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COMPARING HEEGAARD SPLITTINGS 
-THE BOUNDED CASE 

FIYAM RUBINSTEIN AND LIARTIN SCI-IARLEAIANN 

A B S T R A ~ ~ .In a recent paper we used Cerf theory to compare strongly irre- 
ducible Heegaard splittings of the same closed irreducible orientable 3-manifold. 
This captures all irreducible splittings of non-Haken 3-manifolds. One appli- 
cation is a solution to the stabilization problem for such splittings: If p < q 
are the genera of two s11littings, then there is a common stabilization of genus 
51, + 8q - 9. Here xve show how to  obtain similar results even ~vhen the 3- 
manifold has boundary. 

In this paper, all manifolds are assumed to  be compact and orientable A com-
presszon body H is constructed by adding 2-handles to  a (connected surface) x I 
along a collection of disjoint simple closed curves on (surface) x (01, and cap- 
ping off any resulting 2-sphere boundary components with 3-balls. 'The component 
(surface) x (1) of d H  is denoted a+H and the surface a H  - a,.H is denoted d-H.  
If d-H = 0 then H is a handlebody. If H = a+H x I then H is called a trzvzal 
compression body. 

The cores of the 2-handles defining H ,  extended vertically down through (d+H)x 
I, are called a definzng se f  of 2-disks for H .  There is a dual picture: A spzne for H 
is a properly imbedded 1-complex E such that H deformation retracts to E! U 8 - H .  
Such a spine can be constructed from a set of defining disks: The arc co-cores of 
the 2-handles, with the arc ends that lie on 2-spheres coned to  the centers of the 
3-balls and the other ends extended clown to d - H ,  are the edges of a spine. The 
retraction restricts to  a map d.bH -+ E U d-H whose mapping cylinder is itself 
homeomorphic t o  H .  

A spannzng annulus  in H is a properly imbedded annulus A with one end on 
each of a* H .  For A a spanning annulus, let d* A = A n d+ H .  

A Heegaard splzttzng M := A U p B  of a 3-manifold consists of an orientable surface 
P in hl-,together with two compression bodies A and B into which P divides 144. 
P itself is called the splitting surface. The genus of A U p  B is defined to  be the 
genus of P. A Heegaard splitting of M can also be viewed as a handle struciure 
on 114, in which the 1-handles are the co-cores of the defining 2-handles of A and 
the 2-handles are the defining 2-handles of B. A stabzlzxatzon of A U p  B is the 
Heegaard splitting obtained by adding to  A a regular neighborhood of a proper arc 
in B which is parallel in B to  an arc in P. A stabilization has genus one larger 
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and, up to  isotopy, is independent of the choicc of arc in B ,  and is the same if the 
construction is done symmetrically to  an arc in A instead. 

Recall the following: If there are meridian disks and D B  in A and B respec-
tively so that i3D.A and i3Ds intersect in a single point in P. then A U pB can be 
obtained by stabilizing a lower genus Heegaard splitting. We then say tliat A U p  B 
is stabilized. If there are meridian disks D,,l and DB in A and B respectively so 
tliat dDA and dDB are disjoint in P ,  then A U p  l? is weakly reducible. If there are 
meridian disks so that dDA = dDB,  then A U p  B is reducible. It is easy to  see 
tliat reducible splittings are weakly reducible and that, (except for the genus one 
splitting of S")  any stabilized splitting is reducible. It is a theorem of Cassorl and 
Gordon [CG]that if A U p  B is a weakly reducible splitting then either AT corltairls 
an incon~pressible surface, or A U p B  is reducible. It is a theorem of Haken [Ba] that 
any Heegaard splitting of a reducible S-manifold is reducible, and it follows frorn a 
theorem of \T~aldhausen [MT]that a reducible splitting of' an irreducible niarlifold is 
stabilized. 

Suppose !\.(I has two splittings A U P B  and X U(.2 Y ,with & A  = 8 - X  and d - B  = 
d-Y. Then it is a classical result that the two splittings are stably equivalent. 
Generalizing the argument of [RSl], which applies only to closed 3-manifolds, we 
intend to get a bound on the number of stabilizations required in the case in which 
both splittings are strongly irreducible. Sucli strongly irreducible splittings are 
inevitable, for example, when the 3-manifold has no essential closed surfaces (e.g. 
the figure 8 knot complement). In the more general case, Johannson has shown [Jo, 
31.91 that if M is Haken, then the number of stabilizations needed grows no more 
than polynomially with the genus of'the two splitting surfaces. On the other hand, 
no example is kno\vn of two irreducible splittings for which each needs more than 
one stabilization to become equivalent. Indeed, Schultens [Sch] shows that such an 
example carlrlot be fourld among Seifert manifolds, whose Heegaard splittings are 
most easily understood. 

Here is an outline of the proof in the closed case [RSI]: 

I .  	In a 2-parameter positioning of P and Q locate a region in which 
n Q is either essential in both surfaces or inessential in 

both surfaces, and 
0 	for one of P or Q: say P, there is a path in the region from a positioning 

in wliich there is a meridian of X disjoint from P to one in wliich there 
is a meridian of Y digjoint from P. 

2. 	Extend P to a 2-complex K by attaching a certain complete collection of 
meridian disks A of A and l?. Then 11f- q(I<)is a collection of balls. 

3. In the path of' positionings described above locate a point 	at which ever; 
component of IJnQ is essential in both surfaces and Q nK contains an entire 
spine of Q. That is, every component of Q - I< is a disk. 

4. 	Attach tubes to P along a collection of arcs in (Q - P)n A which form a 
spine of Q - P.Ol~serve that the result is a stabilization P" of P. 

5. 	There is a bound on the number of stabilizations needed, deterniirled by the 
genus q of Q and by the maximal number of' pairmise non-parallel d-non- 
parallel but d-compressible annuli tliat can lie in A or B. 

6 .  	Q can be isotoped so that P5n & is a spine of' d). 
7. 	A spine of X can be isotoped to lie on P". 
8. 	Then q stabilizations of P,' give a stabilization also of (2. 

1' every curve in o 
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Steps 1, 5, and 6 are not much more difficult when Al has boundary. They 
correspond here to  Proposition 3.2. sections 5 and 6, and most of 7.4.. The difficulty 
begins in step 2. In order to  cut A and B into balls one must use not just meridian 
disks but also a sort of hierarchy, called a boxing systern, for each compression 
body. Each boxing systenl consists of two sets of intersecting annuli. The situation 
is more difficult partly because the annuli intersect and partly because annuli are 
not simply connected. The correct positioning of Q with respect to  this boxing 
system is quite delicate and occupjes all of the multipart section 2. The resulting 
boxing systems will be called discipplined with respect to 9,and the proof that they 
exist essentially complet,es step 3. 

Because boxing systems are more complicated, it is not immediately clear that 
attaching tubes along intert~ection curves with the annuli will necessarily be a sta- 
bilization of P. So step 4, obvious in the closed case, here occupies all of section 
4. It turns out that having a disciplined boxing systenl is what is rec~uired here 
as well. Finally, steps 7 ant1 8: which establish that the stabilization of P we have 
constructed is within q of being a stabilization of Q, art? also more conlplicated 
here. The ~Xifficulty is that,  unlike the closed case, here we cannot push a spine of 
X into the splitting surface &, since here any spine of X has ends attached to  &Al. 
The difficulty is resolved in 7.2 by finding an arc which is a vertical spanning arc 
for both X and A. Once again the proof only works because the boxing system is 
disciplined. 

Finally, we repeat a poitit made in [RSI.]: It's expected that a combination of 
the techniques developed hore and those in [RS2jwill give an explicit bound on the 
number of stabilizat,ions recluired to inalie any t,wo Heegaarcl split,t,ings equivalent,. 

2 .  SCRFACESIN COI\lPRESSION BODIES 

2.1. Fencing systems, boxing systems, and weakly incompressible sur-
faces. 

Definition 2.1. A cutting system in an orientable genus g 2 1 surface S is a set 
C of curves in S which cut S into annuli or pairs of pants so that each curve in C 
is incident to two distinct components of S - C. 

Definition 2.2. A spine oi an orientable surface S is a finite 1-complex (graph) in 
-

S whose complement is a union of disks (faces). A spine is specla1 if it is the union 
of two cutting systems C ancl C' so that each curve from one system meets every 
curve in the other transversally in a t  most one point. 
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-- 
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Not:\ t,ilat for g > 2: :ig - 3 cu-rves in each cutting system can suEce. In t,his 
case, each face is a 1lexa.gon. See Figure 1, 

IDeAaition 2.3, Supposc H is a compre:;sion bocly. A is a collection of defining 
disks anti C is a clxtting system of d (it).  Then the union J~ of A and (C x I) c_: 
( & ( H )  x 1 )  --:N A i:; called a f e ~ ~ c i n , g- systerr~for H based on 6' if each disk in A 
is incident lo two distinct component,s of I I  F. 

Suppose C' is a :;ccontl cu1,ting systein of G ( H )  ~vl-rich. together with h: forms 
a specia.1 spine. Then tlic uliioil of d and (G' x I) c (8-(N) x I) -= Ff - A is 
called a boxing systerli for N based on the standard spine C IJ GI. T h e  annuli 
in &: x 1 a,rf called priinary annuli or f(:~ices: and the annuli in 6'' x I are called 
secondary.- . ... components of F in H are called the parcels .. annuli. The co~nplemen~ary 
of the fencing system. and the complementary components of E3 are called che 
Iioxes of the boxing systein. The spanning arcs P of H which are the irrtersectiolle 
of primary and secondaxy annuli are called i;he posts of the boxing systcm. 

