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Abstract. The automorphism groups of integral Lorentzian lattices
act by isometries on hyperbolic space with finite covolume. In the case
of reflective integral lattices, the automorphism groups are commensu-
rable to arithmetic hyperbolic reflection groups. However, for a fixed
dimension, there is only finitely many reflective intgral Lorentzian lat-
tices, and these can only occur in small dimensions. The goal of this
note is to construct embeddings of low-dimensional integral Lorentzian
lattices into unimodular Lorentzian lattices associated to right-angled
reflection groups. As an application, we construct many discrete groups
of Isom(Hn) for small n which are C-special in the sense of Haglund-
Wise.

1. Introduction

Given a finite volume polyhedron P in hyperbolic space Hn, let Γ be the
group generated by the reflections on the sides of P . If the action of Γ tiles
Hn without interiors of copies of P overlapping, we say that Γ is a hyperbolic
reflection group and its fundamental polyhedron P is a hyperbolic Coxeter
polyhedron. The quotient Hn/Γ is a finite-volume hyperbolic orbifold.

The theory of hyperbolic reflection groups provides many examples of
finite volume hyperbolic orbifolds. However, in higher dimensions, these
cease to exist [Vin84, Kho86, Pro86]. Another way to construct finite vol-
ume hyperbolic orbifolds in any dimension is as quotients of Hn by the au-
tomorphism groups Aut(L) of Lorentzian lattices L. These automorphism
groups are examples of arithmetic groups of simplest type in Isom(Hn). If
the subgroup generated by reflections has finite index in Aut(L), we say the
lattice L is reflective. Such a subgroup is an arithmetic hyperbolic reflection
group.

In this note we construct embeddings of lattices into unimodular lattices
of higher dimension. The Lorentzian unimodular lattices In,1 are reflectie
for 2 ≤ n ≤ 19 [Vin72, KV78]. Furthermore, for 2 ≤ n ≤ 8, these are
associated to reflection groups of hyperbolic right-angled polyhedra, which
are geometric right-angled Coxeter groups [PV05]. Right-angled Coxeter
groups, or RACGs, are particularly interesting because they have many
nice properties which are inherited by their subgroups. For example, virtu-
ally embedding hyperbolic 3-manifold groups into RACGs has determined
the virtual Haken and the virtual fibering conjectures for all finite volume

1



2 MICHELLE CHU

hyperbolic 3-manifolds as well as LERFness of their fundamental groups
[Ago13, Wis11]. In the sense of [HW08] we say a group is C-special if it
embeds as a quasi-convex subgroup of a RACG.

We apply the lattice embeddings together with the explicit relationship
between the unimodular lattices In,1 and RACGs given by [ERT12] to con-
struct many examples of C-special hyperbolic manifold groups in dimension
3 and 4. The following theorem extends and improves the results in [Chu17]
(see also [Chu18]) and [DMP18, Theorem 2.6].

Theorem 1.1. Let Γ be an integral arithmetic group of simplest type in
O+(3, 1) or O+(4, 1). Then Γ(2), the principal congruence subgroup of level
2, is compact C-special.

For fixed dimensions, the indices of the principal congruence subgroups
of level 2 contained in integral arithmetic group of simplest type are uni-
formly bounded. Theorem 1.1 extends [Chu17, Theorem 1.2, Proposition
5.3][Chu18, Theorem 3.1, Proposition 4.3, Proposition 5.3] and also improves
on the bounds for the value of D found in [DMP18, Proposition 2.6] by re-
moving the dependence on the discriminant. This gives a uniform bound
for D which is independent of anything to get a strengthening of [DMP18,
Theorem 2.2]. Prior to these results, Bergeron-Haglund-Wise showed that
given an arithmetic group of simplest type in O+(n, 1), there exist some m
such that the congruence subgroup of level m is special [BHW11], but The-
orem 1.1 shows that m = 2 is enough for the cases included in Theorem 1.1.

This note is organized as follows: In Section 2 we give the necessary pre-
liminary background in integral lattices, their automorphism groups, and
arithmetic groups of simplest type. In Section 3, inspired by the lattice glu-
ings in [All18], we construct embeddings of integral lattices into unimodular
lattices. Finally, in Section 4 we use these embeddings to prove Theorem 1.1.
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2. Preliminaries

2.1. Integral lattices. A lattice L is a Z-module equipped with a Q-valued
non-degenerate symmetric bilinear form (·, ·) on the vector space V = L⊗Z
R, called the inner product. L is called Lorentzian if its inner product has
signature +n−1. The norm of a vector v is its inner product with itself
(v, v). If the inner product of every pair of vectors in L is Z-valued, L is
called integral. In what follows, let L be an integral lattice unless otherwise
noted.

