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Abstract. [GST] classified, via a natural slope indexed by Q, all
two-component links which contain the square knot and from which
(S1 × S2)#(S1 × S2) can be obtained by surgery. It was argued
there that each of a certain family Ln of such links probably con-
tradicts the Generalized Property R Conjecture. Left unresolved
was how the family Ln fits into the classification scheme. This
question is resolved here, in part by giving varied perspectives and
more detail on the construction of the Ln.

The Property 2R Conjecture [GST] (the simplest remaining case of
the Generalized Property R Conjecture) proposes that any link of two
components in S3, on which some surgery yields (S1× S2)#(S1× S2),
can be changed to the unlink by a series of moves called handle-slides.

Let L denote the set of of all two-component links that contain the
square knot Q and on which some surgery yields (S1×S2)#(S1×S2).
It is argued in [GST] that there is an infinite family Ln ⊂ L of links
that, for n ≥ 3 probably do not satisfy the Property 2R Conjecture, for
if one of the family did, then a corresponding presentation of the trivial
group could be trivialized by Andrews-Curtis moves, an outcome that
seems very unlikely. On the other hand, it is also shown that each link
in the family can be handle-slid to the unlink, once a single canceling
Hopf pair is added. Thus all of the Ln are consistent with a Weak
Generalized Property R Conjecture, a conjecture that would suffice
to prove the smooth 4-dimensional Poincaré Conjecture for homotopy
spheres without 1-handles [GST, Proposition 9.2].

There is a straightforward classification of L in [GST, Corollary 6.4],
recounted here in Section 5: The classification assigns to each link a
natural slope, indexed by those p

q
∈ Q for which q is odd. But the clas-

sification requires unspecified handle-slides of the other link component
over Q and we were unable to resolve in [GST] how the family Ln fits
into this classification. This left a puzzling gap ([GST, Question One])
between the 4-dimensional Kirby-calculus arguments (with 20-year-old
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roots in [Go]) which gave rise to interest in Ln, and the 3-dimensional
sutured manifold arguments which were used to classify L. Here we
resolve that question by showing that each Ln corresponds to the slope
n

2n+1
∈ Q. So the family Ln constitutes a relatively small subset of L

and, in particular, it remains possible (though unlikely) that some link
in L could still be a counterexample even to the Weak Property 2R
Conjecture.

1. Construction of the Ln - a review

Here is a brief review of the relevant material from [GST]. Any closed
orientable 3-manifold can be obtained from S3 by surgery on a framed
link [L]. The Kirby calculus [Ki1] provides two operations on framed
links, each of which has no effect on the resulting 3-manifold; indeed,
any two surgery descriptions of the same 3-manifold differ only by some
sequence of these operations. One of the two moves is called a handle
slide (reflecting its effect on the 4-manifold trace of the surgery). Such
a handle-slide requires a choice of a band in S3 connecting two com-
ponents of the link. It has seemed a reasonable conjecture (motivated
by the smooth 4-dimensional Poincaré Conjecture and called the Gen-
eralized Property R Conjecture) that any framed r-link description of
the connected sum #r(S

1×S2) can be reduced to the 0-framed unlink
of r components by some sequence of handle slides. The simplest un-
known case r = 2 of the Generalized Property R Conjecture is called
the Property 2R Conjecture.

A central point of [GST] is that a certain family Ln, n ≥ 3 of 2-
component links containing the square knot Q (shown in [GST, Figure
19]) is unlikely to satisfy Property 2R.

Let M denote the 3-manifold obtained from S3 by 0-framed surgery
on Q. The family Ln = Q∪ Vn (called Ln,1 in [GST]) has these central
features:

• L0 can be handle-slid to be the unlink in S3. (This is demon-
strated in [GST, Figures 12, 13, 5].)
• In M there is a simple closed curve α lying on a torus T so that

each Vn intersects T twice and twisting Vn in M at T along the
slope given by α converts Vn to Vn+1.
• When viewed in S3, the framing of α given by its annular neigh-

borhood in T is ±1.

