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For m a real number, let G{m) be the subgroup of SL{Z, &) generated by
{/1 7 \ /1 0)
X and {~ 7).
i \"m 1/

In 1947 Sanov [S] proved that G(2) is free. Some years later, Brenner [Br]
showed that G(m) is free for all |m| > 2 and Chang, Jennings and Ree [CJR]
showed that values of m for which G(m) is not even torsion free are dense in

the interval T — 2. 21
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“cwn tly, Bachmuth and Mochizuki [BM] defined subgroups G{«, §, y) of

SL(2, R) generated by

o= {12 =2) o (L B L0
- \ « l—oc/’ N \0 1 /- - \7v 1/
showed thatfora, ff, y > 4.45 G(z, f, y) is free, and asked whether G{(z, 8, )

can be contained in any free subgroup of rank 2.

In Section 1 we present preliminary notions and quick geometric proofs of
these theorems of Sanov, Brenner and Chang—Jennings-Ree. Much more is
known about these groups G(m) and other subgroups of SL(2, R) of rank
two than these results (see for example [N], [LU,], [LU,]). Our intention here
is to recapitulate only that part which i1s geometrically obvious and which
s Gla, B, V).
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In Section 2 it is shown that the lower bOunu. on x, §, y for which Gz, 8, v)
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in Secuon 4 we show that 1I l/! i+1/lﬁi+l/ivl =l,and 2< B <y
then Gla, f, y) is contained in a rank two free discrete subgroup of SL(2, R)
if and only if (o, 5, 73 = (4, 2, 4). Thus there are infinitely many subgroups
Gz, B, yy which are free, yet contained in no discrete rank two subgroup of

SL(2, R) acts on the closed extended complex upper half-plane X as a group
of linear fractional transformations. This action preserves angles and circles
in the extended complex plane. The subgroup of SL{2, R) which acts as the
identity transformation is the center +7; the quotient SL(2, R)/+1is denoted
PSL{Z, R). The transforrnatlon S(z) = (—Z+i),/z+z in GL(2, C) maps H onto

Tt s thic mnd AL
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il
and contains much symmetry. In particular, e*‘9 in the unit disk model
corresponds to tan 6/2, so points on the unit circle symmetric in the x-axis
correspond to points in R which differ by a sign and points on the circle

symmetric in the y-axis correspond to reciprocals in R,

In the figures below a real number x will be used as a label for the point
S(x) on the unit circle U; thus we are using D as a picture of H.

A bridge between geometry and algebra is given in the following well-known
lemma. Since it is both simple and crucial, a proof is included.

1.1 LEMMA Lef hy, ..., A, he parabolic transformations, h; with fixed point
p;on U. Let each h; map a point a; # p; on U to a point b; and let C; be the
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arc of U between a; and b, that comains p;. If the arcs C; are disjoint, except
possibly at their endpoints, then hy, ... h, are a basis for a free group
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FIGURE I

Proof Let A; be the hyperbohc line in D (that 1s, the arc of a circle
orthogonal to U) from q; to p;; then #; carries 4; into the hyperbolic line B;
from &; to p;. Let R, and S; be the region bounded by C; and, respectively,
A4; and B, Then h(n R) <= S; and A7 YD~ S) = R,. It follows that,
if § # 7, a_n_d m# 0, {(D~(R; US\) o D— (R USs). LeL wo= J L,

J
t =1, my, # 0, i, # i,,, be an arbitrary non- trivial reduced word. By
n
induction, f T = D— | ] (R, U S)), then w7 < R;, U Si,. n

1

i

"~

1 TR 1 N\
1.2 TueoREM (Sanov, Bremmer) Let hy ={ . L hy=(_ ') If
0 1 m 1
m = 2, then hy and h, generate a free group.

Proof Note that h,(m/2) = ~m/2, hy(—2/m) = 2/m, co is the only
fixed point of %, and 0 is the only fixed point of h2 The action of i and A,
on the disk is therefore given by the following simple picture (Figure 2)
and the result follows from 1.1. [

ot P
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If im| < 2, the picture changes (
t

mj < : ,
Let p and g be the points where the arms cross. By symmetry A7 4(p) = h,(p)
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2. THE GROUPS G £, 7)

