w) onto the Artin group A =Art(X̃n).

Proof. Let σ be the chamber in the Coxeter complex of W bounded by
the fixed hyperplanes of the reflections indexed by S and consider the
function from the reflections in [1,w]W to A which sends each reflection
to the reflection in A as defined in Definition 10.10. We only need to
show that this function extends to a homomorphism. As mentioned
in Definition 5.11 there are three types of dual braid relations in the
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interval [1,w]W . The ones indexed by the third box in the bottom row
are relations among horizontal reflections and their satisfaction was
described in Definition 10.10.

The ones indexed by the second box in the middle row are vertical
elliptics which rotate around a codimension 2 subspace. Since its right
complement is also vertical elliptic, all the reflections in the factor-
ization fix an axial vertex v which belongs to some axial simplex σ′.
The reflections in the Artin group A that fix the facets of σ′ form an
alternative simple system S′ for A. Using an old result from van der
Lek’s thesis, the subset of elements of S′ that fix v generate an Artin
group which injects into A, in this case an Artin group of spherical type
[vdL83]. Using the known equivalence of dual and standard presenta-
tions for spherical Artin groups we see that these dual braid relations
are satisfied by their images in A.

Finally, the ones indexed by the first box in the top row are the var-
ious ways to factor a pure translation t in W and these are described
in Proposition 6.3. Using the Hurwitz action there is a factorization
of w in A that maps to a horizontal factorization of w in W . In par-
ticular, there is an element t in A that differs from w by a product
of (the images of) horizontal reflections and which has a factorization
t = r′r in A into reflections where r and r′ = (wp)r(w−p) are defined by
vertically shifted facets of simplices. The first observation combined
with Proposition 10.11 shows that this t commutes with wp inside A.
If we define reflections ri = (wip)r(w−ip) as the reflections in A de-
fined by the various vertical shifts of the facet that defines r, then
t = (wip)t(w−ip) = (wip)r1r0(w−ip) = ri+1ri shows that all of factoriza-
tions of t in the interval [1,w]W are also satisfied in A. Since all three
types of dual braid relations are satisfied, the function on reflections
extends to a homomorphism, and this homomorphism is onto because
its image includes a generating set for the Artin groups A. �

Our third main result now follows as a easy corollary.

Theorem C (Naturally isomorphic groups). For each irreducible eu-

clidean Coxeter group W = Cox(X̃n) and for each choice of Coxeter
element w as the product of the standard Coxeter generating set S, the
Artin group A =Art(X̃n) and the dual Artin group Ww =Art∗(X̃n,w)
are naturally isomorphic.

Proof. Let σ be the chamber in the Coxeter complex for W whose
facets index the reflections in S. Because w is obtained as a product
of the elements in S, every vertex of σ is an axial vertex and all of σ
is contained in the convex hull of the axial vertices. By composing the
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surjective homomorphisms described in Propositions 10.12 and 10.1 we
find a map from A to itself which must be the identity homomorphism
since it fixes each element of the generating set S. This means the first
map in the composition from A to Ww is injective as well as surjective
and thus an isomorphism. �

11. Proof of Theorem D: Euclidean Artin groups

In a recent survey article Eddy Godelle and Luis Paris highlighted
how little we know about general Artin groups by stating four basic
conjectures that remain open [GP12]. Their four conjectures are:

(A) All Artin groups are torsion-free.
(B) Every non-spherical irreducible Artin group has a trivial center.
(C) Every Artin group has a solvable word problem.
(D) All Artin groups satisfy the K(π,1) conjecture.

Godelle and Paris also remark that these conjectures remain open and
are a “challenging question” even in the case of the euclidean Artin
groups. These are precisely the conjectures that we set out to resolve.
In this section we prove our final main result, Theorem D, which re-
solves the first three of these questions for euclidean Artin groups. Most
of the structural properties follows from the existence of a classifying
space which is itself an easy corollary of Theorems B and C.

Proposition 11.1 (Classifying space). Every irreducible Artin group
of euclidean type is the fundamental group of a finite dimensional clas-
sifying space.

Proof. By Theorem 2.12, the Garside group Gar(X̃n,w) has a finite-
dimensional classifying space and the cover of this space corresponding
to the subgroup Art(X̃n) is a classifying space for the Artin group. �

Remark 11.2 (Finite-dimensional). The reader should note that the
spaces involved are finite-dimensional but not finite. More precisely,
because the interval [1,w]C has infinitely many elements, the natu-

ral classifying space constructed for Gar(X̃n,w) has infinitely many
simplices, but their dimension is nevertheless bounded above by the
combinatorial length of the longest chain.

To compute the center of Art(X̃n) we recall an elementary observa-
tion about euclidean isometries which quickly leads to the well-known
fact that irreducible euclidean Coxeter groups are centerless.

Lemma 11.3 (Coxeter groups). Let W = Cox(X̃n) be an irreducible
euclidean Coxeter group, let u ∈W be an elliptic isometry and let v ∈W
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be a hyperbolic isometry. If λ is the translation vector of v on Min(v)
and Fix(u) is not invariant under λ, then u and v do not commute.

Proof. Because v lives in W , there is a power vm that is a pure trans-
lation with translation vector mλ. If u commutes with v then u com-
mutes with vm but the fixed set of the conjugation of u by vm is the
translation of the fixed set of u by mλ, contradiction. �

Corollary 11.4 (Trivial center). Every irreducible euclidean Coxeter
group has a trivial center.

Proof. Using the criterion of Lemma 11.3, it is easy to find a noncom-
muting hyperbolic for each elliptic in W and a noncommuting elliptic
for each hyperbolic in W . �

We note one quick consequence for Artin groups.