It is shown that, given these features, Ln+1 can be obtained from Ln
by handle-slides and the introduction and use of a single canceling Hopf
pair. It follows inductively that, with the introduction of a canceling
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Hopf pair, each Ln can be handle-slid to the unlink. In particular,
0-framed surgery on each Ln gives (S1 × S2)#(S1 × S2).

A second point of [GST], coming from sutured manifold theory, is
that there is a natural classification (up to handle slides over Q) of
all two-component links L that contain the square knot Q and on
which some surgery yields (S1 × S2)#(S1 × S2). In brief: for any
link Q ∪ K ⊂ L, handle-slides of K over Q will eventually transform
K to a curve that lies in the standard genus 2 Seifert surface F of Q,
and furthermore its position in F is very constrained: viewing F as the
2-fold branched cover of a 4-punctured sphere P , K must be a home-
omorphic lift of an embedded circle in P . There is a natural way of
parameterizing embedded circles in P by the rationals; with one such
parameterization, a circle in P lifts homeomorphically to F if and only
if the corresponding rational has odd denominator.

A frustrating aspect of this classification is that each handle-slide
of K over Q requires the choice of a band over which to slide, and
the classification does not give a prescription for finding the relevant
bands. So there is no way to see how any given link in L fits into
the classification. In particular, [GST, Question 1] asks, and here we
answer, how the specific family of links Ln fits into this classification
scheme. The argument is largely pictorial and includes also more detail
on some of the transition between figures in [GST]. It is likely to be
indecipherable without viewing a full-color rendering (e. g. the .pdf
file).

2. From surgery diagram to explicit link

We begin by explaining with pictures the transition in [GST] from
a fairly simple surgery diagram of a probable counterexample to Prop-
erty 2R to an explicit picture of it as a complicated link in S3. Begin
with the surgery diagram Figure [GST, Figure 12d] and draw it sym-
metrically, a transition illustrated in Figure 1.

Next consider the effect of blowing down the red circles in the surgery
description labelled [±1]. Focus on the right circle and recall the easy
fact (see [GS, Figure 5.18]) that blowing down the circle with label [−1]
is equivalent to taking the disk D that it bounds and giving everything
that runs through it a +1 (sic) twist. In this case, part of what runs
through D are n segments of a 0-framed component coming from the
+n twist-box on the right. Figure 2 is meant to illustrate what happens,
very specifically in the top row for n = 2. Before twisting along D,
move the n = 2 punctures in D so that as one moves clockwise around
the disk, the punctures become more central. The track of the 2 strands
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going through D, after the +1 twist around D, is shown in red. It is
then illustrated in blue how the result can be thought of as a +1 twist
box placed around an n-stranded band that follows the original red
circle that was blown down. The result for general n is shown next,
and then this is applied to the given surgery diagram to give the link
illustrated at the bottom of Figure 2. The gray annuli are meant to
represent n parallel strands, much like the wide annuli that appear in
[GST, Figure 1]. We now discuss the transition to that figure.

In Figure 3, the gray annuli are pushed off the plane of the green
knot (now visibly the square knot), then the twist boxes are moved
clockwise past one end of the two (black) connecting arcs, switching
a crossing between the arc and the annulus to which it is connected.
Finally, the two gray annuli are isotoped to push the parts containing
the twist boxes to the outside of the figure, beginning to imitate their
positioning in [GST, Figure 1].

Continue with the positioning, moving clockwise from the upper left
in Figure 4. The first step there is to move the square knot into the cor-
rect position and then expand the two gray annuli. Next the ends of the
connecting arcs on each annuli are moved to be adjacent (represented
by the small blue squares in the figure). This has the psychological ad-
vantage that the link component Vn can be thought of as starting with
a single circle (the end-point union of the two black arcs in the figure)
and then doing a ±n Dehn twist to that circle along the cores of the
two gray annuli. The next move is a surprise: push the blue square in
the right hand gray annulus clockwise roughly three-quarters around
the annulus, pushing the twist-box ahead of it. When this is done
(the bottom left hand rendering) the picture of the link has become
essentially identical to that in [GST, Figure 1].
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3. Pushing Vn onto a Seifert surface