The dual of L is the lattice L∗ = {v ∈ L ⊗ Q : (v, L) ∈ Z}. Notice that
L is integral if and only if L ⊂ L∗. We define the discriminant group as
∆(L) = L∗/L, a finite abelian group. We will refer to the minimal number
of generators of ∆(L) as rank(∆(L)).
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The determinant of L, or detL is the determinant of an inner product
matrix AL, with respect to some Z-basis of L. It is independent of the choice
of Z-basis and in fact |detL| = |∆(L)|. If L′ is a sublattice of L of index d
then detL′ = d2 · detL.

The Z-valued inner product on L extends to a Q-valued inner product on
L∗ and descends to a Q/Z-valued inner product on ∆(L).

An integral lattice L is called strongly-square-free, denoted by SSF, if the
rank of ∆(L) is at most 1

2 dim(L) and every invariant factor of ∆(L) is

square-free. In other words, ∆(L) is a direct product of at most 1
2 dim(L)-

many finite cyclic subgroups, each of square-free order. An integral lattice
is called unimodular whenever ∆(L) is trivial.

Lattices may also be defined more generally over totally real number fields.

2.2. Automorphisms and arithmetic groups. Let k be a totally real
number field with ring of integers Ok and let f be a quadratic form of sig-
nature +n−1 defined over k such that for every non-identity embedding
σ : k ↪→ R, the form fσ is positive definite. Let O(f ;R) denote the
orthogonal group that preserves f and O+(f ;R) its index-two subgroup
which preserves the positive sheet of the hyperboloid. Then the group
Γ = O+(f ;Ok) = O+(f ;R) ∩ GLn+1(Ok) is a finite-covolume discrete sub-
group of O+(n, 1) which is the full group of isometries of hyperbolic space
Hn. The field k is called the field of definition for Γ. Any discrete sub-
group of O(n, 1) which is commensurable to some such O+(f ;Ok) is called
arithmetic of simplest type.

If L is an integral Lorentzian lattice, then its automorphism group is the
group

Aut(L) = {g ∈ GL(V )|Lg = L and fL(xg, yg) = fL(x, y) for all x, y ∈ L}
= {g ∈ GLn+1(Z)|gALgtr = AL}
= O(fL;Z).

This group is by definition an arithmetic subgroup of O(n, 1;R) of simplest
type, with field of definition Q.

If n − 1 is not divisible by 8, there is, up to isomorphism, a unique uni-
modular Lorentzian lattice of signature +n−1 denoted In,1. Let qn be the
standard Lorentzian quadratic form

(2.1) qn := −x20 + x21 + · · ·+ x2n.

The unimodular lattice In,1 has automorphism group Aut(In,1) = O(qn,Z)
and is reflective for n ≤ 19 [Vin72, KV78].

2.3. Invariants and existence of integral lattices. This section assumes
familiarity with Conway-Sloane p-adic symbols [CS99, Chapter 15].

Over the p-adic integers, a form f associated to a p− adic lattice Lp can
be decomposed as a direct sum

(2.2) f = f1 ⊕ pfp ⊕ p2fp2 ⊕ · · · ⊕ qfq ⊕ . . .
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where q is a p-power and fq is a p-adic integral form with determinant prime
to p.

For p odd, the p-adic symbol of f is the formal product of factors qεqnq

with

εq =

(
det fq
p

)
and nq = dim fq

where
(
α
p

)
denotes the Kronecker symbol.

For p = 2, the 2-adic symbol of f is the formal product of factors q
εqnq

tq or
qεqnq where the former indicates fq is of type I and the later indicates fq is
of type II and with

εq =

(
det fq

2

)
, nq = dim fq and tq = oddity(fq)

where the Kronecker symbol
(
a
2

)
is +1 if a ≡ ±1 mod 8 or −1 if a ≡ ±3

mod 8.
Unfortunately, the 2-adic symbol is not unique, since a 2-adic form can

have essentially different Jordan decompositions. However, Conway-Sloane
define an abreviated 2-adic symbol using compartments and trains. Two
abreviated 2-adic symbols represent the same form if and only they are
related by sign walking (see [CS99, Chapter 15, §7.5]).