Note illat each parcel is a liandlebody (possibly a ball) of genus < 2 and each 
box 1s honleomorpliic to  a ball. See Figllrc 2 

Definition 2,4,.,4 properljr iinbedded oriented surfacc. (Q:  aQ)  c (114,a,'\{) is a 
split,tilig s ~ i ~ f a c e  if 111 is tlie union of two 3-manifolds X and Y along $ so that 
8.X induces %lie given orierltat,ion on Q ant1 dY induces the opposit,e orient,at,ion. A 
cornpressing disk for Q (in X) is called a mnericlian disk (in X) and its bonnda,ry a 
meridian curve (for X ) .  More generally, a. Zlear meridia,rl disk in X (resp. Y7) is a. - .-

disk -1)c A i  transverse to Q so that; 8.1)c Q is essential in Q: ail components of 
i?ai;erior(il)n Q are incsserli,ia.l in Q ,  and the component of .D- & adj;zceilt to  a D  
lies in M (resp. Y). 

A splitLiiig surface Q is called strongly .. -.- if t,liere are meridian disks cornpressiblr 
in .X ant3 Y with disjoint, boundaries. If t,liere are n o  sucl.~. disks, <) iu called 
weakly inc.oi~ipressihle, Q is called ret l~~ciblcif there arc-? rnceridia,n disks in X and l7 
~vhose boundaries meet at a, single point in Q. 

Taro t,llirrgi; to note: 'rhe bounclary of a near meridian disk is a meridian curve. 
Wiih tlic sole exception of an unlsnotted torus lying in a, ball in A 4 ,  any connected 
rtduciblc srriface is strongly compressible. 

For examples of weak iricompressibilit~ suppose /H Uc2I! is a st,rongly irreducible 
Heega.ard iiplitting of a nlanifold 111.Then Q is viea.kly i~~compressible. Aloreover, if 
:\4 = A U p W  is aiiotlier Heegaard splitting and each curve of PnQ is iriconlpressible 
in both eixrfaces, then Q i?A C A may or Inay not be roinpressible. but it's always 
1veals1~-incompressible. 

Proposition 2.6 (The swapping lemma), Suppose (Q:XJ)C (M;8 M )  i s  (1 ,rueakl?j 
incornprc:ssible splitting s.urf(xce contpressi7r:j both t o  X a,nd t o  Y ,  und (?'?a?')c 
(il'f,&) is rc proper p l a n a ~ ,  surface 'with ~~~~~~~~IJ cornponc'tlts iSG,..., dT,,,n ,  > 1, 
so that 

I. i?lc'e,rior(T)C x . 

7,each. curve djy,, 1 < I; 5 rn: i s  n mcridian curve for Y ,  and 

3. 87;) is cssentinl i'r~Q.  

TI2c.n. th,ti?,e is a planar surface U in Q ztselJc.with 8i7the union o,f 8To and some 
copies qi'sorne of the dZ:, 1 5 i < rn, 
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Proof. Since Q is weakly incompressible, yet compresses both into X and into Y ,  
all meridian curves of both X and Y lie on a single component Qo. Compress Qo 
into Y along the meridian disks L>, ,1< i < in:bounded by (dT), ,15 i < m: and 
call the result Syc Y. Let. X" c iCi( denote the 3-ma.nifold obtained from X by 
attaching the corresponding 2-handles. Somewhat similarly, let SxcX denote the 
surface obtained by maximally compressing Qo into X. Then the region between 
Sxand Svin Xf is obtained by attaching 2-handles to both sides of a collar Qox I 
of Qo. Since Qo is weakly incompressible, it follows as in [CG] that both Sx and 
Syare incompressible in .Xf. 

The choice of Diguarantees that T extends to a disk T~t with aT+ dToin X' = 

Since Sx is incompressible in X + ,  T' can be isotoped to be disjoint from Sxa.nd 
so lies in the region between Sx and Sv.Since dTo lies in Qo and is disjoint from 
each dTi,1 5 i 5 m, we may consider dTo C Sy.Then [CG]implies that dTo is 
inessential in Sy:as required. o 



2.2. Organizing intersections with fencing aaad boxing systems. 

Definition 2.6. Suppose F is a fencing sy:itein for a compression 11ody H aiid 
(Q, 8Q) c ( H ,8 + N )  is a ~vealtly incornpressil~lc splitting surface that is in geiieral 
~os i t ion  with respect to F.Tl~eriF is an /LCt (resp. Y-set) with respect to & if 
sonie coniporierit of t l ~ e  houiida1.y of Q - F is a nieridian curve of X (resp. Y) .  

Similal,ly, a l~oxing system B is an X-set ()/-set) if sonie compoiierit of the 
houndary of Q B is a nieridian curve of X (resp. Y).  

Lemma 2.7, 3 is a n  X - s e t  jrcsp. Y - - s e t )  ~crlth respect t o  the  weukly Incornpr,essible 
splitbing sur;fuce Q i:f and only if there i s  a parcel PI7 so  tlzut i)W contuins  u near  
rneridiun disk D jot, X (r,esp. Y ) .  '1 sirnilar, statement holds jor honzng systerns. 
wi th  " b o x s ' '  r,eplucing ~ a r ~ c : c l s ' " .  

Pr,oof. Suppose d is an X-set, so a compoirerit (i of Q - F has a l~ouiidary curve c 
mrl~icki also hounds a meridian disk in X. Let M7 be the parcel in \\-hich q lics. 14-
is a gelills < 2 haridlel~ody arid the surface T == dll' - dd\'I (iri which c lies) is a 
sphere; annulus. or pair of pants wit11 .jrl (T)--, 57.1 (111)injective. Siiice c hounds a 
clislt in X c A\rl, c l~ouiidsa disk in T.(See Figure 3.) Of all components of & f' T 
\\-hich, like c; are essential in Q hut hound a disk in T,let c' l ~ et l ~ e  innermost. 
'Then an innerniost disk argument shows that c' hounds a meridian disk fol either 
X or Y ,and it can't be the latter. 11)- weak iricompressibilit of Q. Take for D the 
disk in dm' hounded hy c'. 

Conr~el~sely,if sllch a disk D exists. then dD.  which lies on t , i~e l~ouridary of 
(Q n117) c (Q -F),is a meridian curve siiice the component of D - (2 contairiiiig 
8 D  extends to  a disk lyiiig entirely in X .  o 

Siiice Q is \veakl)- incomp~~essihle, no hoxirig systeni or fencing systeni can he 
simultaiieol~sly an X-set or Y-set' nor can there simultaneously he a hoxirig s)-stem 
built oil a fencing s)-stem; for which orie system is an X-set aiid the other a Y-set. 
Gerie1,alizing this some~vhat' we have: 

Lemma 2.8 (Saddle-box lemma), Suppose B i:j u bol:.ing s y s l c m  so  that  B+ and 
B._ are two  hon:es wi th  c o m m o n  sldc E .  Suppose & i s  weukly incosr~press%ble, hrcs 
n o  'unknotted tor,us components ,  und is  in gener,rcl position ~critlz rc.spect t o  B en:cept 
for a srcddlc singularity In the  inter ior  o,/ hi. Let  Q+ denote  the  surfuccs obtained 
by p'ushing the  suddle singular,ity in to  B* r,espect%!~~ely.Ifi' ,is a n  X.-sct~ciitlz respect 
t o  Q- t h e n  It's n o t  a Y - s e t  wi th  respect t o  &+. 
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(Saddle-fence lemma). Suppose B% as ubove lie irr, different purcels P+ of rc 
fencing system 3 in B. Suppose B is an X-set with respect to Q-;  and 3 is u 
Y-set  with respect lo Q,. Then there is a surface Q' in M with the following 
properties: 

1. 	Q' is obtained from Q- by  cornpressing a meridian disk of X lying in B-. 
2.  	In Figure 4 ,  Q- is obtained from Q' b y  1-surgery on an urc. Tlze core o,f the 

arc is "unknotted", %.e. paru,llel irr, Y n B-. to an rcrc thut spans urr, essential 
unnulus component of aP+ -- Q- .  

3. 	B is neither rcn X-set nor a Y-set  .iuith respect to Q'. 

P r g ~ f "Let r be tlrc horr~~dary of &- - B ~vhich is a nlcridian of X ,rornponc~~t 
and let Q, denote the componerlt of Q- - B on which it lies. Similarly let y be 
the boundary co~nponent of Q+ - B or Q+ - 3: which is a meridian of Y, and Q y  
the co~nponerlt of Q+ - B or Q+ -3 (as relevant) on which it lles. First note 
that Q ,  must lie in B - ,  for otherwise x would persist in the interior of Q,  - B, 
contradicting weak incompressibility. Next notr1 that each component of Q+ ndB-
must be inessential in Q, for otherwise, since dB- is a sphere, one ~vould bound a 
meridian disjoint from both x and y, ~riolating weak incompressibility. So passing 
through the saddle cuts an arc from the essential component Q, and turns it into 



an inessential component. It  follovrs tlhat Cj, is an annllllls, and, passing through 
the saddle singularity, cuts it by a spanning arc. 

If B is a Y-set for Q+ xire could apply tile same argument to the component- &, 
in B+ and deduce that it's also an essential annulus whose core curve bounds a 
meridian of Y and for which the saddle corresponds to  a spanning arc. But this 
would imply that Q is reducible. The contradiction proves the saddle-box lemma. 

For the saddle-fence lemma; let Q' be the surface obtained from Q-. by compress- 
ing zc Q,  into X -M, If 3'is a Y--set for Q+.the same contradiction would arise 
as above if the band in Q+ corresponding to the saddle point lrad only one end on 

or if it had both encls on y and the bancl was inessential in 36+.So passing tlre 
band into B bands y to itself in the fence" creating two parallel essential curves 
in aP+. The co-core 7of tliis bancl intersi:cis z in one point. so d) can be recovered 
from Q1by doing l-surgery along the asc 7. 

Finally, note that if M is a Y-set for Q' then it ~irollld have beer1 a Y-set for 
Q-;  ancl if B is an X--set for Q' then it ~vol~ ld  have been an X-.set For Q.:.Either 
contradicts weak incompressiblity of Q. o 

Let (Q, AQ) c (N,  B,.N) be a properly iillbeddecl sllrface in the con~pression 
l~odyN so that dQ  is essential botli in d.tN and in Q. 

