
THE LENGTH SPECTRUM OF A COMPACT

CONSTANT CURVATURE COMPLEX IS DISCRETE

NOEL BRADY 1 AND JON MCCAMMOND 2

In this short note we prove that the length spectrum of a compact constant
curvature complex is discrete. After recalling the relevant definitions and reducing
to a relatively simple situation, the result follows easily from a foundational result
about real semi-algebraic sets and the Morse-Sard theorem. We conclude with a
conjecture which remains open, a few remarks and an easy application.

Definition 1 (Constant curvature complexes). A constant curvature complex with
curvature κ is a polyhedral cell complex where each cell has been assigned a metric
of curvature κ with the requirement that the induced metrics agree on the overlaps.
In the positive curvature case, there is an additional restriction that each closed
polyhedral cell must lie in some open hemisphere. The generic term is Mκ-complex
where κ is the curvature which all of the cells have in common. In practice, con-
stant curvature complexes can be rescaled so that κ is 1, 0 or −1 and subdivided
into simplices. Thus, we only need to consider piecewise spherical, piecewise Eu-
clidean and piecewise hyperbolic simplicial complexes. See [3] for a comprehensive
discussion of these types of complexes.

It is an early foundational result of Bridson that compact Mκ-complexes are
geodesic metric spaces. In other words, every pair of points in a compact Mκ-
complex is connected by a geodesic, where a geodesic is a length minimizing path.
In order to define the length spectrum, we also need the definition of a local geodesic.
A local geodesic is a local isometric embedding of an interval into X and a closed
geodesic loop is a local isometric embedding of a metric circle into X.

Definition 2 (Length spectrum). Let X be a compact Mκ-complex and let x and
y be points in X. The lengths of all the local geodesic paths from x to y is called
the length spectrum from x to y. The lengths of all the closed geodesic loops in X

is simply its length spectrum.

In Bridson-Haefliger [3, p. 122], a relatively easy compactness argument was able
to establish the discreteness of the length spectrum between specific points. That
the same statement holds for the set of all closed geodesics, is our main result.

Main Theorem. The length spectrum of a compact Mκ-complex is discrete.

Unlike the proof of the result between specific endpoints, however, the closed
geodesic situtation requires a very different type of argument, one more reminen-
scent of the proof of Theorem B in [4]. In that case, the problem of deciding
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whether a compact Mκ-complex is non-positively curved in the Alexandrov sense
was reduced to a decidability result from real algebraic geometry. Here the proof
naturally splits into three parts. First, the theory of constant curvature complexes
reduces the problem to a more managable size, then the Morse-Sard theorem from
differential topology reduces the problem even further, and finally real algebraic
geometry is once again used to complete the proof.

1. Constant curvature complexes

The goal of this section is to reduce the proof of the Main Theorem to the
case where everything takes place in a single circular gallery. We begin with some
definitions.

Definition 3 (Galleries). Let X be a piecewise constant curvature complex and let
γ be a local geodesic path in X. Consider the sequence of open cells through which
γ passes. This sequence is essentially what we call a linear gallery. If γ is a closed
geodesic loop, then this sequence is given a cyclic ordering and the sequence is called
a circular gallery. Instead of a precise definition, consider the example shown in
Figure 1. The upper left shows a very simple complex (which is essentially the
boundaries of two Euclidean tetrahedra identified along one edge) along with a
local geodesic path from x to y. On the upper right is the corresponding linear
gallery. The lower left is the result of concatenating copies of each of the closed
cells through which the local geodesic passes rather than the open cells, and the
difference between these two is the boundary of the gallery shown in the lower right.
The circular version constructs a similar complex homotopy equivalent to a circle.
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Figure 1. A 2-complex, a linear gallery, its closure and its boundary.

Suppose that X is a compact constant curvature complex whose length spectrum
is not discrete. In this case we can choose an infinite sequence of closed geodesic
loops {γi}, i = 1, 2, 3, . . . in X with distinct lengths bounded above by some number
M . Next, Bridson showed that for a local geodesic in a compact constant curva-
ture complex there is an approximately linear relationship between the number of
simplices in its linear gallery and its length (technically, there exist quasi-isometry
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constants describing this relationship which only depend on the shapes of the met-
rics given to the cells). As a result, there only exist a finite number of circular
galleries which can be determined by closed geodesic loops of length less than M .
By passing to a subsequence if necessary, we can assume that all of the γi in the
sequence determine the same (open) circular gallery G. In other words, all of the
closed geodesic loops pass through the exact same sequence of open cells in the
exact same order.