Lemma 11.5 (Powers of w). For each irreducible euclidean Coxeter
group and for each choice of Coxeter element w, the nontrivial powers
of w are not central in the Artin group Ww.

Proof. For each nonzero integer m, the element wm projects to a non-
trivial hyperbolic element in W . By Corollary 11.4 there is an element
u in W that does not commute with wn and because the projection
map Ww ↠W is onto, it has preimages that do not commute with wn

in Ww. �

We also derive a second more substantial consequence.

Lemma 11.6 (Cw ↝ Fw). For each irreducible euclidean Coxeter group
and for each choice of Coxeter element w, the simples in Cw which
commute with w are simples in Fw. As a consequence, the elements of
Cw which commute with w are contained in the subgroup Fw.

Proof. If u is a simple in Cw which commutes with w then the image of
u as a euclidean isometry commutes with the power wm whose image
as a euclidean isometry in C is a pure translation in the direction of
the Coxeter axis. When u is elliptic, by Lemma 11.3 it has a vertically
invariant fixed set, it does not belong to the middle row of the coarse
structure, and thus u ∈ [1,w]F . The extension from simples to elements
follows from Proposition 2.14. �

Lemma 11.7 (Fw ↝ Zk). For each irreducible euclidean Coxeter group
and for each choice of Coxeter element w, the centralizer of w in Fw is
the group Zk ≅ ⟨wi⟩ where the wi are the special elements in the factors
whose product is w.
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Proof. By Proposition 7.6, the group Fw and the interval [1,w]Fw split
as direct products. Thus the simples that commute with w are products
of the simples in each factor that commute with the factor wi. Since by
Proposition 4.5 such a simple in each factor must be 1 or wi, there are
exactly 2k simples that commute with w. And since the wi commute
with each other in Fw they generate a subgroup isomorphic to Zk ≅ ⟨wi⟩,
with one Z from each factor. All of these commute with w and by
Proposition 2.14 these are the only elements that commute with w. �

Lemma 11.8 (Zk ↝ Z). For each irreducible euclidean Coxeter group
and for each choice of Coxeter element w, the intersection of Dw and
the group Zk (generated by the wi factors of w) is an infinite cyclic
subgroup generated by w. In symbols Dw ∩ ⟨wi⟩ ≅ ⟨w⟩.

Proof. Combining the global winding number maps for each factor
(Definition 3.8) produces a map Fw → Zk which sends wi to ei, the i-th
unit vector in Zk which restricts to an isomorphism on the subgroup
⟨wi⟩ in Fw. The image of Dw under the composition Dw ↪ Fw → Zk
is the set of k-tuples with all coordinates equal. To see this we view
an element of Dw as a product of simples thought of as elements of
D rather than Dw. The relevant maps are now vertical displacement
maps rather than global winding number maps. From this perspective
it is clear that the horizontal reflections are sent to the zero vector
under this composition and that every diagonal translation t is sent
to the vector with all coordinates equal to 1. Thus the only elements
in the intersection are those with the same number of wi’s for each i.
Using the fact that they commute with each other, we can thus rewrite
this expression as a power of w = ∏k

i wi. �

And finally we put all the pieces together.

Proposition 11.9 (Center). An irreducible euclidean Artin group has
a trivial center.

Proof. Let Ww be a dual euclidean Artin group with special element w.
If u is central in Ww then u commutes with w and by Proposition 2.14,
u, viewed as an element of Cw, has a Garside normal form built out of
simples that commute with w. By Lemma 11.6 the only such simples
are simples in Fw, so u ∈ Fw and by Lemma 11.7 the element u in fact
belongs to the subgroup Zk ≅ ⟨wi⟩ generated by the special factors wi of
w. This means that u is in Fw∩Ww and thus in Dw by the amalgamated
free product structure of Cw (Theorem 9.6). But by Lemma 11.8 the
only portion of the Zk ≅ ⟨wi⟩ contained in Dw is the subgroup Z ≅ ⟨w⟩.
In particular, u = wn for some n. And finally, by Lemma 11.5 the
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nontrivial powers of w are not central in Ww, so the center of Ww is
trivial. �

These combine to give our main result.

Theorem D (Euclidean Artin groups). Every irreducible euclidean

Artin group Art(X̃n) is a torsion-free centerless group with a solvable
word problem and a finite-dimensional classifying space.

Proof. Because Art(X̃n) is isomorphic to Ww which is a subgroup of

a Garside group Cw =Gar(X̃n,w), the standard solution to the word-
problem in Cw gives a solution to the word problem in Ww and by
Proposition 11.1 it has a finite dimensional classifying space. Groups
with finite-dimensional classifying spaces are torsion-free and by Propo-
sition 11.9 its center is trivial. �

The fourth question of Godelle and Paris, the K(π,1) conjecture,
would have a positive resolution if one could establish the following.

Conjecture 11.10 (Homotopy equivalence). The classifying space for
each irreducible Artin group of euclidean type constructed here, should
be homotopy equivalent to the standard topological space with this funda-
mental group constructed from the action of the corresponding Coxeter
group on its complexified hyperplane complement.

And finally, there is another obvious question to ask at this point,
although we suspect that it may have a negative answer.

Question 11.11. Is there a natural way to extend the definitions of
Cryst(X̃n,w) and Gar(X̃n,w) to other infinite Coxeter groups so
that they retain their key properties? In particular, is every Artin
group isomorphic to a subgroup of a suitably-defined Garside group?
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With François Digne, Eddy Godelle, Daan Krammer and Jean Michel,
Contributor name on title page: Daan Kramer. MR 3362691

[Del72] Pierre Deligne, Les immeubles des groupes de tresses généralisés, Invent.
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