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COMPARING HEEGAARD SPLITTINGS
—THE BOUNDED CASE

HYAM RUBINSTEIN AND MARTIN SCHARLEMANN

ABSTRACT. In a recent paper we used Cerf theory to compare strongly irre-
ducible Heegaard splittings of the same closed irreducible orientable 3-manifold.
This captures all irreducible splittings of non-Haken 3-manifolds. One appli-
cation is a solution to the stabilization problem for such splittings: If p < ¢
are the genera of two splittings, then there is a common stabilization of genus
5p + 8¢ — 9. Here we show how to obtain similar results even when the 3-
manifold has boundary.

1. BACKGROUND

In this paper, all manifolds are assumed to be compact and orientable. A com-
pression body H is constructed by adding 2-handles to a (connected surface) x I
along a collection of disjoint simple closed curves on (surface) x {0}, and cap-
ping off any resulting 2-sphere boundary components with 3-balls. The component
(surface) x {1} of OH is denoted 9 H and the surface 0H — 04 H is denoted d_H.
If 5_H = @ then H is a handlebody. If H = 0. H x I then H is called a trivial
compression body.

The cores of the 2-handles defining H, extended vertically down through (9.4 H) x
1, are called a defining set of 2-disks for H. There is a dual picture: A spine for H
is a properly imbedded 1-complex = such that H deformation retracts to ZUJ_H.
Such a spine can be constructed from a set of defining disks: The arc co-cores of
the 2-handles, with the arc ends that lie on 2-spheres coned to the centers of the
3-balls and the other ends extended down to 0_H, are the edges of a spine. The
retraction restricts to a map 0. H — E U 0_H whose mapping cylinder is itself
homeomorphic to H.

A spanning annulus in H is a properly imbedded annulus A with one end on
each of 0L H. For A a spanning annulus, let 8.4 = ANJLH.

A Heegaard splitting M = AUp B of a 3-manifold consists of an orientable surface
P in M, together with two compression bodies A and B into which P divides M.
P itself is called the splitting surface. The genus of A Up B is defined to be the
genus of P. A Heegaard splitting of M can also be viewed as a handle structure
on M, in which the 1-handles are the co-cores of the defining 2-handles of A and
the 2-handles are the defining 2-handles of B. A stabilization of A Up B is the
Heegaard splitting obtained by adding to A a regular neighborhood of a proper arc
in B which is parallel in B to an arc in P. A stabilization has genus one larger
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and, up to isotopy, is independent of the choice of arc in B, and is the same if the
construction is done symmetrically to an arc in A instead.

Recall the following: If there are meridian disks D4 and Dg in A and B respec-
tively so that 9D 4 and 8Dp intersect in a single point in P, then A Up B can be
obtained by stabilizing a lower genus Heegaard splitting. We then say that AUp B
is stabilized. If there are meridian disks D4 and Dp in A and B respectively so
that D4 and 0Dpg are disjoint in P, then AUp B is weakly reducible. If there are
meridian disks so that D4 = dDpg, then A Up B is reducible. It is easy to see
that reducible splittings are weakly reducible and that (except for the genus one
splitting of S®) any stabilized splitting is reducible. It is a theorem of Casson and
Gordon [CG] that if AUp B is a weakly reducible splitting then either M contains
an incompressible surface, or AUp B is reducible. It is a theorem of Haken [Ha] that
any Heegaard splitting of a reducible 3-manifold is reducible, and it follows from a
theorem of Waldhausen [W] that a reducible splitting of an irreducible manifold is
stabilized.