Remark. At this point, the piecewise Euclidean and piecewise hyperbolic cases
would be easy to complete on their own using the theory of non-positively curved
spaces [3]. In particular, it is nearly immediate from this perspective that a piece-
wise Euclidean circular gallery might contain a continuum of closed geodesic loops,
but the non-positively curved nature of the situation ensures that all such closed
geodesic loops have exactly the same length. In a piecewise hyperbolic circular
gallery the conclusion is even stronger: it contains at most one closed geodesic
loop, period. Hence each piecewise Euclidean and piecewise hyperbolic circular
gallery contributes at most one number to the length spectrum. While the piece-
wise spherical case is the only difficult one, it is also the one of most interest in
applications. See our remarks in the final section.

Since our proof in the spherical case readily extends to the Euclidean and hy-
perbolic situations, we continue to view G as a constant curvature circular gallery
without artificially restricting its curvature.

2. Differential topology

In this section we use the Morse-Sard theorem to prove that the length spectrum
for a single circular gallery G has measure zero. We begin by carefully examining
the loops in G.

Definition 4 (Simplicially taut loops). As remarked in [4], if G is a linear (or
circular) gallery determined by a local geodesic (or closed geodesic loop) γ then the
dimensions of the cells alternately increase and decrease. The cells whose dimension
is a local maximum are called top cells and the others whose dimension is a local
minimum are bottom cells. In addition, the intersection of γ with a bottom cell is
always a single point and the intersection with a top cell is always an open interval.
We call the points of intersection with the bottom cells transition points. Note that
in order for this description to work in low dimensions, a vertex is considered to be
both an closed simplex and an open simplex, and its boundary is empty. Finally,
since γ can be completely reconstructed from its transition points, it makes sense
to study the collection of all piecewise geodesic paths determined by a sequence of
points, one selected at random from each (open) bottom cell in the gallery. We
call the piecewise geodesic loop determined by this choice of points a simplicially
taut loop and we denote the set of all simplicially taut loops in G by Loops(G).
Because each bottom cell is an open spherical / Euclidean / hyperbolic simplex,
the set Loops(G) comes equipped with the structure of a real analytic Riemannian
manifold.

The connection with differential topology comes from the fact that the closed
geodesic loops are critical points of a suitably chosen function. Recall that a critical
point for a smooth map between smooth manifolds is one where the tangent map
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is not onto and that the set of critical values for this map is the image of its set of
critical points. We only need the weak version of the Morse-Sard Theorem which
asserts that for any smooth map between smooth manifolds, the set of critical
values has measure zero (see for example [5]). Thus, in order to show that the
length spectrum of G has measure zero, it is sufficient to find a smooth function
d : Loops(G) → R whose critical points include all closed geodesic loops. We claim
that the function d : Loops(G) → R which records the length of the simplicially
taut geodesic corresponding to a point in Loops(G) has both of these properties.

To see that d is smooth (and in fact real analytic) it is enough to show that
each of the functions involved in this finite sum are smooth, but this is immediate
since each such function is the composition of two smooth maps. The first map is
the projection of Loops(G) onto the product of the two bottom cells, say σ and
σ′, involved in this particular distance calculation, and the other is a restriction of
the distance function dist : M × M → R where M is either S

n, R
n or H

n and n is
the dimension of the top cell connecting σ and σ′ in G. More precisely, there are
isometric embeddings of σ and σ′ as faces of the top cell between them, which is
itself embedded in M . In this context, it is clear that the function we care about is
the restriction of the distance function on M . Each of these distance functions is
well-known to be real analytic away from the diagonal (i.e. pairs of identical points),
and in the spherical case, away from pairs of points which are antipodal. Because
the bottom cells σ and σ′ are embedded disjointly in M (recall they are open) and
do not include antipodal points (because of the open hemisphere restriction on the
size of cells in the spherical case), the distance function is real analytic on this
restriction and thus the function d is real analytic as well.