It follows easily from [ST, Corollary 4.2] that each Vn, perhaps after
some handle-slides over Q, can be placed onto a standard Seifert surface
of Q, so that the framing of Vn given by the Seifert surface coincides
with 0-framing in S3. (For details, see the proof of [GST, Theorem
3.3].) The proof of [ST, Corollary 4.2] requires Gabai’s deep theory of
sutured manifolds. It is non-constructive and in particular the proof
provides no description of how to find the handle-slides of Vn over Q
that are needed to place Vn onto the Seifert surface.

In this section we begin the search for the required handle-slides by
trying to push the whole apparatus A that defines Vn onto a Seifert
surface F for Q. (Here A is the union of the two gray annuli in Figure
2 with the two arcs that connect them.) It’s immediately clear that A
can’t be completely moved onto F , since each of the gray annuli in A
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has non-trivial linking number with Q. Here we focus on getting A as
closely aligned with F as seems possible, given this difficulty.

Figure 5 repeats the first two steps in Figure 3, with these minor
modifications:

• The square knot Q is laid out in the classic fashion that em-
phasizes its Seifert surface: three rectangles in the plane of the
page, with the middle rectangle joined to each of the side rect-
angles via three twisted bands.
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• The Seifert surface F is not shown; instead, the annuli have
been shaded to show where they lie in front of or behind F .
• In the lower figure, not only has each twist box been passed

through an end of one of the arcs (as was done in Figure 3),
but also the annuli have been stretched horizontally and the top
subarc of the top annulus passed over the top subarc of Q (and
symmetrically at the bottom) so that much of each annulus lies
right next to F .
• Since each gray annulus links Q once, there is an intersection

point (shown with a red dot in the lower figure) of each with F .
• The arcs connecting the annuli appear in red.

Further progress is shown in Figure 6: first the red arcs are moved
mostly onto F by passing one of them over the top (and the other
under the bottom) of the center of Q. (In fact, if the red arcs were not
attached to the annuli at the blue squares, but set free to form their
own circle, that circle could be moved entirely onto F away from the
annuli.) Then the subarcs of the annuli at the center of the figure are
moved to conform to F as much as possible, at one point inevitably
passing from the top of F , around Q and then under F . Each annulus
conforms even more closely to F if half of its full twist is absorbed into
the point at which the annulus is passed around Q, moving from the
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top of F to the bottom. The final result is shown in Figure 7. Further
hope of pushing each Vn onto F requires a good understanding of the
fiber structure of the complement of Q and the parallel fiber structure
of the closed 3-manifold M obtained by 0-framed surgery on Q. That
is the subject of the next section.

4. The fiber structures of S3 −Q and M

For understanding the structure of the fibering of S3 − Q, a good
starting point is the fibering of the trefoil knot. (In discussing knot
complements, we’ll suppress the distinction between a knot and its
regular neighborhood in S3. Thus S3 − Q will be shorthand for the
compact manifold with torus boundary that is the complement in S3
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of an open regular neighborhood ofQ.) A nice account of this fibering is
given in [Z, Section 3] beginning with Zeeman’s modest: “I personally
found it hard to visualise how the complement of a knot could be
fibered so beautifully, until I heard a talk by John Stallings on Neuwirth
knots.” The classic description is to view the punctured torus Seifert
surface S+ of the trefoil knot Tr+ as two disks connected by three
twisted bands. The monodromy of Tr+ cycles the three bands and
exchanges the two disks, and so ends up being of order six. At each
iteration of the monodromy the knot itself is rotated a sixth of the way
around. A dual view of the monodromy will be more useful here: pick
one vertex in the center of each of the two disks in S+ and connect
these two vertices by three edges, each running through one of the
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twisted bands in S+. If S+ is cut open along this θ graph, the result
can be viewed as a planar hexagon with a disk removed. The circle
boundary of the removed disk corresponds to Tr+, and S+ itself can be
recovered by identifying opposite sides of the hexagon, as in Figure 8(a).
The period six monodromy is then just a π

3
rotation of the punctured

hexagon and we can view S3 − Tr+ as the mapping torus of S+ under
this monodromy. If we were interested in the closed manifold obtained
by 0-framed surgery on Tr+, the picture would be the same, but with
the disk filled in.