Definition 2.9. A fencing system 3for H is disciplined with respect to Q if 

1. & is in general position with respect to 3'.arlci 
2. 	no coiriponent of Q nF'is an inessential closed curve in 2-

Definition 2.1163. A boxing system B is -~disciplined with respect t,o Q if the follow- 
ing conditions hold: 

1. & is in general position with respect to B. 
2.  	The fencing system 3 of B is disciplined with respect to $. 
3. 	In any primary annulus (fence) I-' of .F,each posl is disjoint froiri the arc 

components of Q nF and intersects each closed curve in (2 n .F exactly once. 
4.In any secondary annulus A each closed curve in Q nA is essential in A and 

intersects each post in A precisely once. (That is. these curves are monotonic. 
in $1.) (See Figure 5.) 

5. 	$ n B is a spine of Q. 

As a warm-up lemma we have: 

Lemma 2.11. Suppose (&,dQ) c ( H .iS+ H ) i s  a n  inco,rnpressibde splitting surface 
i n  a cornpression body 25. T h e n  a n y  special spine C U C' in 8.-H i s  the  base o j  a 
disciplined boxing s y s t e m  in N witli respect t o  Q .  

I'mol. Construct first any fencing system 3based on G. Since CC is incompressible, 
any closed curves in Q n3'which are inessential in d-I are ine~sent~ial also in Q and 
so can be removed by an isotopy. Thus 3is made disciplined. LVe can also suppose 
that no subannulus of 3 is parallel to a subannulus of Q ,  by repeatedly isotoping 
away innermost such pairs. In each fence F C: kF choose a fairlily of spanning arcs 
of the fence, each with one end on a point of (FnG') c 8 - 1 7 ,  each intersecting each 
essential curve in Q nF in exactly one point, and each avoiding the arc components 
of Q nF (which have both ends on d,F). Let r be the union of all these spanning 
arcs in 3. In any parcel P of N -F the miion of a segment of C' n d P  and the 
two arcs of F at its ends can be completed by an arc in 8,N to give a square 
bounding a disk I5 in P. The union of all such disks E then gives a fencing system 



on C' which, together with F,  makes a boxing :;?stem B for H. i f  we isotope the 
rectangles E to eliminate all closed (hence ines:,ential) curves of Intersection with 
Q, it's easy to verify that 8 is disciplined. Only 2.10.4 requires a slight argument: 
If in a secondary annulus A a closed curve of Q f' A intersects a post Illore than 
once, then there is a subsegment 7 of a post to which a componerit y of Q -3 
d-compresses. But this d-(.ompression converts the essential subannulus 4 of F -Q 
spanned hy - into a disk. Sincc the disk can't be a compressing disk for Q, it must 
hound a disk in Q. But this means that q is an annulus parallel to 4.contradicting 
our construction. o 

It will be important to ~mderstand how the pr0pertic.s of being an X- or I/-set 
or being disciplined niay change with different choices of fencing or boxing systems. 
Suppose 3 and 3' are two fencing systems based on C. It's easy to see that one can 
move between them by a series of isotopies re1 C adding or deleting a disk elenient 
parallel to another disk element, and band-summing an annulus or disk elenient to 
another disk element. Call such a series of operations a ba7zdotopy. A handotopy 
will be expressed as a series (g'  . . . . , g n ) ,  where each gJ is a proper general position 
isotopy of a fencing system FJ in H,and g i  ( F J )differs from g;+'(J:3 by either 
the deletion or addition of a parallel disk, or a band-sum of one elenient to a parallel 
copy of a different disk element. Additions of parallel disks are sonletimes needed 
just to ensure that no parcel of the fencing systeni is incident to both sides of the 
same disk (cf. 2 3).  

We make a similar definition for boxing systems B and B' which are both based 
on C' and which include a fixed set of posts in the same fencing system F .  Then 
we can move between B arid B' by isotoping the squares B -3 in the parcels of 3 
and banding the cells to copieh of disk elementr; of 3 .  Each square is kept fixed on 
three sides: the two postb and the subarc of C1 in its boundary. 

Given a bandotopy ( g , , . . . ,g,,) of a fencing or boxing system, it's often conve- 
nient to think of the parameter of the isotopy gJ running between ( 3 -- l ) / n  and jln. 
Then we can think of the bandotopy as paramcxterized by s E [ O , 1 ]  with *'singular" 



points a t  each l / n .1 5 J 5 n. when a band-sum takes place or a disk is added or 
deleted. 

IVhen considering how properties of a fencing or boxing system change durlng a 
bandotopy, the first observation is that banding an annulus or a disk element of a 
fencing systern F to a disk element. or adding or deleting a disk parallel to a disk 
element, only adds, removes or moves arc corliponents of Q n F,but not simple 
closed curves. So there is no effect on whether F is disciplined. The effect on Q -3 
is to  add, delete. or move disk components. so there is no effect on whether jC is an 
X- or Y-set. 

So any change in these properties happens during the isotopy part of a bandotopy. 
necessarily when there is either a tangency point of Q with F or of dQ  with 3.T. 
A center tangency of (I) with F or a "half-center" tangency of d$ with d 3  will 
only introduce or delete inessential curves of intersection or arcs of intersection: so, 
although the former may make 3no longer disciplined, neither alters the property 
of being an X - or Y-set If there is a half-saddle tangency of d F  wit11 d Q .  an arc 
of intersection can become a closed curve In one parcel incident to  the tangency 
point there is no change In the topology of Q - F.and in the other a band is 
added or deleted. The upshot is that such a half-saddle may change whether F is 
disciplined and whether or not F is an X- or Y-set, but, because only the topology 
within a single parcel is changed, it can't change an X-set to a Y-set or vice versa. 
Finally. a saddle tangency between Q and 3may change an X-set lnto a Y-set or 
vice versa. But we conclude that this is the only way such a change can happen. 
Similar remarks apply to a bandotopy of a boxing system with fixed fences. 

2.3. When some fencings are straight. 

Definition 2.12. Suppose (Q,dQ) c (H.d4H )  is a weakly incompressible split- 
ting surface in a compression body H A fencing system F in H is straight (for Q) 
if H -F contains both a meridian of X and a meridian of Y (necessarily in the 
same parcel oi  N -F). 

Proposition 2.13. Suppose (Q: d Q )  c (N.d+H)  i s  a weakly incompressible split- 
t ing surface in a compression body IT. Suppose there i s  a fencing sys tem .F and a 
secondary annulus  A in a boxing s y s t e m  13 extending F for which 

1. F i s  disciplined and straight, 
2, n o  component  of Q - F zs a n  annulus  wi th  both ends  inc iden t  t o  the  s a m e  

side of the  s a m e  fence, and 
3, n o  closed component  of Q n A is  disjoint frorr~ the  set  r of posts of B. 
T h e n  each closed component  of Q n A that  i s  essential in A i s  m o n o t o n i c  wi th  

respect t o  r n A .  

Proof.  Suppose some closed component c of Q n A  that is essential in A intersects a 
component of r more than once. Then c contains a subarc a which is parallel to  a 
subarc y of r via a disk (called a 8-corr~pressing disk) whose interior is disjoint from 
r and from c. If the interior is disjoint from Q as well. we say o,is "outermost". 
IVe distinguish two cases: 

Case  1.  All 8-compressing disks for c are outermost In this case, at least one 
8-compressing disk lies entlrely in X and another entirely in Y. Each disk defines 
a 8-compression of Q to F that yields a meridian of X and Y respectively, since no 



component of Q -3is a 8-parallel annulus. If the subannuli of 3to which they 8- 
compress Q were adjacent in 3.then the meridians could be pushed into different 
parcels. If they are not adjacent. then. after the 8-compressions, the meridians 
would be disjoint. Either possi1)ility contradicts weak incompressibility. 

Case 2 .  Some 8-compressing disk contains other arcs of Q n A Then there is 
a subarc !3 of Q n A parallel to  a subarc T of I', and the 8-compressing disk E 
between them contains only outermost arcs al .  . . a ,  in Q. 8-compress first the 
n, and then 3 to 3.The result is a planar surface T in 3each of whose boundary 
components are essential in Q. by assumption 2.  The surface T lies entirely in X 
or Y. say X, and all but the outermost component 8oT is a meridian of Y. Then 
2.5 shows there is a similar planar surface U in Q itself. 

No~v undo the 8-compressions and examine the effect in Q. This is most easily 
described in the surface &--obtained by compressing Q along 8U-80T. In Q-, C' is 
part of a disk whose interior contains disks bounded by the closed curves 8 U  -d0T. 
When the 8-compressions are undone, a band is attached to doT in Q- - U to 
give an annulus B bounded by the curves in Q n 3which are a t  the ends of 0. 
Similar bands are attached to the disks bounded by 8U  -8oT. giving subannuli A, 
of B which are essential. hence parallel to the core of B. since all curves in Q n 3 
are essential in Q. Then each component of the complement of the Ai in B is a 
subannulus of Q incident at both ends to  the same side of the component of F that 
contains 7.This contradicts our assumption 2. (See Figure 6.) o 

Proposition 2.14. Suppose (Q: 8&) c (H:8+H)  i s  n weakly incompl-essible split- 
t ing surface, w i th  n o  closed corr~ponent,  in a compression body II, and let C U C' 
be a special spine i n  8-H. Suppose further that  C i s  the  base of a disciplined and 
straight fencing s y s t e m  for H. T h e n  there i s  such  n fencing s y s t e m  F so  that  

I. 	n o  component  of Q -3 is  nrr annulus  wi th  both ends  inc iden t  t o  the  s a m e  
side of the  same  fence, and 

2.  	F extends t o  n disciplined boxing sys tem for Q based o n  C U C ' .  



Proof. Suppose 1.V- is a parcel for F and suppose there's an annulus in 14' with both 
ends on the same fence b'. It's then parallel in 14' to  a subannulus of F ,  since 1: 
is incompressible in TV. The annulus can therefore be removed b.v an isotopy of b' 
without affecting our assuiiiptions abo~l t  F.Indeed, such an isotopy can introduce 
but not remove a meridian disli in R -- .F.This establishes the first condition. 