By [CS99, Theorem 11, Chapter 15], there exist an integral lattice L of
determinant d have a specified local forms Lp and signature +r−s if and only
if the determinant condition, the oddity formula, and the Jordan constituent
conditions displayed below hold.

1. The determinant condition: for each p, the εq from the p-adic symbol
satisfy

(2.3)
∏

εq =

(
a

p

)
where det(L) = pαa.

2. The oddity formula:

(2.4) signature(L) +
∑
p odd

p−excess(Lp) ≡ oddity(K2) mod 8

where

signature(L) = r − s,

p−excess(Lp) ≡
∑
q

nq(q − 1) + 4 ·#(odd powers q with εq = −1),

and oddity(L2) =
∑

tq + 4 ·#(odd powers q with εq = −1).

3. The Jordan constituent conditions: the 2-adic Jordan constituents
satisfy the following

(2.5) if type II, tq ≡ 0 mod 8
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(2.6) if nq = 1,

{
εq = +1 then tq ≡ ±1 mod 8

εq = −1 then tq ≡ ±3 mod 8

(2.7) if type I and nq = 2,

{
εq = +1 then tq ≡ 0 or ± 2 mod 8

εq = −1 then tq ≡ 4 or ± 2 mod 8

(2.8) and tq ≡ nq mod 2.

When working with the abbreviated 2-adic symbol, the Jordan constituent
conditions on a compartment of total dimension at least 3 reduce to just one
condition: the total oddity in the compartment has the same parity as its
total dimension.

2.4. Some facts and observations. We state here some straight-forward
observations that follow immediately.

For odd p, the p-excess is always even.
If L is SSF, then the p-adic symbol for Lp will only contains terms for

q = 1 and q = p with np ≤ 1
2 dim(L).

If we take Lneg to be as L with all inner products negated, its local forms
will change as follows. If p is odd, then the p-adic symbol for Lneg

p is got

from that of Lp by multiplying each superscript by
(
(−1)nq

p

)
. The 2-adic

symbol for Lneg
p is got from that of Lp by negating each subscript.

If p - detL or if
(
−1
p

)
= 1, then the p-excess of Lp and Lneg

p agree. If p|L

and
(
−1
p

)
= 1, then the p-excess of Lp and Lneg

p differ by 4 mod 8.

3. Lattice embeddings

The goal of this section is to prove the following proposition.

Proposition 3.1. Let L be an SSF integral lattice of signature +r−s and
rank(∆(L)) = δ. Then L embeds in a unimodular lattice of signature
+r+δ+1−s.

The proof will be separated into two cases depending on the parity of
det(L). The main idea is to use a technique in [All18]. We will construct
a lattice K of signature +δ+1−0 with det(K) = (−1)s det(L) by specifying
its local forms Kp, chosen such that there exist a group isomorphism φ :
∆(L) → ∆(K) which negates norms and inner products. Gluing L to K
along the graph of φ will then result in a unimodular lattice.

3.1. Case 1: d is odd. If det(L) is odd, the following lemma holds regard-
less of whether L is SSF.

Lemma 3.2. Let L be an integral lattice of signature +r−s with det(L)
odd and rank(∆(L)) = δ. Let m = max{δ + 1, 3}. Then L embeds in a
unimodular lattice of signature +r+m−s.
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Proof. Assume L is not unimodular and let d := (−1)s det(L). Defined the
local forms Kp as follows.

For odd p - d, define Kp by 1
( d
p
)m

.
For odd p|d with d = pαa, define Kp by the product of qεqnq where for

q = pm > 1, the term qεqnq matches that of Lnegp , and where 1ε1n1 is chosen
such that

∏
εq = (ap ) and

∑
nq = m.

Let t ≡ m +
∑

p odd p−excess(Kp). Since
∑

p odd p−excess(Kp) is even, t

will have the parity of m. Define K2 by 1
( d
2
)m

t .
With these choices of local forms, all conditions (2.3)-(2.8) are satisfied.

So there exist an integral lattice K of signature +m−0 and determinant d
with the prescribed local forms.