The square knot Q is the connected sum of two trefoil knots Tr±,
one right-handed and the other left-handed. One way to see the mon-
odromy of the Seifert surface S− of the other trefoil Tr− is to use Figure
8(a), but, in order to obtain the opposite orientation, first reflect the
figure across the inner (circle) boundary component, so the hexagonal
boundary lies on the inside and the knot boundary Tr− on the outside,
as in Figure 8(b). The complement of Tr− is then the mapping torus
of S− under the monodromy shown in Figure 8(b).

Since Q is the connected sum of Tr± it is easy to see that S3 − Q
can be obtained by gluing the manifolds S3−Tr+ and S3−Tr− along
a meridional annulus in the boundary of each. A meridional annulus
in the mapping torus picture of the knot complements is the mapping
torus of a subinterval of ∂S±, so the result of gluing together the two
knot complements along a meridional annulus of each is the mapping
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Figure 9

torus of the monodromy shown in Figure 9. Note that the monodromy
is a bit more complicated than it first appears (on the left): in order
to make the monodromy preserve the boundary circle (corresponding
to the knot Q) the π

3
rotation must be undone near the central circle,

as shown on the right of Figure 9. This complication disappears in a
description of the manifold M however, because the boundary circle
is filled in with a disk, so M is simply the mapping cylinder of the π

3
rotation of F∪ shown in Figure 10.

To understand how the monodromy acts on F ⊂ S3 consider how the
monodromy of the trefoil knot acts on, say, the left half F` of Figure
6(b) and double this to get the action on all of F . This process is
described in three steps in Figure 11. On the left are shown how the
three arcs corresponding to the pairwise identified sides of the hexagon
in Figure 8(a) appear in F`. The arcs connect the red vertex to the blue
vertex and are oriented so that the monodromy takes the top arc to
the middle arc and the middle arc to the bottom arc. The monodromy
also takes the bottom arc to the top arc, but reverses the orientation,
reflecting the fact that the monodromy is of order six. Red, blue and
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Figure 10. Structure of M

(a) Figure 8(a) in S3 (b) Sliding (c) The transverse arcs

Figure 11

green properly embedded transverse arcs in F` are added to the figure,
and in Figure 11(b) these are slid along the trefoil knot until their ends
lie on the vertical arc along which F` is doubled to recover F (Figure
11(c)). When the red, blue and green arcs are doubled they become
three circles in F which are permuted by the monodromy on F∪. Figure
12 shows the three circles as they appear in F ⊂ F∪, the fiber of M ,
and how they appear in F , the Seifert surface of Q in S3.

Note that the three circles in F bear a striking resemblance to the
two gray annuli and the red circle of Figure 6(b). We can exploit the
resemblance to give a color-coded description of how the apparatus A
defining Vn can be viewed in the hexagon model of the monodromy of
F∪. Picture S3 − Q as the hexagonal picture of F × I with the top
F × {1} identified to the bottom F × {0} by the monodromy twist.
Imagine how A would look, viewed from above (i. e. looking down at
the top F ×{1}) after coloring the upper gray annulus in Figure 7 red,
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the lower gray annulus blue, and the connecting arcs yellow. This is
shown in Figure 13: away from ∂F × I the annuli lie near F ×{1

2
}. As

the left ends of both the red and blue annuli are incident to ∂F × {1
2
}

they rise along ∂F×I until they pass out of the top F×{1} (represented
by a green dot) and continue their rise from the bottom F × {0} until
they reach ∂F × {1

2
} again and are joined to the rest of the red and

blue annuli there. The switch in perspectives (the annuli climbing the
vertical wall ∂F × I rather than circling around the knot Q) changes
the apparent sign of the half-twist at ∂F × {1

2
} from ±1

2
in Figure 7

to ∓1
2

in Figure 13, much as the apparent half-twist on a ribbon in a
book cover will change sign when the book is fully opened (see Figure
14). The upshot is that the apparent framing of both the blue and red
annuli in Figure 13 is now zero, the “blackboard framing”.