As in 2.11, 3extends to a boxing system based on C U C' for which the posts 
I? satisfy the conditions of 2.10. IVe now exploit the ambiguity in the construction 
of this boxing set. Let l.f7 be the parcel that contains both a meridian of X and 
a meridian of Y (which exists since F' is straight) and let E denote t,lie collection 
of (two or three) squares B n W in which the secondary annuli i~itersect W .  Since 
there are meridians of X and Y in 1IT, there is a choice & of squares ill M n 14' so 
that Eon Q contains a meridian of X and a choice El so that .Elfl Q coiltailis a 
meridian of Y. (To see this; shrink thc relevant meridian disk very sinall so tliat 
a neighborliood of it looks like the tubular neighborliood of an arc. Then choose 
a square tliat crosses the arc transversally.) There is a bandotopy E,s;0 < s 5 1, 
from Eu to El.Let B ,  denote its (constant) extension to the rest of B. For any 
generic value of .s, let .Fj denote the fencing system for N consisting of the disk 
components of F and the secondary annuli of B,. Let ox c [O: I] (resp. ~ y )denote 
the set of generic s E [O: 11 so that either B, or FA is an X-set (resp. Y-set). Then 
0 E as and 1E nu. i'otice that cx n a y  -- fl by weak incompressibility. 

Suppose a generic point ,so is disjoint from both 0-y and c r y .  'Then coniponents 
of Q n d-yio that are inessential circles in Q and disjoint fro111 ? can be removed by 
an isotopy of J j ,  re1 F'.An outermost arc argll~nent then shows. from the fact that 
.F is disciplined; that any closed component of Q n .F;, is essential in Q. If any 
closed compoiieiit of Q n Ti[,were inessential in F& then it would be a meridian 
curve, contradicting our choice of so. Then every conditioii except inoliotonicity of 
essential curves in secondary annuli is automatic. ;Llonotonicity follows from 2.13. 

Finally, suppose some so were in n a?. Then .so would be a non-.generic value 
at which Q and some fence F in .F' have a saddle intcrsection. Then 2.8 can be 
invoked. Such a saddle can't convert a meridian of ,'Y: in F to  a meridian of Y in 
b'?so m~it~li no loss we can assume that M,5,-f  is an X-set. Then by the saddle-box 
lemma, B,,t, can't be a Y-set, so 3,&,, Then by i-he saddle- must be a Y-set. 
parcel lemma, Q can be obtained fro111 a surface Q', for which B,,-, is a disciplined 
boxing set, by doing 1-surgery along a spanning arc n/ of an annr~lus component of 
P -- Q'. (Again, inonotonicity of Q' follows from 2.13). 

Since no component of Q is closed, there's a path in Q1nB from an end of y to 
a point in 8Q'. Slide the entire arc along, keeping it always a spanning arc of the 
subannulus on which its ends lie, until one of its ends lies on an arc component of 
Q' nF'.At tliat point 1 can be removed without producing a rueridiair disk in F'. 
(The fact that y can be kept a vertical spanning arc during this process strongly 
uses the fact that the closed components of Q ' n F '  and Q ' n J  are both monotonic.) 

2.4. When no fencings are straightb;, 


Proposition 2.15. Suppose (Q,0Qj c (H,dl sylit- 
H) i s  a weakly inco~r~press ib le  
t ing surface in a compression body H .  Suppose, for a given cutting s y s t e m  C C d- H ,  
there i s  n o  stra,i,ght ,fencing s y s t e m  based o n  C. Suppose,  in addi t ion,  there i s  a dis- 
ciplined fencing s y s t e m  3' based o n  i3-H and a seconda,rg a,nnulus A. in a boxing 
s y s t e m  extending which 

0 



1. H -F conta,ins n o  meridian disk of either X or Y ,  
2.  all closed components of Q n A are essential in A,  a,nd 
3. if there is  a suba,nnulus of 3pa,rallel to  a subannulus of Q -3,then  isotoping 

one across the other creates a meridian disk i n  a parcel. 

T h e n  ea,ch closed component of Q n A is  monotonic with respect t o  I? nA.  

Proof. Let A be the 1-manifold Q n A. As in 2.13, if A - r contains a subarc X 
with its ends on the same component of I?, then X is parallel to  a subarc of r via 
a *'a-compressing disk" whose interior is disjoint from I?. If the interior of the disk 
is disjoint from Q as well, we say a is "outermost". Suppose X is an arc in A - r 
which has both ends on a component y of I?. Then the component of Q - 2- in 
which X lies is an annulus parallel to a subannulus of 3,for otherwise an outermost 
counterexample, when 8-compressed to F,would reveal a meridian disk in the 
complement of F. 

We have the following surprising conseqeiice: If X is an o u t e r ~ n o s tarc then the 
subarcs of A - I7 adjacent to X have only one end on y. For if either has both 
ends on y ,  theii the annulus a of Q - .Fspaiiiied by X would be adjacent in Q to 
another annulus of Q -F.Isotoping a across 3could not theii create a meridian 
in a parcel, contradicting our assumption 3. (See Figure 7.) 

Now suppose not all closed components of 11are monotonic, and let c be the non- 
moiiotonic one which is nearest to  8-H in A. For concreteness, say the component 
of A -  11on the 8- H side of c lies in X. Consider an outermost arc y of T - c lying 
on the 8+H side of c in A ,  Then in c there is a subarc X y  of c - I' (perhaps not 
outermost in A - T)which is parallel to  y .  Agairi the subarcs of A -T adjacent to  
X y  have only one end on y. For if either has both ends on y ,  then the aiinulus of 
Q -F spaiiiied by Xy would be adjacent in Q to ailother annulus of Q -F spanned 
by a subarc of c - JIwhich is  outermost in A - Q, since every component of h on 
the 8-H side of c is monotone. This would contradict the previous remark. (See 
Figure 8.) 

So both segments of c I '  adjacent to  Xy each have an end on another component 
y' of I'. Consider the disk E bounded by X y  and a subsegment of y.  We suppose 
the interior of E is disjoint from h and derive a contradiction: The interior of E 
must then lie entirely in Y. If we push Xy across y then we must, by assumption, 
create a meridian, and by construction this meridian must be in Y. Another way 
to  create a meridian is to push an outermost arc of r on the 8- H side of c across a 



subarc As of c; hut this meridian is in X. If we do both simultaneously. we create 
meritlians of both and L' disjoint f ron~  .F,contratlicting olar assumption. 

Finally, if the disk E contains othcr arcs of il then it's easy to  see that for each 
such arc, thc adjacent arcs in 11 - r must each liavc an entl on 7'. Among all such 
arcs in E choose one (perhaps Ak.  itself) so that the disk it cuts off contains only 
outermost arcs. Then an argument much like Case 2 of 2.  L:3 leads to  a coiitradiction 
of weak incomprrssiblity. o 

Proposition 2.18. ,Yz~ppose( Q ,dQ) c (H,d-fI) is  a weaX:ly incom~l~ressible split-
ting sz~y[ace, with n o  closed conzponent, in  a com,11s~esszon body H :  and Lel C U C 1  
be n special spine i n  i3 I I .  Su1111ose d,) comlps~esses both into X into Y ,  but n o~ 3 r d 

disciplined ,fencing system based on C is  sl,migl~t. Then  1,l~es.e is  a disciplin,eCI boring 
sys tem in  H based on C Li C'. 

I'm(?i: Tlie liypotliesis guarantees the following special fact: If there is a meridian 
of X !  say, in the complement of a disciplined filming system .F based on C,theii 
there is no boxing system for which a secondary annulus contains a meridian of Y.  
Here's the argument: Suppose y is such a meridian curvc in a secondary annulus A. 
Isotopc. 7 to eliminate all subannuli parallel io subannuli of (2. This w0n.t affect 
the meridian of X,  which is already disjoint from 3,and just isotopes y around 
in A. The hypothesis guarantees that af'terwards y still intersects T (otherwise it 
would also be disjoint from 3and so 3would be straight). Now; 3-compress y to 
an outcrrnost arc y of I' in the disk bounded b,y y. This converts the subannulus 
of' .F spanned by y iii1.o a meridian of I' which was disjoint hom 3 before the 
8-compression, also coiitradict,ing the hypothesis. 



Since H contains meritlian disks for both X and Y,  there is a bandotopy, pa- 
rameterized by 0 < s < 1, from a fencing system containing a meridian disk of X 
in a fence to  one containing a meridian disk of 1'. Let o x  (resp. o y )  denote those 
values of s for which either Fscontains a meridian curve of X (resp. Y) ,  or 3-7, 
can be extended t,o a boxing system 13 which is an X-set (rcsp. Y-set) or for which 
F' contains a meridian curvc: of X (resp. Y). Here: as in 2.13: F' is the fencing 
system consisting of the disk components of F,sancl t,lle secondary a:niiuli of 13. 

Case 1. There is a generic value so which is neither in ax iior in ay .  Then, as in 
2.11. F5, (deiiot,ed now simply 3)extends to  a boxing system B based on C U C' 
for which the posts T sat,isfy 2.10.3. No primary or secondary an~lulus cont,ains 
a meridian disk, by coiistruct~ioii, so, as in 2.14, any inessential closed intersection 
curve in t,hese annuli is disjoint from I'. So these can all be eliminated by an isot,opy 
of B re1 T.Then B sat,isfies all t,he propert,ies of a disciplined boxing syst,em. except 
that essential closed curves in Q n.F' rnay not be moiiot~onic. 