Now that smoothness has been established, the fact that closed geodesic loops
in G correspond to points in Loops(G) which are critical points of d follows readily.
Let γ be a closed geodesic loop in G and let x be the point in Loops(G) to which it
corresponds. Since d is smooth and Loops(G) is open, it is sufficient to show that
the partials at x are zero in a sufficient number of directions. Consider, for example,
the change in d when one of the transition points of γ is varied in a specific direction
in its bottom cell (i.e. along a short local geodesic arc in its bottom cell) and all of
the other transition points are left fixed. The geodesics from the previous transition
point to this short arc all lie in a common geodesic triangle embeddable in S

2, R
2,

or H
2. Similarly, the geodesics connecting this arc to the following transition point

lie in a common geodesic triangle. These two geodesic triangles share the edge of
variation, and it is clear that a path through this configuration which is locally
geodesic must pass through a point which determines an element of Loops(G)
at which the partial of d in the direction of variation is zero. In the Euclidean
and hyperbolic cases, this point is a local minimum of d in this direction, but in
the spherical case, it might be a local minimum, locally flat, or a local maximum
depending on whether the distance from the previous transition point through this
special point to the following transition point is less than, equal to, or more than
π. By varying the direction and the transition point under consideration, it is easy
to see that the point x corresponding to γ must be critical.

3. Real algebraic geometry

In this section we use real algebraic geometry to show that the set of critical
points of d : Loops(G) → R has the topology of a real semi-algebraic set. Recall
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that a real semi-algebraic set is a subset of Euclidean space which can be described
using a Boolean combination of polynomial equations and inequalities in the stan-
dard set of real variables. Once this is established, the main result follows quickly.
It is a standard result in real algebraic geometry that a real semi-algebraic set has
only a finite number of connected components [1], so its image under a continuous
map such as d (i.e. the set of critical values) also has only finitely many com-
ponents. In the previous section we established that the critical values of d have
measure zero in R. Combining these two results implies that d has only a finite
number of critical values. As a consequence, the length spectrum of G is finite and,
by the argument in Section 1, the length of the original constant curvature com-
plex is discrete. Thus, it only remains to show that the critical points form a real
semi-algebraic set. To do this we first embed Loops(G) into a high dimensional
Euclidean space.

Definition 5 (Standard embeddings). Let σ be one of the bottom cells of G of
dimension n and consider the portion of R

n+1 defined by the equation κ(x2
1 + . . .+

x2
n) + x2

n+1 = 1 and the inequality xn+1 > 0 where κ is the curvature. When κ

is 1 / 0 / −1, respectively, then this describes the upper open hemisphere of the
standard embedding of S

n into R
n+1 / the projective embedding of R

n into R
n+1

defined by the equation xn+1 = 1 / the standard hyperboloid used as a model
for hyperbolic n-space inside R

n+1. Depending on the curvature κ we choose an
embeding of σ into the appropriate model space so that the image is isometric to
σ when the standard spherical / Euclidean / hyperbolic metric is used to measure
distances within the model.

Notice that in each case the image a bottom cell can be described by a finite list
of polynomial equations and inequalities in the n + 1 variables, xi, i = 1, . . . , n + 1.
For example, a spherical / Euclidean / hyperbolic triangle can be described using
three standard variables (x1, x2, and x3), one equation (κ(x2

1 + x2
2) + x2

3 = 1) and
three linear inequalities to specify the sides. The equations of the sides really are
linear inequalities because in all three cases, the “lines” in the model are found
by intersecting a plane through the origin with the model space. Notice that the
inequality x3 > 0 is not needed because it is a consequence of the other three
inequalities.

Definition 6 (Variables). The first n variables are called the intrinsic variables
of this bottom cell, the n + 1-st variable is the special variable for this bottom cell
and the set of all n + 1 variables are the standard variables. When we need to
distinguish between intrinsic and standard variables we use ui for the former and
xi for the latter.

Combining the chosen embeddings for each bottom cell creates an embedding of
Loops(G) into RN for some large value of N (equal to the sum of the dimensions
of the bottom cells plus the number of bottom cells). Moreover, the image can
be described using a finite list of polynomial equations and inequalities in the N

standard variables. Thus, we have parameterized the set of all simplicially taut
loops by a real semi-algebraic subset of Euclidean N -space. One might wonder
whether the choice of particular embeddings mattered, but since the isometries of
S

n, R
n, and H

n interpreted inside R
n+1 are linear transformations of R

n+1, the net
effect on the polynomial equations and inequalities would be a linear substitution
on the set of variables. Thus, changing the chosen embeddings of the bottom cells
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has only a minimal effect on the resulting equations and inequalities. With this in
mind, fix once and for all a specific embedding of Loops(G) ⊂ R

N .
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Figure 2. Parameterizing a circular arc bottom cell and its em-
bedding into the boundary of a spherical triangle top cell.