Here is anmher claqq of' free su‘bvrouos Let 91 ,, 6, be three positive

r1eal 1oa
He circle forming angles

FIGURE 5

Label the endpoints of the ith diameter p; and g;, so that the p;’s and g,’s
alternate around the circle. Let g, be the parabolic transformation which
fixes p; and carries ¢, to ¢;,, (subscripts taken mod 3). Then, according to
1.1, the group generated by g,, g, and g, is free. Furthermore

2.1 PROPOSITION  The subgroup of SL(2, R) generated by g,, g, and g, is
conjugate to G(a, B, y) with o = cot 6, cot 0,, f = cot 8, cot §,, y = cot 8,

cot 8.

Proof With no loss of generality we may assume p, = 0, p; = tan (6,+
8,) = cot 0, and p, = —tan (§,+6,) = —cot §,.



M. SCHARLEMANN
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to a configuration as shown in Figure 6. The fixed points p,, p,, 7, are the
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HEOREM DA vaives of w, B, v jor which G{z, 5, v} is nui even ivrsion

free are dense in the region 7/05—1—1 B+1/y > L.

Proof Suppose lja+1/8+1/y > 1. Let the matrices hy, 4y, 4, be the
generators of Gz, /5, y) defined in the introduction. Then Tr (A Ah,) =
2+ afy(1—1/a—1/B—1/y) < 2. Therefore hyhyh, is an elliptic element, and
a hyperbolic rotation through 6, where 2 cos 8 = Tr (h,hoh,). For certain
arbitrarily close values of «, f5, v, the angle 6 will be a rational multiple
of mw and h;hyh, will be of finite order. B

3. CONJUGATE SUBGROUPS

When are two subgroups of the form G(z, 5, y) conjugate in SL(2, R)?
/1 3

The matrix Sy(e, §, 7) = (1 B 1) conjugates

<1+ﬁ/\ﬁ—1) —,9/(,8 1)‘)
BI(E— -1/
5 —1 1 -——O((ﬁ \\
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jo+1/8+1/

i

3.1. THEOREM In the region 1
conjugate to G, ', v") if and only if («
under the action of 7.

Suppose 1/x+1/f+1/y < 1 and consider the conjugate of G(a, f§, y)

constructed above, with generators g;, 7 = 0, 1,2. Let A be the closed
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{in H) region bounded by the arms of g, in the construction. We have shown

. .
A A v O YT M A — — 1 7T C

that, for w a word in Ihcg L W )F‘A = D unlessw = 1. In fact

2 Tr Se a FimAnmasnial Aawan 7 i 1 wd AN

3.2 LemMa A is a fundamental domain for G{(z, B, ), thar is, H = | w(A).

W

Progf First consider the case 1/x-+1/84+1/7 < 1, when arms for the g, can

be chosen so that they are disjoint except at the poinis p, in RY = RU {0l

Notice that g; will map any circle o, ¢ ngent to the real axis at p; onto

PN c Ll In st anpilvr canr 3 o ; o a ¥

itself; this 15 most easily seen by conjugating p; to ¢, In which cage g;1s the

ad nof areal constant and o o the real axis in the upper

. PN

Q

i a It
half plane. Such circies are calted horocycles {1]. Choose g, i = 6, 1, 2, 50
small that they are disjoint and intersect A in a single arc. Then some g
will cover any point in the disk which o; bound by a point in A. Thus the
lemma is true for points x in A*, the union of A and the disks bounded by

the o,

FIGURE 8

The boundary of A* in H consists of six arcs and, by considering again
the special case when p; = o, it is easy to see that for some ¢ > 0 distinct
arcs and distinct o; will be a distance greater than ¢ apart. Let 7: [0, /] - H
be a unit speed geodesic from a point p in A to x. Suppose for scme ¢ in [0, /]
and some word w in the g, wr(?) is in A¥. Let 1, be the value of ¢ at which
wr (2) leaves A™. If wr (fo) is in A N A™ then wr (z,) lies on an arm of some g,,
ill be entering A™ at #,. It is easy to see that this geodesic