To ensure t,hat they are monotonic, malie the following acljust,ment: For any 
secondary annulus A let h denote the set of curves Q nA. Because so is neither in 
o x  iior in o y ?  there is no meridian of either X or Y disjoint from F.This means 
that any arc in A -- I? which has both ends on t,he same component of T spans 
an annulus component of Q F (see 2.15). Push as many such annuli across F-

as possible without creating a rneridian of X or Y in H -F. These moves can't, 
create any closed cornpollent in A, and afterwards 2.15 guaraiit,ees that h nA is 
monotonic. Repeat for every seconclary annulus. 

Case 2 .  There is a generic value so contained in both o x  and ay. Then with no 
loss we can assume, from the hypothesis of no straight fences. that there is no 
meridian curve of Y disjoint from 3,, (which we hencefort,h denote simply F).Mre 
can also assume there is no meridian curve of X or Y in a primary annulus. since 
such a meridian (of X ,  say) would be disjoint from the posts, by construct,ion, and 
so disjoint from the meridian curve of Y guaranteed by so sly. Then we can 
remove all inessential intersection curves in F by an isotopy of F re1 r,making 3 
disciplined. Furthermore, it's easy to  see t'hat 8-compressing away the ine~sent~ial 
arcs in F has no relevant effect on t,he situation and, aft,er these (7-compressions, 
there is a unique choice of post,s r in 3. Now consider a bandotopy from one 
collection of secondary annuli t,o anot,her. with I1 fixed, so t,hat at t,he beginning 
3' contains a rneridian of Y ancl at the end either there's a meridian of X in the 
secondary annuli or t,llere's one in the complement of B. The lat,ter can't happen. 
by our initial remark. so during th(: bandotopy the meridian of Y in the secondary 
annulus changes to  a rneridian of X .  The meridians can't exist sirnult,aneously. nor 
can t,here be a saddle singularit,y switching one to  t'he other. by strong irreclucibil- 
it,y. So t,here's a generic point at which neither occurs. This est,ablishes all but, 
monot,onicity, and furt,hermore (from t,he initial remark) establishes t,hat there is 
no rneridian of X or Y disjoint from F. Now apply 2.15 as in case 1. 

Case 3. There is an isolated point so of ax nZF.Then t,he t,opology of Q - F,sT,,, 
nlust change at so: so there is a saddle or half-saddle intersection of & with FST,,,. 
The half-saddle case is similar but easier than subcases 3a and 3b below. so we 
consider just t,he saddle case. There are three subcases to consider. (See Figure 9.) 

Subcase ,la. The saddle singularity connects two arc components of & n3. Then 
a set of posts I'may be chosen to  be disjoint from the saddle tangency. If thrrr  
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is ally secondary aililulus coiltaii~ii~g a meridian: tlien there is one malting use of 
only these posts. Passing through t,he saddle poiilt wrould liave no efTect on these 
meridians. So. since so is isolat,ed, we can assume t,liat tliere are no meridian curves 
in the secondary aniluli at so & E . But tliis means tliere's a boxing syst,ei~i B at so -t 

whicli is an X-set, say, and sorrie other boxing system at so -I- c wrliicli is a Y-set. 
Blend tlie txt~o: Pus11 tlie saddle point to the side it's on at so t c and consider U. 
Tlie saddle-box lei~irna 2.8 tlien guarantees lliat B is ileither an X- nor a Y-sct. 

Tlie rriost direct \tray t,o engineer rnonotonicit,y is to observe tliat at t,lie singular 
rlioinent so there is no meridian disk disjoint froin br.so we can apply t,lie process 
of 2.15. The technical objection that 3and Q are not at tliat inoinei~t transverse 
can be overcome by a teclinical trick: Let n be a proper arc in br - Q ,  with eilds 



on d+F,so that o! intersects no closed curve in Q (~13but a cuts off a disk I3 from 
F that contains t,he saddle singl~larity point,. (For example, choose an out,ernlost, 
(in 3)arc of a regular neighborhood of t,he singlllar corriponent of F fl Q at so . )  
Remove from H a neigliborl.lood of E and the rmrt of Q within it. The resi~lt is 
a set,t,ing in nrhich 2.15 applies, and after corripleting t,he process described in t,hat, 
argument,,H and Q can be restored. 

Subcase 3b. The saddle singularit,y connect,^ two essential curves of Q n F.There 
are two possibilities: If the two curves are not parallel in Q then the singular it,^^ 
creaks a meridian curve of X,  say, in F.But this meridian was previously disjoint 
from the fencing system, so a boxing system could have been chosen to  contain it, 
in a secondary annulus. This cont~radicts the assurnption that so is isolated. l f  the 
two curves are parallel in Q, then passing through the saddle point is equivalent to 
passing the annulus in Q across t,hr annulus in F they bound. But any meridian 
of Q which exist,ecl before the subannuli are pushed across each other will persist 
afterwards, and again so wot~ld not be isolated. 

Subcase 3c. At so the saddle singularity connects an essential curve c in Q nF to 
an arc component a of Q n.F (or, dually, an arc t,o itself by a band outside the disk 
in F it cut's off). So at so - E E 0.y say both c and cu lie in F.and at so + E E o y  
they have been banded together to give a different arc corriponent ;3 of Q n F.A 
meridian in a secondary annult~s at so + E would have exist,ed at so - t, so there can 
be no such meridian. This means that a t  so + t t l~ere  is a boxing system which is a 
Y-set,; hence t,here is a mericlian of Y disjoint from F.Then even at so -- E there can 
be no meridian in a secondary annulus, by our first observation. But this means 
t,l~ere'sa boxing systern f3 at so - t xvl~ich is an X-set,. say. and a boxing syst,em at 
so + t which is a Y-set, and t,he proof concludes much as in Subcasc 3a. There are 
only t,wro alterations: The posts for f3 intersect t,l~f: arc 3 and have t,o be pushed off 
,3in F.The effect on the intersection of Q with a secondary annulus A is to band 
a coniponent of Q n A to 8+A along a segnient of a post. a move which cannot 
create a closed component. _Also. instead of a tlisk, use for E the subannulus of 3 
cut off by a.  o 

Corollary 2.17. Suppose (Q, aQ)  C (H,8+H) i s  a 7ueakly incompr~essible splitting 
surface, w i th  n o  closed conlponent,  in a compression body H, and suppose C U C' 
i s  a special spine i n  8-H. Suppose Q compresses both i n t o  X and i n t o  Y. T h e n  
there i s  a disciplined boxing sys tem in H based o n  C C'. 

Proof.  If C is the baqe of a tlisciplinetl qtraight fencillg system fol H, then apply 
2.14. Otherwiqe apply 2.16. o 

3. I~ISCIPLINEDBOXING S Y S T E ~ ~ S  

IN STRONGLY IRREDUCIBLE HEEGAARDSPLITTINGS 

The goal of this section is to prove 

Theorem 3.1. Suppose AUpB a n d X  UQY are strongly zrreduczble Heegaard splzt- 
tangs of the  s a m e  manzfold 111, wath d-A = 8-,Y = doAl and 8-B= d - Y  = alJI 
Suppose Co, C;, and C1, C{ are speczal spznes for aoi14 and alA\Irespectzvely. T h e n  
one  of P o r  Q, say C), m a y  be zsotoped so  tha t  P n Q as a n o n e m p t y  collectzon of 
curves whzcl~ are essentzal an both I' and Q ,  so  tha t  there are boxzng sys tems  MA an 
A and an B whzch are dzsczplzned w z t l ~  respect t o  A n  Q and B nQ respectzvely, 
and so  that  a t  least one  of X or Y contazns n o  merzdzan dzsks for P 



JVe begin with th r  follo~iiing construction, protluced much as in [RSI, 6.31. 
For F : 31 x I + k1 an isotopy of J'f,li-t ,ft : 31 1111 denotr E'lAf x {I). and 

lrt Qt  (resp. X t  . Y, ) denote j'/ (Q) (resp. jt (X). St ( Y ) ). 

Proposition 3 , 2 .  For one o j  l l ~ e  pairs of ieliers A. l3 o r  X, Y (say the  latter).  
l l ~ e r e  i s  a n  isotopy F : d)l x I + ,\.I so iha i  

1. F Q  i s  generic and compression-free c~:if,h respect t o  P: 
2. 	 there 2s a nzeridian disk o,f X,) u ~ l ~ i c l ~  i s  disjoini from P J  
3. 	there i s  a nzeridian disk o,f ITL which i s  disjoint jrorn P .  
4. 	every  conzponeni of P n &,) and P n QI i s  essenlial,  and 
5 .  jor a n y  generic 0 < t < 1, at least one  of XL o r  contains n o  near  nzerzdian 

disks for P .  

Proof.  The proof is a variant on the proof of [RSI ,  6.51. to which me defer for inost 
details. There are several steps: 

Step  1 .  Construct a 2-parallieter fairlily of positionings of P antl Q in AT, deter-
rriined by smeep-outs. 

Let Z_l.tR.ZX antl Ey hr  clisjoint spines of A. l3: X and Y in M respectively. 
Then the region betxveeii klol\~IU Z , \  and i S L 1 l f  U E B  is hoineornorphic to P x (0: 1) 
antl thr  region het~iiren i S o l l l  U EAyand Bi A1 U Uy is homeomorphic to (2 x ( 0 , 1 ) .  
T'l'e can jiggle tllrsc paramrterizations slightly RO that they are transverse aiicl so 
that for solrie small t: 

1. P x { F )  is transvrrsr to Q x {F)and any intrrsrction curve is parallel to an 
rsseiitial curve in 8,).\.I. 

2. 	P x {t) antl Q x {t) are clisjoint froin xu and El.resprctively. 
3. 	P x { I  - t) is transverse to () x { I  - t) and any intersrction curvr is parallel 

to an rssrntial cllrvr in a l A T .  aatl 
--1. P x {I - t) antl Q x { I  t) are disjoint froni and FA respectively. 