Begin a process of pushing Vn in M until all of Vn lies at the level
F∪ × {1

2
}. First compare Figures 13 and 15: Since the isotopy will

be in M , F × I has been replaced by F∪ × I, filling in the missing
disk, with only the two green dots remaining. The green dots continue
to represent the points at which the piece of the red and blue annuli
to the right of the dots emerge from the top of the box F∪ × I and,
simultaneously, where the red and blue annuli to the left of the dots
enter the bottom of F∪ × I. (A vertical cross-section of the northwest
sextant, roughly parallel to the blue annulus, appears in Figure 17.)
One of the two arcs in A that connects the red annulus to the blue
annulus has changed color from yellow to brown. This will be the arc
β that is pushed first through the top of the box. The point at which
β is incident to the blue annulus has been slid in F∪ × {1

2
} so that

it lies just to the left of the green dot instead of to the right. Now
push β through the top of the box, at which point it reappears in M
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at the bottom of the box, but, because of the monodromy, with a π
3

clockwise rotation of the ends of β on the inner and outer hexagons.
The result, after also sliding the end of β on the red annulus back to its
original position to the left of the green dot, is shown in Figure 16. The
movement of the end of β at the blue annulus is shown schematically,
clockwise from the upper left, in Figure 17.

A symmetric argument describes how to push down the other arc
(shown in yellow) that connects the blue and red annuli. The result
is shown in two steps in Figures 18(a) and 18(b). The more pleasing
Figure 18(c) is then obtained by sliding the points where the arcs are
incident to the annuli, so that they all appear on the right side of the
figure. The red and blue annuli are now only n − 2 arcs wide, so in
the case n = 2, Figure 18(c), with the red and blue annuli omitted,
represents the final positioning of V2, completely on the surface F∪ as
was predicted to be possible.
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If n ≥ 3 further moves of Vn are required. Figures 19(a) and 19(b)
show two more upward pushes of the brown arc β through the top of
the box F∪ × I and, via the clockwise π

3
rotation of the monodromy,

back through the bottom of the box. (Figures 20(a) and 20(b) show
the corresponding final position of Vn, n = 3, 4 on a fiber F∪ of M .)
The fact that, after the push, a segment of β crosses over over the blue
annulus (and another crosses over the red annulus) is at first puzzling.
But recall how the monodromy acts on F∪: Up to isotopy, it is a π

3

clockwise twist, but it also fixes the green dots in the figure (the points
where the blue and red annuli intersect the top and the bottom of the
box F∪ × I. So the monodromy itself looks a bit like that in Figure 9.
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Figure 17

Thus a segment of β spanning the southern sextant of F , when pushed
out the top of F × I and reappearing at the bottom, has its ends
rotated to the southwest sextant, but the middle of the segment will
pass south of the green dot on the red annulus. The segment does then
pass under the red annulus, but the segment can be straightened by
an isotopy that appears to move the segment from below the annulus
to above the annulus. See Figure 21, which also shows the isotopy in
a vertical cross-section near the red annulus in the southwest sextant.
Similar remarks apply to segments of β passing over the blue annulus.

The final appearance of Vn on the fiber of M depends mostly on
n mod 3. Figure 22 shows the general case for n ≡ −1, 0, 1 by depicting
with brown bands collections of j − 1 parallel segments of β. The blue
and red annuli in the figures can be ignored; they have been included
only to help imagine the transition from one step to the next. At several
places in the figure it appears that a single segment of β intersects a
brown band, but this is just shorthand for a double-curve sum of the
crossing arc with the j − 1 curves in the band, as shown in Figure
22(a).)