Suppose M has two splittings AUpB and X Ug Y, withd_A=0_X and 0_B =
0_Y. Then it is a classical result that the two splittings are stably equivalent.
Generalizing the argument of [RS1], which applies only to closed 3-manifolds, we
intend to get a bound on the number of stabilizations required in the case in which
both splittings are strongly irreducible. Such strongly irreducible splittings are
inevitable, for example, when the 3-manifold has no essential closed surfaces (e.g.
the figure 8 knot complement). In the more general case, Johannson has shown [Jo,
31.9] that if M is Haken, then the number of stabilizations needed grows no more
than polynomially with the genus of the two splitting surfaces. On the other hand,
no example is known of two irreducible splittings for which each needs more than
one stabilization to become equivalent. Indeed, Schultens [Sch] shows that such an
example cannot be found among Seifert manifolds, whose Heegaard splittings are
most easily understood.

Here is an outline of the proof in the closed case [RS1]:

1. In a 2-parameter positioning of P and @ locate a region in which
e every curve in P N (Q is either essential in both surfaces or inessential in
both surfaces, and
e for one of P or @), say P, there is a path in the region from a positioning
in which there is a meridian of X disjoint from P to one in which there
is a meridian of Y disjoint from P.

2. Extend P to a 2-complex K by attaching a certain complete collection of
meridian disks A of A and B. Then M — n(K) is a collection of balls.

3. In the path of positionings described above locate a point at which every
component of PNQ is essential in both surfaces and )N K contains an entire
spine of ). That is, every component of () — K is a disk.

4. Attach tubes to P along a collection of arcs in () — P?) N A which form a
spine of ) — P. Observe that the result is a stabilization P? of P.

5. There is a bound on the number of stabilizations needed, determined by the
genus g of ) and by the maximal number of pairwise non-parallel d-non-
parallel but 9-compressible annuli that can lie in A or B.

6. @ can be isotoped so that P* N Q is a spine of Q.

A spine of X can be isotoped to lie on P?*.

8. Then ¢ stabilizations of P* give a stabilization also of ).

=~
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Steps 1, 5, and 6 are not much more difficult when M has boundary. They
correspond here to Proposition 3.2, sections 5 and 6, and most of 7.4. The difficulty
begins in step 2. In order to cut A and B into balls one must use not just meridian
disks but also a sort of hierarchy, called a boxing system, for each compression
body. Each boxing system consists of two sets of intersecting annuli. The situation
is more difficult partly because the annuli intersect and partly because annuli are
not simply connected. The correct positioning of @ with respect to this boxing
system is quite delicate and occupies all of the multipart section 2. The resulting
boxing systems will be called disciplined with respect to @), and the proof that they
exist essentially completes step 3.

Because boxing systems are more complicated, it is not immediately clear that
attaching tubes along intersection curves with the annuli will necessarily be a sta-
bilization of P. So step 4, obvious in the closed case, here occupies all of section
4. It turns out that having a disciplined boxing system is what is required here
as well. Finally, steps 7 and 8, which establish that the stabilization of P we have
constructed is within ¢ of being a stabilization of @, are also more complicated
here. The difficulty is that, unlike the closed case, here we cannot push a spine of
X into the splitting surface @, since here any spine of X has ends attached to Jy M.
The difficulty is resolved in 7.2 by finding an arc which is a vertical spanning arc
for both X and A. Once again the proof only works because the boxing system is
disciplined.

Finally, we repeat a point made in [RS1]: It’s expected that a combination of
the techniques developed here and those in [RS2] will give an explicit bound on the
number of stabilizations required to make any two Heegaard splittings equivalent.

2. SURFACES IN COMPRESSION BODIES

2.1. Fencing systems, boxing systems, and weakly incompressible sur-
faces.

Definition 2.1. A cutting system in an orientable genus g > 1 surface S is a set
C of curves in S which cut S into annuli or pairs of pants so that each curve in C
is incident to two distinct components of S —C.

Definition 2.2. A spine of an orientable surface S is a finite 1-complex (graph) in
S whose complement is a union of disks (faces). A spine is special if it is the union
of two cutting systems C and C’ so that each curve from one system meets every
curve in the other transversally in at most one point.

FIGURE 1
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Note that for ¢ > 2, 3g — 3 curves in each cutting system can suffice. In this
case, each face is a hexagon. See Figure 1.