Then reparalueterize so that x:0 < ..; < 1, ruiis from P x {F) to P x { I  - t )  
and Q L ,0 5 t 5 1. runs froin Q x {t)  to Q x (1 -- t). Then as P s~vreps fro111 Po 
to PLit ~iiill iiitrrsect both ZA and Z y ,  aiid thus thrre ~iiill he some value of s for 
which P, Qo contains soine rnrriclian disks of X and some wlur  for which Ps -QI-

contains sornr ineritlian clisks for Y. Siinilarly there will be values of I for mhicli 
CjL Po and Q1- P1 coiitaiii nleritliaii clislis of A and l3 respectively. -

.Just as in [RS1 .  3;, the interior of the square I x I =I { ( s ,t)lO < .T. I < 1) 
deconiposes into four types of strata. the regions, the edges. the crossing vertices. 
and the birth-drath vertices: clrprncling 011 the nat l~re  of P, n CJt. find, as there. we 
mill call thr  1-coinples r of edges and veiticrs the gmpliir. i l l  the interior of 1 x I. 

Step  2. Label the regions of the graphic. 
Piclr ( s ,I) in a given region of the graphic and, in this step: let P tlenote and 

& denotr Qt .  Label the region according to thr  iollomiiig scheine: 

1 .  	If both X aiitl P contain near llieritlian clislrs of A (rrsp. I?): choose the label 
,4 (resp. H). 

2. 	If boil1 A and B contain near ~riericlian tlislis of ,Y (rrsp. P);choose th r  labrl 
X (resp. I T ) .  

Observe the follo\ving: If the regioli is uiilahellecl the11 P n  & is compression-free. 
for if tlirrr were a component mllich is esse~ltial in P hut inesseiitial ill (2, say, the11 
consider an iiiiierniost such cornponcynt c i l l  Q.  The11 in Q: c bountls a near nle~.idiali 



dislr D for either A or B ,  drpending on ~i:hrthrr a neighborhood of c in D lies in A 
or B .  If for A, for rxaiilplr, push-offs of D moultl tlirn give near llirtridian tlisks for 
A in both X and Y. 

Tlie upshot is that thr labelling defined here is siiililar to the labrlling by 
A, B ,  X, I /  in [RSl, 41, except here sollie additioiial regions lriay be labelled. But. 
just as in [RSl, 5.11, no two adjacent regions have labrls A antl B or labrls ,Y 
ant1 Y .  For a saddle tangency in ~i:hicl~ thr sacidle poiiit ill P passes, say, from X 
to Y cannot destroy a near nieridiaii dislr in Y or create a near iiirridiaii clisk ill 
X .  So if a labrl A occurretl beforehantl antl a label B after~vartls, there moultl. in 
either position, be a ~rieridiaii curve of A in Y and a mericlian curire of B in X. a 
contradiction. 

JVr continue as in [RSl. 51: Label a region a if all curves of P n$ are inessential 
in both surfaces ancl a spine of Q lies in A. Siinilarly for labrls b,x,y. Thrn. by 
a slightly altered arguinent, [RSl, 5.31 rrrnains true antl tlir argulrient proceetls. 
Tlie goal is not to verify that there is an unlabellecl region ([RSl, 5.9]), for by 
construction thrre are typically no labels near the corners [O,0] aiicl [l.11. Rather 
the goal is [RSl. 5.101. which describes a path through the unlabellrd rrgion from 
a region labelled X to a region labellrtl Y. -4s in [RSl, 6.51. this givrs an isotopy 
satisfying all the conditions except perhaps the last. 

To wrify that tlie last is also satisfirtl. it suffices to S~IOT.Vtliat in an unlabelletl 
region at lrast onr of X or Y contains no near rnrritlian tlisks of eitlirr A or B .  But 
suppose both coiitainrtl such near nirridian dislrs. If one containetl a meridian curve 
of A and tlie other a ~rieritlian curve of B.  it would violate strong irreclucibility. If 
both contained near inericlian dislis of A, say, this ~vould lriean that the tlir rrgion 
slioultl have been labelletl A. o 

For the isotop~r of 3.2, l ~ t  r y  C [0, 11 (1esp. 7-y) denote thr  set of t E [O.1] so 
tliat CJt is tr aiisverqe to P and there is a near rnrridian clisk of Xi(rrsp. &) disjoint 
frorn P .  Thrn (1 ( r y  antl 1 ( ry. 

Proposition 3.3. Suppose there  i s  a generic value to tha t  i s  i n  ne i ther  rA n o r  
717. T h e n  Q m a y  be isotoped so tha t  i t  i s  t m n s ~ u e r s e  t o  P ,  P n C) i s  non-empty ,  
each componen t  o j  P n Q i s  essential i n  both suyfaces: and tile s u ~ f a c e  Q n A (rcsp. 
Q n B )  i s  incompressible in A (resp. B). 

P.ro0.f. First iiotr tliat t,hrrc is 110 essential curvr in Qtu that hountls a disk tlisjoint 
froin P .  For if thrre wrre, then an innerlliost tlislr argument shows t,hereSs such 
a curvr c and a tlisk D it bounds mllicli intersects QLuonly in inessential curves. 
Then c is a rneridiaii of rit l~er Xi,, or I:, . 

The property t,hat t,herr is no essential curvr in Q t ,  tliat bounds a disk disjoint 
frorn P is unaffrctrtl by i:;otoping Q to reluove all curves in P n Q which are 
iiiesseiitial (ill both surfaces). Once this is done racli coiilponent of P n Q  is essential 
in bot,l~ surfaces. hloreovrr, the surface Q nA (resp. Q nB) is incoiilpressible in A 
(resp. B ) .  For if the boundary of any coiilpressing clisli for Q nA were inessential 
in Q then thr  disli in Q it hountls u~ould liave to intersect P .  giving an inessential 
curve in P f- Q. o 

Proo j  of ? . I .  In racli case below, the reyuirellieiit that at least one of X or P 
contailis no nirridiaii dislis for P ~vill br guarantertl by the last coi~tlition of 3.2. 

Case  1. There is a generic value to that is in neithrr rx nor ry. 



In this case just apply 3.3 aiid 2. I 1. 

Case 2. There is a genrric value to that is in T~ nTV 

In this case there are essential curves z and y which, in QL, - P ,  bound near 
ineridian disks in XI, and F,,resprctivrlp. It follo~vs froin strong irreclucibility 
of (2 that these essential curves inust both he on the same sitle of I-', say in A. 
Thr parameter t isn't changed in the rest of the argument, so we'll revert to  C) as 
notation for Qt,. We may as wrll eliminate by an isotopy any inessential curves 
of P n C) aiid observe that then Q n l3 is incoinpressiblr in R.In particular, 2.1 I 
tlemonstratrs that CI UC; extends to a discipliiied boxiiig system for Q n B .  Similarly 
2.19 demonstrates that Co U Ci" extends to a. disciplined boxing system for & n A. 

Case 3. Thrre is an isolated poiiit to of e-n? = .  

Siiice to is isolated, il'b neither genrric nor at a center tangency. So there is a 
saddle tangency of Q! ,  with P. \Vith no loss assume that as t passes from to- F 

to to + E ,  the saddle point in C) passes froin A, say, to R ant1 that to - F is in rA 
ant1 to+ F is ill 7 3 . .  

I3y definition, tlierr is a curve z bountliiig a near nieritlian disk D of X in 
Qt,-, - P. If z lay in B then, since the satltllr point passes from A to B ,  D 
would persist to to + c. But tlirn to + F ~vould also be in 7% So we need only 
consider thr  case in which z c '4.Sylulnetricallp. at to+ 6 thrrr is a near inericlian 
disk for Y in B .  Ihrbliermore Qt,+, n A can coiitaiii no near nieritlian tlisks, for 
if it contained a meridian curve for X :  tlie curw and y iiiould contraclict strong 
irrrducihility, aiitl if it contained a. near mericlian disli of I/ then it would persist to 
Qt,,-, n A and contradict thr isolatioii of to .  Silnilarly QtO-, n B can contain no 
near meridian dislis. Sincr passing thr  saddle poiiit through P ill either direction 
destroys a ineridian curw,  none of the three curves of QtOLtL incident to tlie saddle 
point is inessential ill either P or Q. After rrinoving by an isotopy all non-singular 
iiiessent'ial curves of P nQtu+,. we havc that Qio+c nA is ir*compressible in A and 
Qt,.., nR is incompressible in l3. 

Now apply 2.11 to both 14antl R to get boxing systems B.4aiicl BB for d and I3 
resprctivrly which are discipliiied for (kt,+, nA antl C)t,.., n I3 rrspectivrly. Now 
passing hetiiiren Qt,+, is rquivaleiit to passing a halid hack anti forth. Although 
it doesii't yuitr follow from general positioii t,hat we can take t,his band to lie in a 
single box, iiie can assume t,hat t,he band in P never runs into the base of a post 
of eit,her B.4 or BE. So the only effect on Q n M,\ in B.,l(or Q n BB in BE)is 
t,o add or rrnlove some arcs of intersection disjoint from tlie posts. Tlir only way 
this can affect iiilietlier B.4or BE is disciplineel is if it affects tlie recjuiremmt that, 
Q n (A -B.4)(or Q n ( B  -BE))consists of tlisks. That is, B,\ (resp. BE)might be 
an X -  (resp. Y-) set for QL,,-, n A (resp. QL,,+, n B) .  But not both can happen, 
essent,ially by the saddle-box lemma 2.8. So, say, is not an X-srt for Q!,-, nA, 
so bot,h B.4and BB are tlisciplinetl boxing set,s for Qtu-, n A and Qt,,-, n B, o 

Lemma 4.1, Suppose (Q, DQ) c (N ,d+H)  as a properly ambeddecl surjace an a 
compresszon body H and suppose s o m e  spane of Q has the  property tha t  tlre com- 
plement  of ats regular neaghborhood an H as also n compressaon body. T h e n  tile 
complement  an H of a regular nezglrborlrood of a n y  spane of Q as a compressaon 
body. 
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Proof.  One can move betwecil two spines of Q by a secjuence of operations consisting 
of adding or removing edges inside complenlentarp disks and of edge slides. The 
last has no effect on the complement of the spine in H .  The effect of the former 
two is to stabilize or destabilize the splitting. and so the complement in H remains 
a compression body. o 

Proposition 4.2. Suppose (Q, dQ) c (H ,  N+H) i s  a properly imbedded incom-  
pressible splitting surface, w i th  n o  closed component ,  in a compression body H .  
T h e n  for a n y  spine h of Q7 H - q(h )  i s  also a compression body. 