Of course all these presentations of Vn ⊂ F∪ ⊂M can be translated
to pictures of Vn ⊂ F ⊂ S3. This translation, in the case n = 3,
is shown in Figure 23 via a three-stage process: The points in which
Vn intersects the circle separating the trefoil summands are labeled
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(a) n = 3 (b) n = 4

Figure 20

Figure 21

sequentially, as shown in Figure 23(a). Then the discussion around
Figure 11 is used to locate each of these subarcs in the appropriate
place on the Seifert surface F ⊂ S3, as shown in Figure 23(b). These
subarcs are mostly joined along the arc that separates the left- and
right-hand trefoil knots, but there is a dangling end at both the top
and the bottom of F in the figure, reflecting that joining these ends
by a subarc requires a choice of how Vn is to avoid the disk F∪ − F
bounded by Q. The choice is whether to connect these ends by an arc
parallel to the trefoil knot on the left or parallel to the one on the right.
Figure 23(c) shows the result when the two ends are connected along
the trefoil on the left, via an arc that is rendered in red. The resulting
link in S3 is slice by construction; it is a nice question (just as it was
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for [GST, Figure 2]) whether this link, or examples from higher n, are
also ribbon links.

5. The curve that Vn covers in a 4-punctured sphere

Recall from [GST] that there is a natural Z3 action on the genus 2
surface F∪, by which F∪ is a 3-bold branched cover of S2 with 4 branch
points. See [GST, Figure 7], reproduced as Figure 24 here. It is further
shown ([GST, Corollaries 6.2, 6.4]) that 0-framed surgery on a simple
closed curve V ⊂ F∪ ⊂M yields (S2 × S2)#(S2 × S2) if and only if V
projects homeomorphically to an essential simple closed curve in the
4-punctured sphere P = S2 − {branch points} and that an essential
simple closed curves in P is the homeomorphic image of a curve in F∪ if
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Figure 24

and only if it separates two branch points coming from the same trefoil
summand of Q.

The hexagonal description of F∪ given in Section 4 (e.g. Figure
10) is particularly easy to see as a branched cover over S2. Start by
giving S2 the “pillowcase” metric: view S2 as constructed from two
congruent rectangles, with their boundaries identified in the obvious
way. The corners of the rectangles will be the branch points for the
covering and the two rectangles will be called the front face and the
back face of P ⊂ S2. Identify the top sextant of Figure 10 with the
front face of P and wrap the other five sextants equatorially around
P . See Figure 25. Then the northeast, northwest and the bottom
sextant are all identified with the back face of P and the southeast
and southwest sextants with the front face. The identifications of the
boundary edges in Figure 10 are consistent: for example the top and
bottom edges of the outside hexagon in the figure have been identified
with the top edge of, respectively, the front and the back face of P ,
so the identification of these edges to create F∪ is consistent with the
identification of the top edges of the two rectangles to form S2.

There is a natural correspondence between isotopy classes of simple
closed curves in P and the extended rationals Q ∪∞. The correspon-
dence is given by the slope in the pillowcase metric. It is a bit more
useful in our context to take the reciprocal of the apparent slope in
Figure 25 or, equivalently, to turn the pillowcase in the figure on its
side. Thus one of the horizontal curves in P shown in Figure 25 has
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Figure 25

slope 0, so it will correspond here to 1
0

=∞ ∈ Q ∪∞. Such a curve is
3-fold covered by a simple closed curve in F∪ that divides F∪ into the
two genus-one surfaces F` and Fr, Seifert surfaces for the two trefoil
summands of Q. A simple closed curve in P separates the two branch
points lying in F` (equivalently, separates the two that lie in Fr) if and
only if it intersects the top seam of the pillowcase in an odd number of
points; that is, if and only if it corresponds to a fraction p

q
∈ Q∪∞ for

which q is odd. So, for example, a circle in P that is vertical in Figure
25 is assigned 0 = 0

1
∈ Q and corresponds to any of the three unknotted

circles in F shown in Figure 12(b). In this manner, {p/q ∈ Q | q odd}
becomes a natural index for the set of curves V ⊂ S3 − Q such that
surgery on Q ∪ V gives (S1 × S2)#(S1 × S2). (Since ∞ = 1

0
does not

have odd denominator, we can ignore it.) It is natural to ask exactly
how the curves Vn fit into this classification scheme.