Now each local form Kp differs from Lnegp by a unimodular factor. We
have that ∆(Kp) and ∆(Lnegp ) are isomorphic and correspond to the Sylow
p-subgroups of ∆(K) and ∆(Lneg). It follows that there exist a group iso-
morphism φ : ∆(L)→ ∆(K) which negates norms and inner products. Let
G = {(x, φx)} be the graph of φ. Then G is a totally isotropic subgroup of
∆(L ⊕K) = ∆(L) ⊕∆(K), that is, the natural Q/Z-valued inner product
on ∆(L⊕K) vanishes on G.

Write L ⊕G K for the preimage of G in (L ⊕ K)∗ = L∗ ⊕ K∗. Since
G is totally isotropic, L ⊕G K is an integral lattice containing L ⊕K as a
sublattice of index |G| and therefore its determinant is given by

(3.1) detL⊕G K =
detL⊕K
|G|2

=
d2

(d)2
= 1.

So L⊕GK is a unimodular lattice containing L with orthogonal complement
L⊥ isomorphic to K. �

3.2. Case 2: d is even.

Lemma 3.3. Let L be an SSF integral lattice of signature +r−s with det(L)
even and rank(∆(L)) = δ. Let m = max{δ + 1, 3}. Then L embeds in a
unimodular lattice of signature +r+m−s.

Proof. Let d := (−1)s det(L). Observe first that the SSF assumption guar-
antees that ∆(L2) (the 2-Sylow subgroup of ∆(L)) is (Z/2Z)α where d = 2αa
and 2 - a. This means that the natural Q2/Z2-valued norms and inner prod-
ucts in ∆(L2) are in 1

2Z2. In particular, negating norms and inner products
in ∆(L2) is trivial.

Defined the local forms Kp as follows.

For odd p - d, define Kp by 1
( d
p
)m

.
For odd p|d with d = pαa, define Kp by the product of qεqnq where for

q = pm > 1, the term qεqnq matches that of Lnegp , and where 1ε1n1 is chosen
such that

∏
εq = (ap ) and

∑
nq = m.
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Let t ≡ m +
∑

p odd p−excess(Kp). Since
∑

p odd p−excess(Kp) is even,
t will have the parity of m. Define K2 by the reduced 2-adic symbol

[1(a
2 )(m−α)2+α]t where d = 2αa.
With these choices of local forms, all conditions (2.3)-(2.8) are satisfied.

So there exist an integral lattice K of signature +m−0 and determinant d
with the prescribed local forms.

Now each local form Kp for p 6= 2 differs from Lnegp by a unimodular
factor. We then have that for all p (including p = 2) ∆(Kp) and ∆(Lnegp ) are
isomorphic and correspond to the Sylow p-subgroups of ∆(K) and ∆(Lneg).
It follows that there exist a group isomorphism φ : ∆(L) → ∆(K) which
negates norms and inner products. Let G = {(x, φx)} be the graph of φ.
Then G is a totally isotropic subgroup of ∆(L⊕K) = ∆(L)⊕∆(K).

The remaining follows exactly as in the proof of Lemma 3.2. �

4. Special subgroups

In this section we gather the necessary ingredients and prove Theorem 1.1
as a direct consequence of Corollary 4.1 and Theorem 4.2.

It can be shown that the automorphism group of a non-SSF lattice is
always contained in the automorphism group of one which is SSF [Wat62,
Wat75, All12]. For SSF lattices of dimension up to 5, the rank of their
discriminant groups is at most 2. Therefore, the following corollary follows
immediately from Proposition 3.1.

Corollary 4.1. If L is an integral lattice of signature +3−1 (resp. +4−1),
then Aut(L) embeds geometrically in Aut(I6,1) (resp. Aut(I7,1)).

The following theorem of Everitt-Ratcliffe-Tschantz provides the explicit
relationship between the automorphism groups of the unimodular lattices
In,1 for n ≤ 8 and right-angled Coxeter groups. Recall that qn := −x20 +
x21 + · · ·+ x2n and Aut(In,1) = O(qn,Z).

Theorem 4.2 ([ERT12, Theorem 2.1]). For 2 ≤ n ≤ 7, O+(qn,Z)(2) is a
geometric RACG. It is the reflection group of an all-right hyperbolic polyhe-
dron of dimension n. The group O+(q8,Z)(2) contains a geometric RACG
as a subgroup of index 2. This subgroup is the reflection group of an all-right
hyperbolic polyhedron of dimension 8.

Proof of Theorem 1.1. The proof follows immediately from Corollary 4.1
and Theorem 4.2 since the lattice embeddings are geometric and therefore
induce quasi-convex embeddings of the respective automorphism groups. �
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