Proof.  By 4.1 it suffices to  show this for some spine of Q. 
We may as well assume Q is connected. The proof is by induction on -x(Q). 

If Q is not d-compressible, t,hen, since Q cont'ains no closed component, Q is a 
disk and there's nothing to prove. So suppose Q is 6'-compressible and let /3 be 
a proper arc in Q which d-compresses t,o B+H. Let Q' be the surface obt,ained 
by the d-compression and let A' be a spine for Q'. By induct,ion, H - q(Af) is a 
compression body. H - q(A) is obt,ained by removing the neighborhood of t,he arc 
p which is parallel to an arc in d + ( H  - q(A')). o 

Lemma 4.3. Suppose (Q, BQ) c (H,B+H) i s  a properly imbedded surface, w i th  n o  
closed component ,  in a compression body H and B i s  a disciplined bozing s y s t e m  
for H wi th  respect t o  Q. Let A be the proper I -complex Q nB C H. T h e n  H -- r/(iZ) 
i s  also a compression body. 

Proof.  Let r' be the set of posts of the boxing system B. The strategy is to slide 
edges of h over d + H  and other edges, and cancel edges of A against compressing 
disks, unt,il A consists entirely of subarcs of I?, each with one end on d+H.  All 
operations will leave the 0--skeleton A. = h n r unchanged. 

Before launching this st'rat'egy, let us simplify the picture somewhat. Notice 
that,  for F the fencing syst,em in B, nothing is lost by doing d-compressions t o  
Q along the arc components of Q n 3. Indeed, such moves can be regarded as 
destabilizat,ions of 11 and what is left of h is still a spine of t'he -resulting surface 
Q' since every component of Q' -- B remains a disk. So we can assume that Q is 
disjoint from any disk component of 3and intersects each annulus component of 
3only in (essent,ial) simple closed curves. 

The proof t'hen proceeds by induction on the number of edges of 11 outside of r 
(see Figure 10). Suppose for some primary or secondary annulus .A of B t,here is a 
disk component in A - A,  and let D be an innermost one. First rjuppose that the 
int,erior of D is disjoint from r .  Since no component of Q f' A was an inessent,ial 
curve in A, D can't lie entirely in Q n A. This means that part of d D  lies on 
B+AU r .  Rut d+A U r deformat,ion retracts to  d+ A, so d D  can't lie entirely in this 
complex either. Hence t,here's at  least one edge X in d D  which lies in A - (B+Aur ) .  
Then D cancels A, completing t,he induction. 

If the interior D is not disjoint from r , then an outermost arc oc of r in D cut,s 
off a disk D' bounded by oc and an arc P in A iJ 6'+H. Just as before, there must 
be an edge X E P which doesn't lie in 6'+H U I?. Then D' can be used to slide X to  
a, completing the inductive step. 

Suppose then t'hat in each primary or secondary annulus of B the complementary 
components of h are all annuli. Not,ice t,hat sliding and cancelling edges does not, 
alt,er t,he fact (from the definition of A) that B+H U 11 is connected. Unless all of 
A lies in r (in which case we are done) there is a path in A from any edge not 



in to 8+N. Clioose a shortest such path. from an edge X say, and let A he the 
primarj- or secondary annulus tliat contains X (and so contains the entire patli). 
Let 1iA be tlie component of (A u 8+H)n A containing hence also aLA .  Since 
no comporierit of A -A is a disk, :IAis tlie uriiori of d+A and some trees in 11 eadl 
witli exactly one end in d+A E 8 L H .  Every vertex of :IAlies on Ao, hence in I'. 
Since AA contains X and so is riot contained in I',there is a path in I' - An from 
a vertex of An to a+A. It follou-s from monotonicitj- of tlie closed comporierits of 
Q n A that the shortest such arc has interior disjoint from 11 and so cuts off a disk, 
the rest of whose boundary lies in ]IA.An outermost arc argument on pieces of r 
lying in this disk gives such an arc a for ~vhich the cut-off disk has interior disjoint, 
from I'. Nou- the previous argument locates an edge A' of :I - r in the boundary 
of the disk which can he slid to a,  completing t,he induction. (See Figure 11.) o 

Corollary 4.4. Suppose (Q;a&) c ( H ;  d+H)  zs tr properly imbedded wetikly in -  
compressible splitting surface: watk n o  closed conzporrerrt, arrd s t~ppose  Q conzpresses 
both i n t o  X arrd i n t o  Y .  The'r~for n r q  spirre 11 of Q ,  EI - ?/(A) i s  a compressior~ 
bodg. 

Proof.  Bj- 2.17 there is a disciplined boxing systei~l for Q in H.The result t,llen 
follows from 4.3 and 4.1. o 
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Suppose H is a compression body and (A, dA) c (H.&H) is a finite set of d- 
compressible propcrly imbedded annuli all of whose boundary curves are essential in 
d- H .  Suppose 3 is a set oi' spanning arcs for A and T is a regular neighborhood of ;/ 
in H. We view r as a collection of 1-handles added to  P = d+H,  each corresponding 
to an annulus in A. Let Hf denote the closure of H - ~(r).Since a spanning arc 
of a d-compressible annulus in H is parallel to  an arc on d H ,  it's apparent that Hf 
is also a compression body. Let P' denote d H f .  

Proposition 5.1. There  i s  a n  ordering Ai,  A2,. . . A,,, of A and,  for each of all 
but a t  m o s t  -x(d+H) + ,y(d_.H) - 8-H of the  A, there i s  a properly imbedded 
disk E, in H' so that  th,e Eiare all disjoint and have the  followiag properties: 

1. dE, i s  disjoint f rom th,e I -handles  corresponding t o  the  annul i  Ak,k > i .  
2. dE?,r u n s  exactly once across the  I -handle  corresponding t o  A,. 
3. dB, i s  disjoint f rom a n y  component  of P -- d A  which i s  n o t  a n  anwukus. 

Proof. The proof is a minor variation of the rather elaborate argument of [RSl,  
9.11, and we refer to that paper for the key idea and the notation n-v. Each 
complementary component V of A in H is a compression body with i3 _ V = ( d _ V n 
d-H) The argument of [TtSl, 9.11 shows that always )i(V)-x ( d  V) + I d  V /  < 1-
n- (u) and that the set T of components V which are not solid tori with n- ( u )  = 1 
has no more than -)i(H) + ~ ( H)delements. Suniming over T, 11-e get 

As in [KSl, '3.11 we are interested in P = C,7ET(r~-( l i ) ) .which here satisfies 

1'nBArespect,ively, and the complexes Bboxing systems for A and 

6. E'IIVDIN(: SPINtII, SPLITTING SLRFtIC'ES 

If FA and FB are fencing systems for A and B respectively and the curve syst,e~ns 
FA n P and FB n Q are in general posihion in P,  then F = FA,lLi FB is called a 
fencing system for A U p1.7. Sl'e denote F U P by hrF.Similarly if B,l and Bn are 

and BBn(;I) are 
in general position in P, then B == BAU BB is called a boxing syst,em for A IJp  B. 
We denote B U P by LB. 

Definition 6.1. Suppose AA and AB are (not necessarily complete) collections of 
meridian disks for A and B respectively, and K is the 2-complex P U A-1 U An. 
Then K has spinal intersection with Q if K n Q contains a spine of Q and. for each 
disk D E (AAlU A,), D n Q is a single arc. We say that P is --spinal with respect 
to Q if there is some collection of meridian disks whose union with P has spinal 
intersection with Q. 



Theorem 6.2. Let  P and Q be Heegaard splittzng s ~ ~ r f a c e s  zn 11'1 of genus p > 2 
and q > 2 respectively; so  that  P n Q i s  a n o n e m p t y  collection of curves ulhich 
are essential in both s ~ ~ r f a c e s .  Suppose there i s  a disciplined boxing s y s t e m  B for 
A U pB .  T h e n  af ter  a t  m o s t  '7g + 4p + ?,.(dl\) - d l l J  - 11 stabzlizations of P: P 
i s  spinal w i th  respect t o  Q .  

Proof. Since B is disciplined. the complex K = LB n Q cont,ains an ent,ire spine of 
Q. It is the union of t,he closed curves P n Q and the graph h - Q n B.Let A' be 
obt,ained from A by attaching a neighborhood of hn B ,  let B' be obtained from B 
by attaching a neighborhood of hn .9and let P' be the surface A' n B'.It follo~vs 
from [STl ,  2.121 and 4.2 t,hat P' stabilizes P. It t,hen follows from 4.1 t,hat the 
same is true for any subgraph of il n A (resp. h n B)  t,hat is a spine for Q n A 
(resp. Q n B ) .  Much as in [RSl,  10.21 (here improved slightly, since t,here there was 
possibly a single inessential curve of int,ersection), such a spine ~voulcl consist of a 
spanning arc in each annulus of Q - P, and. in the union of the other component,s 
of Q -P, a certain subgraph ~vhose edges outnumber its interior vertices by 4q - 4. 