Remark: Here is the rationale for taking the reciprocal of the apparent
slope, i. e. for turning Figure 25 on its side. There is a natural
automorphism (S3, Q) → (S3, Q) called a twist (see [Z] for a related
use of the term). A twist fixes one of the trefoil summands of Q and
rotates the other trefoil summand fully around the two points at which
the summands are joined. (A more technical description: a twist is a
meridional Dehn twist along a follow-swallow companion torus for Q.)
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Figure 26

It’s fairly easy to see that a twist changes a curve V ⊂ F indexed by
p
q
∈ Q ∪ ∞ to one indexed by p±q

q
∈ Q ∪ ∞. So if we also allow V

to change by such twists of Q, which do not change the isotopy class
of the link Q ∪ V , as well as by isotopy and slides of V over Q, we
could even index the curves V by p

q
∈ Q/Z, q odd and, as a result,

focus attention on those indices p
q

in which |2p| < q. The next theorem

shows that, from this point of view, the curves Vn are at the extreme.

Theorem 5.1. In the classification scheme above, the curve Vn corre-
sponds to n

2n+1
∈ Q.

Proof. Examine Figure 22, ignoring the red and blue bands and recall-
ing that each wide brown arc represents j−1 parallel arcs. The number
of intersection points of Vn with the outer hexagon is the total number
of arcs that appear, 4n + 2. The number of intersection points of Vn
with the six lines that divide the figure into sextants is 2n. The ratio
is then n

2n+1
. �

The case n = 4 is shown in Figure 26.
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Figure 27

6. An alternate view of the construction

Essentially the first step in the construction above (see Figure 2)
was to import [GST, Figure 12] and blow down the two ±1 bracketed
unknots. There is another way to organize the construction, one which
delays the blow-down until much later and so gives additional insight
into how Vn lies in M . Begin with the link diagram [GST, Figure 19]
(a version of [GST, Figure 11]) that describes Ln. This is shown here
in Figure 27, augmented so that the relevant torus T ⊂ M is more
visible: The vertical plane, mostly purple but containing a green disk,
is a 2-sphere in S3 that contains a circle on which 0-framed surgery is
performed. The surgery splits the 2-sphere into a pair of 2-spheres, one
green and one purple. In the diagram the two 2-spheres are connected
by two thick pink strands. The torus T is obtained by tubing the two
2-spheres together along the annuli boundaries of the two pink strands.
The ±n twist-boxes represent the n-fold Dehn twist along the meridian
of T used in the construction of Vn (see [GST, Section 10]).

Figure 28 shows a sequence of isotopies which moves the link in
Figure 27 (including the bracketed unknots) to a position in which
something like the square knot begins to appear. When the top black
circle is slid over the two red circles labeled [±1] the square knot fully
emerges: Figure 29 shows the resulting circle as a green square knot,
on which 0-surgery is still to be performed, and also illustrates how
the bracketed red circles can be pushed near its Seifert surface. (The
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Figure 28

dotted parallel green and red arcs in the twist boxes are to indicate
that the twisting is of the black curve around the red and green curves,
not the red and green curves around each other.)

In fact it is shown in Figure 30 that, except for the twist boxes,
both the red curves (labeled [±1]) and the 0-framed black curve can
be simultaneously pushed onto the natural Seifert surface of the green
square knot, all before the bracketed red curves are blown down! (The



26 MARTIN SCHARLEMANN

−n

n

[1]

[−1]

(a)

−n

n

[1]

[−1]

(b)

Figure 29

apparent twist of the curves in Figure 30(a) is canceled by a symmetric
twist of the curves on the left side of the twist boxes.)