....... ng o
(if it does leave) in a different arc of A7, so the lemma will be




186 M. SCHARLEMANN

passing through a ¢; # ¢, Hem
rlra, ty+el. By repeated application of this argument the
all of r{0, /]
In case lja+1/8+1/y = | the arcs of A™ will no longer be a positive

e S
distance apart for the arms of the g, will intersect at points other than p, in
R™, e.g. at the Domt go = 0. Let p, be a small circle tangent to BT at o
AN .
)

P 1

from the geamefrv thax

]

B L
as in the case of 7, above, r.o.0.{5.) = o.
Gy G SR Biile hethdie RJL YT IS 0YI\FO/ © MG

the previous case.
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Remark The lemma was proven by sho

""enever GeG is non-tri‘v al, so the quotient

DT T — @
space H/G is a manifold, with a metric induced from that of H.
3.3 PropoSITION If 1ja+1/f+1]y <1 then Q = H/G(x, B, y) is homeo-

o~

morphic to a sphere with 4 punctures. Equality holds if and only if the area of

Q is finite; in this case the area is 47.

Proof By the previous lemma, O is homeomorphic to the quotient space
of A by the equivalence relation induced by G(z, §, y). On the other hand,
the nf'QQf' that Gi« '[3’3 v} 18 free shows that the only points of A identified by
G(z, B, v} are points identified by g, in the arms of g,. This quotient space is
clearly the 4-punctured sphere one puncture for each p; and a fourth the
common image of the ends of all the arms. The area is that of A, which is
finite if and only if 1/a+1/8+1/y = 1. In this case A can be divided into 4
triangles each with geodesic sides and trivial angles, since all arcs are ortho-
gonal to U (Figure 9). By the Gauss—Bonnett theorem in the hyperbolic
metric, the area of Q is 4x. ]

The map H- O defined above is a covering space. Choose a base point
g in Q and let 7,(Q) be the fundamental group of Q at ¢g. Then =,(Q) is free
of rank 3, and the natural isomorphism of the group G(z, 8, 7) in PSL(2, R)

,9), for i=10,1,2, to the

the genera tor 11

1 g to the puncture
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Case 1 1lja+1/p+1/y < 1.

Regard O and Q' as the complement of four points in S2. One of the four
punctures p,(p4) is distinguished geometrically by having no neighborhood
in $? of finite area in Q(Q"). Thus T: Q — O’ extends to a homeomorphism
T: §* — S* such that T{Hmplfpﬂ = {AL’OaljlsPZ)’ T(ps) = ps. There is an
evident homeomorphism f: S* — S? such that f(ps) = py and f{(I) = [,

=0,1,2 Then f~!T: S? —» S? fixes p;. It is well-known that any homeo-
morphism f~1T: (S?, p;) — (S?, p;) is isotopic to the identity [Bi]l. The
image of {p,, p;, p;+ x I under the isotopy in S?x [ is a braid of 3-strands,
so the automorphism (f ™ *T)g: 7,(Q) - 7,(Q) is induced by the braid
group on 3 strands B;. Thic group is generated by the automorphisms o,

= 0,1,
o(l) = Ly, 0(liry) = L Ly
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< 2 A n 1 [l VI N 1 e
Section 3. Then S,7 carries the fixed points 0, 1, w0 of G(x, 8, v) to themselves
Th 7 I 4 1 im thia ~Anga
so 8,7 = £7 Then Tis1in J, proving the proposition in this case
M tim ot
Lase £ 1jax—i/pri/y =1

It is no longer possible to distinguish the puncture p; from the others
geometrically so it is no longer possible to guarantee that T(p,) = pi.
Suppose, for example, that T(py) = p3: we will show that there is an
Se SL{2, R) which conjugates G« f.v) to iself such that S(p3) = po.
and the proof proceeds as bﬂ*fcfe

= i

= (1, forl) >=Z,x2Zy = PSL(2,Z).