Next, we also choose similar embeddings of the top cells into model spaces.
Once we have fixed such an embedding of a top cell, there is a unique linear map
from the Euclidean space containing the previous bottom cell so that its image lies
in the boundary of the embedded top cell in the appropriate way. Such a map
does in fact exist precisely because the lower dimensional model spaces embed in
the higher dimensional ones in an obvious way and, once there, the image can be
moved into the correct position by a linear transformation of this higher dimensional
Euclidean space. Notice that the summand of the function d which depends on this
particular top cell can now be written explicitly as either cos−1(~x ·~y),

√
~x · ~y − 1, or

cosh−1(−~x◦~y) where the coordinates of ~x and ~y are linear functions of the standard
variables for the appropriate bottom cell. In these equations the notations ~x ·~y and
~x◦~y refer to the standard Euclidean and Lorenztian inner products, respectively. In
other words, this portion of d is can be defined by evaluating a quadratic polynomial
in the standard variables in a rather simple function. Finally, notice that the partial
derivative with respect to one of the standard variables of either bottom cell is,
in all three cases, a linear polynomial divided by the square root of a quadratic
polynomial. Moreover, the polynomial under the square root sign is independent
of the variable involved in the differentiation.

The final step is to show that the restriction of Loops(G) ⊂ R
N to those points

which are critical points for the function d can also be described using only polyno-
mial equations and inequalities in the standard variables. One difficulty here is that
we have used an excessive number of variables to embed Loops(G) in a Euclidean
space. To fix this we can also parameterize Loops(G) using only the intrinsic vari-
ables. More explicitly, the map which projects the points in each model space onto
its first n coordinates has an inverse which sends the point ~u = (u1, . . . , un) to the
point

~x = (x1, . . . , xn, xn+1) =

(

u1, . . . , un,

√

1 − κ(u2
1 + · · · + u2

n)

)



LENGTH SPECTRUM 7

This parameterization map is particularly well-behave in that every partial deriv-
ative is a rational polynomial in the standard variables. Concretely,

∂xi

∂uj

=











δij if i ≤ n

−κxj

xn+1

if i = n + 1

If we let U denote the product of the projections of the embedded bottom cells
onto their intrinsic coordinates, then these parameterization maps combine to give
a smooth homeomorphism f between U and Loops(G). Thus, a point in Loops(G)
is a critical point of d if and only if it is the image of a critical point in U of d ◦ f .
These latter points are characterized by the fact that the partial of d◦f with respect
to each intrinsic variable is zero. Finally, if we are differentiating with respect to
an intrinsic variable ui in a bottom cell of dimension n, then the only standard
variables which depend on ui are the variables xi and xn+1 assigned to the same
bottom cell, and the only summands of d which depend on these variables are the
terms involving the neighboring top cells. As a result, the partial derivative of
d ◦ f with respect to ui can be written as the sum of four terms, each of which
involves a rational polynomial divided by the square root of polynomial - all using
the standard variables. (We are using here both the characterization of the partials
of xi with respect to uj and the partials of a term of d with respect one of the
standard variables that we derived above.) Moreover, the first two terms and the
last two terms involve the same polynomial under the square root sign. Thus, this
can be simplified to two terms with rational polynomials divided by square roots of
polynomials. We get one such expression in the standard variables for each of the
intrinsic variables. Setting each of these to zero, we have found the exact conditions
which need to be satisfied by a point in Loops(G) for it to be a critical point for
the map d. It is now an easy exercise to rewrite each of these equations involving
only two terms with square roots into polynomial equations and inequalities in the
same set of variables, where the new system has the same solution set as the old.
As a consequence, the set of critical points for d as a subset of Loops(G) ⊂ R

N is
a real semi-algebraic set. As argued at the beginning of the section, this completes
the proof of the main theorem.

4. Final comments

We conclude this note with a conjecture, a few additional remarks, and an ap-
plication. The conjecture is motivated by the facts noted above about the closed
geodesic loops in piecewise Euclidean and piecewise hyperbolic circular galleries.