When the square knot is straightened out, it appears as in Figure
31, which bears a striking resemblance to the earlier Figure 12(b). In
particular, if we temporarily ignore the 0-surgered black curve (so we
can also ignore the twist boxes), then the two red circles are parallel
to each other in the complement of the square knot. That is, there
is an annulus A ⊂ S3 − Q whose boundary consists of the two red
circles. This can be seen directly in Figure 31, but it also follows
from the discussion surrounding Figure 12(b): one red circle is the
image under the monodromy of the other. Since the red circles have
opposite (bracketed) signs, it follows that blowing both of them down
simultaneously has no effect on the square knot: it persists after the
blow-down, but any arc that intersects the annulus A between the
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Figure 30

red curves will be twisted around the core of A. In particular, the
0-surgered black curve intersects A n times at each of the upper and
lower twist boxes, so the simultaneous blowdowns change Figure 31 to
Figure 32 via a process akin to that shown in Figure 2. Finally, Figure
32 can be isotoped to Figure 6(b), at which point we rejoin the previous
argument.

7. Identifying the torus T ⊂M

It is unsatisfying that in both views of the construction above it is
hard to identify the torus T ⊂ M , whose critical properties are listed
at the beginning of Section 1. T appears in [GST, Figure 19] (here in
Figure 27), but the appearance is well before the bracketed red curves
are blown down, and it is hard to track T through that operation. The
most obvious torus in M is the swallow-follow torus in S3−Q, which is
also the mapping torus of the green circle in Figure 10. This torus does
indeed intersect V0 in two points, but a little experimentation shows
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that Dehn twisting V0 along curves in this torus produces links much
simpler than the Vn (in fact mostly links obtained from Q∪ V0 just by
twisting Q, as described in the remarks before Theorem 5.1).

Here is a way to see a more complicated candidate for the torus T :
Just as the trefoil knot contains a spanning Möbius band, the manifold
M contains an interesting Klein bottle, the mapping cylinder of the six
brown arcs in Figure 33(a). Other tori in M can be obtained from the
swallow-follow torus by Dehn twisting it along the Klein bottle. (This
must be done in the direction of the curve in the Klein bottle whose
complement is orientable, in order for the operation to makes sense).
An example is shown in Figure 33(b): the union of the twelve green arcs
is a circle that is preserved, with its orientation, by the monodromy, so
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(a)

(b)

Figure 33

its mapping cylinder is a torus T in M . We now verify that T is the
torus we seek.

The yellow curve in Figure 33(b) is the original component V0; it
intersects T twice. Figure 34 shows (in red and blue) two parallel
simple closed curves on T : As was the convention in Section 4 (see
also Figure 17) imagine both the blue arc and the red arc lying in
F∪ × {1

2
} ⊂ F∪ × I ⊂ M . A green dot at the end of each arc is

labeled ± and represents in each case a vertical arc that ascends (resp.
descends) to F∪×{1} (resp F∪×{0}). The two ends of the blue arc (and
similarly the two ends of the red arc) are then identified in M by the
monodromy. The framing of these curves given by the normal direction
to T is clearly the “blackboard framing” given by the figure, so Dehn
twisting along T in the direction of these curves can be visualized by
widening the blue and red arcs into bands, and then Dehn twisting
along the bands. Finally, visibly identify the ends of the blue band
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(and the ends of the red band) by altering the monodromy near the
central circle, as was done in Figure 9, to get red and blue annuli.
The result is Figure 35(a), which uses train-track merging to show the
direction of the Dehn twisting. The result is essentially identical to
that shown in Figure 13 and can be made identical by flipping both
red and blue annuli along their core curves (see Figure 35(b)). Why
the colored annuli have framing ±1 in S3 (that is, before 0-surgery is
done on Q to create M) is explained briefly in Section 4 via Figure 14.

This shows that constructing the links Ln described at the beginning
of Section 1 is simple. The fact that all these Ln satisfy Weak Gen-
eralized Property R requires only the argument in [GST, Section 10].
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However, the argument that each Ln, n ≥ 3 is unlikely to satisfy Gen-
eralized Property R, on Andrews-Curtis grounds, still seems to require
the full complexity of the original construction in [GST], with its roots
in [Go].
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