To produce an isomorphism it suffices to show that the generators 47,
nd 7; of Z satisfy no relation other than (1011)3 = (1;797,)% = 1. Let

x = 1ja, y = 1/8, z = 1]y, o, be the induced action of T4y on (x, ¥, z) and

vl

g, the action of 7,7,1,, SO

/oy JURTRR
GG(xi Vs Z) = (Z, X, )’)7 Gl(x: ¥, Z) = ( - —'y -~ ) .
d—-y’ 11—y,
A
/
Y
A

~
>
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simplex. Let w be a word in ¢, and o, reduced using the relations ¢3 = o}
a are positive and as small as possible. Then w(4) = Y

= 1 sothat all exponents are positi

if w begins with ¢,, w(4) = Z if w begins with gy, and w{d) = X if w
begins with ¢. The proof is an easy induction, as in 1.1, using the inclusions
c{XUZUAd)s Y,op0,(XUAUZ) = Zand ol{(Y U 4) « X In particular

w(A) 1 A = ( unless w is trivia

4 s
FProblem There is apparemh a to cal conjugacy of J acting on
the open simplex to PSL{2, Z) aczmg on H. Construct an explicit homeo-
:
morphism from the simplex to H realizing this conjugacy.

4. THE INCLUSION PROBLEM
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Ba,chmuth and Mochizuki ask whether G{x, 8, v} 1

1

rank two free subgroup of SL{Z, R}. In this section we prove:

Proof of 4.1 Suppose G = G{x, §, v} is contained in a rank twe free
dlscrete subgroup G of PSL(Z R). Since 7 is free and discrete it contains no

1 2

elliptic elements. Therefore G acts freely on H and u/G is a surface M.
Since G = G, 0 = H/G is a covering space of M. By 3.3, O has finite area,
so M does also. The index of G in G is the ratio of the areas of Q and M,
and by the Schreier formula {MKS 2.10} this index must be two. Since
n,(M)= G =~ Z%Z, M is either a 3-punctured sphere or a punctured torus
of area 2x.

Actually M is a 3-punctured sphere for no punctured sphere can be a
finite cover of a punctured torus. This is best seen by observing that a
meridian and longitude of the torus intersect once, hen ce in an n-fold cover

their lifts will intersect n times with the same orientation. But the orientations
of points of intersection of loops in S* cancel, since S2 18 si
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Denote the punct in M by py, p, and ¢ and
geodesics x;: R — M = 1, 2, such that lim o/

ed poin‘m would pro]efr to a

geodesic circ Ee unnmg once around The triangle near p,, cut out by this

, would contradic

?
the Gauss—Bonnet theorem (its angles sum

Ti2. R to an index two subgroup of the Sanov
“/, 1C an ingex two SuDEroup O1 thc Bancy

d have mf'mte area {the proof is analogous to 3 3).

)

In general, suppose N is an index two subgroup of the free group F
generated by x and y. Then N pr operly contains the ker el N, of the obvious
map from F to Z, @ Z,. Since N, is generated by x*, y* a d (xy)*, N must
be obtained by adjoining one of X, y, or xy to the given generators of VV,.
Thus the only index two subgroups of G{(2) are generated by {f%, /3, ( ,flj})h},

It is easy to check that each is conjugate

{flsfi (fle)z} and {.ﬂl f f1f2

to G4, 2, 4).
Now the region described in the theorem coincides with the closure of the
th

From that nroof it follow “aL no

region A described in the proof of 3.2. From that proof it follows

other G(z, 8, y) from that region is conjugate to G(4, 2, 4), proving th
theorem.
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