Again as in [RSl,  10.21, among t,he curves of P n Q there are at most 3g - 3 
dist,inct families of mutually parallel curves in Q. and so a total of '7q- '7 arcs which 
we will not dest,abilize. Now 5.1 gives a way of destabilizing the 1-.handles coming 
from all but 4p -4 +x(dAI) - 1dJ.j' of the remaining annuli. So the t,ot,al number of 
stabilizations needed t,o make P spinal is 7 q+4p+ x(dl\) - 8J.j' -11,as required. 

0 

Definition 7.1, Let S be a connected closed surface. X properly imbedded arc 
a c S x I is vertical if it is properly isotopic to  { p o i r ~ t )x I. 

Similarly, for H a compression body, a properly imbedded arc a c H is vertical 
if there is a complete collection A of defining %-disks for H in the complement of 
a ,  and a is vertical in one of the product complementary components of A.  

Remark .  By [ F .  Lemma 1.11this is equivalent to  saying that ir* the co~npo~lent of 
H - q(A) in which a lies, t,he complement of an open regular neighborhood of a is 
a handlebody. 

Proposition 7.2. Suppose A U pB and X UQI' are strongly irreducible Hee,gaard 
splittings of the  s a m e  mani fold  11'1; ulith d_.A = d-X = doJ.j' f 01 and d - B  = 

d_.Y = dll\/I. Suppose P n Q  i s  a nonemptg  collection of s imple  closed curves uihich 
are essential in both P and Q .  Suppose further that  for c ~ ~ t t i n g  sgstenls C , C f  in 
dol\ there are disciplined boxing sgstenls B,l and Bx for A and X uiith respect t o  
Q and P respectivelg. T h e n  jor each component  S in doAI there i s  a component  ,3 
of P n Q and a n  arc a in A n  X so  that  one end of a i s  o n  5'.the  other  end i s  o n  
S and a i s  vertical in both A and 71. 

Proof.  Case  1 .  There are curves c E G n Y and c' E C' n Swhich int,ersect in a single 
point and, for the annuli A and Af  based on c and c' in B4 and Bx respectively, 
neither A n Q nor A' n P contains a simple closed curve. 

Consider, in this case, t,he 1-manifold A n  A'. It has a single boundary point on 
d(jAII, namely c n c f .  Let a be the component of A n A' t,hat contains this point. 
Then the ot,her end of a must be on either d+A or d+A1, say the former. Then a 
spans a spanning annulus of A and so is vertical in A. The end of a in d+A lies on 
an arc component of P n A'. Adjoining part of this arc component to a creatcs a 
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spanning arc a' for A' which is then vertical in X .  But since a' is the union of a 
vertical arc in A and a subarc of P ,  it's (properly isotopic in X to) a vertical arc 
in A as well. 

Case 2 .  Every annulus in BA (resp. every annulus in Bx)  based on S contains an 
essential curte of intersection 11-ith Q (resp. P ) .  

Then the collection of all the essential simple closed curtes which are closest to  
S forms a spine of S in P Since B x  is disciplined. this could be completed to give 
a copy of S in P disjoint from Q. Since P is connected and intersects Q essentially, 
this is impossible. 

Case  3. No annulus in BA (resp. no annulus in Ex)  based on S contains an essential 
curve of intersection wit,h Q (resp. P). 

In this case either there is also an annulus in Bx ,  based on a curve in S, whose 
intersection with P contains no essential curve, and we are done by the previous 
case, or every annulus in Bx  based on curves in S int,ersects P in at least one 
essential simple closed curve. Then we are done by Case 2.  

Case 4 .  There are curves c E Cn S and c' E C' nS 11-hich intersect in a single point, 
and. of the two annuli A and A' based on c arid c' in B-l, one intersects Q in an 
essential closed curve and the other doesn't. 

Say A doesn't and A' does. Then t,he suban~lulus A'' of A' cut off by an outer- 
most curve of intersection with Q is a spanning annulus of X .  NowT', as in Case 1, 
the int,ersection of the annuli A and A" cont,ains the required arc. 

The proof then proceeds as follows: Let CA+ (resp. CA. ) be the set of curves in 
C U C' so that the annulus in BA based on the curve does (resp. does not) intersect 
Q in an essential simple ciosed curve. If either set is empty we're done by Case 2 or 
3. Together they comprise all of C U C', a connected set. So there is a (necessarily 
transverse) int,ersection point of CA+ with C,l-, and Case 4 applies. o 

Definition 7.3. For I-Ieegaard splittings AUpB and X ~ J QY. the oriented splitting 
surfaces P has spinal intersection with the oriented splitting surface Q over doiW if 

1. P and Q are in general position except at a finite number of saddle tangencies, 
2. 	at the points where P and Q are tangent the orientations of P and Q in iZI 

coincide, 
3. the resulting 1-complex 6 == P n Q contains a spine of Q. and 
4. 	for each component S of doM there is an arc from 6 to S in A n X which is 

vertical in both A and X .  

Proposition 7.4. Suppose A U p  B and X UQ Y are strongly zrreduczble Heegaard 
splzttzngs of the  s a m e  manzfold iVI, uizth d-A 8 -X  = doiZI and d- B = d - Y  =I= 


dlibf. Suppose P and Q are 01g e n ~ ~ s  	 . T h e n  af ter  at m o s t  p 5 q respectzvely 
7g +4p+ ~ ( d i b f )- IdJI 1 - 11 stabzlzzatzons of P ,  P can  be zsotoped t o  have spznal 
zntersectzon ulzth Q over  one  of d ( ) J Io r  a l M  jzn fac t  over  d l J l  zf d l M  zs empty ) .  

Proof.  By 3.1 one of P or Q (say Q ,  which will give the higher bound) can be 
isotoped so as to  satisfy the hypot,heses of 6.2. The last condition of 3.1 further 
ensures t,hat for one of X or Y,  say X ,  P nX is incompressible in X .  Theri 2.11 
guarantees that Q satisfies the hypotheses of 7.2, so that for each component S of 
doM,  t,here is an arc from P n Q t,o S in A n X which is vert,ical in bot,h A and X. 
This is unaffected by the 77q + 4p + z ( d M )  - ldM1 - 11st,abilizations of P needed, 



according to  6.2, to  make P spinal with respect to Q. Then [RSl, 11.21 describes 
how to isotope the stabilized P to make it have spinal intersection with Q over 
do-lilll (and also over dl1W if dl1W is empty, since for this the last condition of 7.3 is 
moot and no vert,ical arcs are required). o 

Lemma 7.5. If P has spinal in tersect ion wi th  Q ,  t h e n  there are neighborhoods 
rlp(K) and qQ(rc) of K in P and Q respectively so that ,  a f ter  a snlall ambien t  isotopy 
of iZf re1 K, qp ( K )  = rlQ( K )  . 

Proof. See jTtS1. 11.31. o 

Proposition 9.6. Suppose P and Q are oriented splittzng surfaces of genus p and 
q respectively and P has spinal in tersect ion wi th  Q over  doJ.l. Let  q' be the  min imal  
number  of defining 2-disks for X .  T h a t  i s ,  q' = q if d(jAII= (4 and q' = q- 1+x(doA1l) 
(f do-Tilll# (3 T h e n  P and Q have a c o m m o n  stabilization of genus p + q'. 

Proof. The case in whicli d o l J  = O) in [RSI , 11.-I], so we'll trnsume d o J I  # (4. 
Following the previous lemma, isotope a neighborhood rip(") of K = P n (;I) in P 
so that it coincides with a neighborhood rlQ(6) of 6 in Q. For each component S 
of d(jill let xs be t,he end point in Q of t,he vertical arc as  in A n X given by 7.2 
for 5".It is easy to find a graph Z c Q so that the union of % and the vertical arcs 
{as) is a spine E+ for X and {zs lS  E do121) are the only vertices of Z.  Then Z 
can he isotoped re1 {xs) into v C 2 ( b i )  = qP(bi) c P. Kow push a sniall interior arc 
of each of the q1 edges of S into B and off of P. The union N of A ancl a relative 
regular neighborhood of these arcs in B is a conlpression body obtained by adding 
q1 trivial llanclles to A. so d + H  is a g'-fold stabilization of P. 

ITOW imagine pulling more of each arc of E into B until all of E except the 
vertices {xs} have been pulled into B. This defines an isotopy of H after which 
R = d.,H is apparently also a Reegaard splitting of the conlpression body I.;, 
honieoniorphic to  Y,  obtained by removing a neighborhood of Z., from A/.  Indeed, 
one component of Y, R is just B with g' boundary parallel arcs removed. The-

other can be d-reduced along a coniplete faniily of defining dislrs for P to beconie 
just K x I. Any Reegaard splitting of a conlpression body is just a stabilization of 
the boundary [STl,  2.71, so d,N is then also a stabilization of Q = d,Y. o 

Theorem 9.9. Su,ppose A U pB and I\'UQ Y are strongly irreducible Heegaard 
splittings of the  same  ntanifold 111, with d- A = d-X = do:Zl # 0 and d -B  = 

d-Y = dlilI  and x(d l121) < x(d0i1I) if dlA4 f 8. Suppose .P and C) are of g e n ~ ~ s  
p 5 g repecti'uely . T h e n  there i s  a genus 8q + 5p + ~(8114)+ x(ao!lI) lallll - 12-

Heegaard splitting of M which stabilizes both A U pB and X UQY. ( O r  genus 
8q + 511+ x(ai1I) Ian41 - 11 if alA4 i s  empty . )  -

-Proof 7 4 shows that after at most 79  + 4p $ y(ddn1) - Idilll 11 stablll~atlons 
of P (raislng the genus of P to 7 q  + 5p + ~ ( d - 1 1 )- Idlll! - l l ) ,  P has splnal 
intersection with C) over one of doLII or dl '11 (over dl if dlLII 1s enipty) Then 7 6 
says that the new P ancl the old Q have a conlmon stc~bili~ation of genus at most 
8 q $  5 p + ~ ( a . l I )  +x(ao.lI) - ldLII!- 12,  or genus 8q+511+ y(8liI) - !dLIIl- 11 ~f 
dl-11 = gl 0 
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