Conjecture (Trivial length spectrum). The length spectrum of a piecewise spher-
ical circular gallery G should contain at most one value.

An even stronger conjecture, which is known to be true in the Euclidean and
hyperbolic cases, is that the set of closed geodesic loops in G should correspond to a
connected subset of Loops(G). In other words, if α and β are closed geodesic loops
in G, then the length of α and β should be equal and there should be a homotopy
from α to β which only passes through closed geodesic loops with this particular
length. At present, the only bounds we know of on the size of the length spectrum
in the spherical case come from an examination of the degrees of the polynomials
which define the real semi-algebraic set of critical points.
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Turning our attention from the set of critical values to the size of the set of
critical points, we note that the Main Theorem should definitely not be interpreted
to mean that there are only a finite number of closed geodesic loops. In fact, it is
very easy to construct examples where the dimension of the set of critical points,
and of closed geodesic loops, is large.

Remark (Number of closed geodesics). Consider a sequence of n all-right spherical
tetrahedra (i.e. all edges have length π

2
), and let G be the circular gallery formed

by identifying an edge in one tetrahedron to an edge in the next in such a way that
the two edges used in each tetrahedron are non-adjacent. In this example, every
simplicially taut loop has the same length, namely nπ

2
. In particular, its image

under d is trivial, every point in the n-manifold Loops(G) is critical, and every
simplicially taut loop is a closed geodesic.

It is also instructive to consider a slight modification of this example where every
edge which is not shared between two tetrahedra has length π

2
+ ε. When ε is small

and positive G contains no closed geodesic loops, and when ε is small and negative
G contains exactly one. This extreme sensitivity to shape is one difficulty inherent
in problems of this type. Our next remark is about another, more subtle, difficulty
that our proof as given narrowly avoids.

Remark (Morse-Sard for real analytic functions). At one point we believed that
we could eliminate the need to use real algebraic geometry by establishing the
main result via the real analytic version of the Morse-Sard theorem. As stated and
proved in [8], this asserts that if f : U → R is a real analytic function defined
over an open set U ⊂ R

N and C ⊂ U is compact, then f restricted to C has only
a finite number of critical values. Unfortunately, even though the function d is a
real analytic function on an open subset of R

N containing Loops(G), it is not real
analytic on any open subset containing the closure of Loops(G). The problem is
that there are points in the boundary of Loops(G) where d is not real analytic,
or even C1. Geometrically, these bad points arise because we are extending the
appropriate distance function to a place where points collide, and there are no
neighborhoods of these points where the distance functions are differentiable.

Finally, we conclude with a remark about an application of the Main Theorem
to the study of curvature in locally geodesic surfaces.

Remark (Locally geodesic surfaces). Let f : D → X be an isometric immersion
of a metric surface D. We call this immersion locally geodesic if for all points
d ∈ D, the link of d is sent to a local geodesic in the link of f(d). Recall that
the link of a point is the set of unit tangent at that point. In a 2-dimensional
piecewise Euclidean complex, every null-homotopic curve bounds a locally geodesic
surface, but this fails in dimensions 3 and higher. This is also one of the key
reasons why some theorems which hold in dimension 2 fail to easily generalize to
higher dimensions. For example, Chris Hruska proves in [6] that in dimension 2 the
isolated flats property is equivalent to the relative fellow travel property and to the
relatively thin triangles property. Moreover, he conjectures that the same result is
true in all dimensions. In his proof, however, he heavily uses the fact that null-
homotopic curves bound locally geodesic surfaces and that the curvature of points
in locally geodesic surfaces mapped into finite 2-dimensional complexes is bounded
away from 0. By the curvature of a point in the interior of D we mean 2π minus
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the length of its link. See also [7] where a more general definition of curvature is
discussed. An immediate corollary of Main Theorem is that the second portion of
his proof immediately generalizes to arbitrary dimenisions.

Corollary (Quantantizing curvature). If D → X is a locally geodesic surface in a
compact piecewise Euclidean complex X, then those points in the interior of D with
nonzero curvature have curvatures uniformly bounded away from 0. Moreover, this
bound depends only on X and not on D. As a consequence, if the total amount of
negative (or positive) curvature is known, then there is a bound on the number of
points in D whose curvature is less than (or more than) zero.
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