Definition 2.3. Suppose H is a compression body, A is a collection of defining
disks and C is a cutting system of 0_(H). Then the union F of A and (C x I) C
(0_(H) xI) = H — A is called a fencing system for H based on C if each disk in A
is incident to two distinct components of H — F.

Suppose C’ is a second cutting system of §_ (H) which, together with C forms
a special spine. Then the union of F and (C' x I) C (0_(H) x I) = H — A is
called a boxing system for H based on the standard spine C U C’. The annuli
in C x I are called primary annuli or fences, and the annuli in C’ x I are called
secondary annuli. The complementary components of F in H are called the parcels
of the fencing system, and the complementary components of B are called the
boxes of the boxing system. The spanning arcs I' of H which are the intersections
of primary and secondary annuli are called the posts of the boxing system.

Note that each parcel is a handlebody (possibly a ball) of genus < 2 and each
box is homeomorphic to a ball. See Figure 2.

Definition 2.4. A properly imbedded oriented surface (@,0Q) C (M,0M) is a
splitting surface if M is the union of two 3-manifolds X and Y along @ so that
0X induces the given orientation on ) and dY induces the opposite orientation. A
compressing disk for @ (in X) is called a meridian disk (in X) and its boundary a
meridian curve (for X). More generally, a near meridian disk in X (resp. Y) is a
disk D C M transverse to @ so that 0D C @ is essential in @, all components of
interior(D) N Q are inessential in @, and the component of D — @ adjacent to 6D
lies in X (resp. Y).

A splitting surface @ is called strongly compressible if there are meridian disks
in X and Y with disjoint boundaries. If there are no such disks, @ is called
weakly incompressible. @ is called reducible if there are meridian disks in X and Y
whose boundaries meet at a single point in Q.

Two things to note: The boundary of a near meridian disk is a meridian curve.
With the sole exception of an unknotted torus lying in a ball in M, any connected
reducible surface is strongly compressible.

For examples of weak incompressibility, suppose X Ug Y is a strongly irreducible
Heegaard splitting of a manifold M. Then @ is weakly incompressible. Moreover, if
M = AUp B is another Heegaard splitting and each curve of PN is incompressible
in both surfaces, then Q@ N A C A may or may not be compressible, but it’s always
weakly incompressible.

Proposition 2.5 (The swapping lemma). Suppose (Q,0Q) C (M, 0M) is a weakly
incompressible splitting surface compressing both to X and to Y, and (T,0T) C
(M, Q) is a proper planar surface with boundary components 8Ty, ...,0Tm, m > 1,
so that

1. interior(T) C X,
2. each curve 0T;,1 < i < m, is a meridian curve for Y, and
3. 9Ty is essential in Q.

Then there is a planar surface U in Q itself, with OU the union of 0Ty and some
copies of some of the 0T;,1 < i < m.



COMPARING HEEGAARD SPLITTINGS--THE BOUNDED CASE 693
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Proof. Since @ is weakly incompressible, yet compresses both into X and into Y,
all meridian curves of both X and Y lie on a single component (). Compress Qo
into Y along the meridian disks D;,1 < i < m, bounded by (9T);,1 <4 <m, and
call the result Sy C Y. Let Xt C M denote the 3-manifold obtained from X by
attaching the corresponding 2-handles. Somewhat similarly, let Sx C X denote the
surface obtained by maximally compressing Qo into X. Then the region between
Sx and Sy in X1 is obtained by attaching 2-handles to both sides of a collar Qg x I
of Qo. Since Q is weakly incompressible, it follows as in [CG]| that both Sx and
Sy are incompressible in X .

The choice of D; guarantees that T extends to a disk TF in X+ with 8T+ = 9Ty
Since Sx is incompressible in X, T can be isotoped to be disjoint from Sx and
so lies in the region between Sy and Sy. Since 9Ty lies in Qp and is disjoint from
each 8T;,1 < i < m, we may consider 8Ty C Sy. Then [CG] implies that 0T} is
inessential in Sy, as required. o
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2.2. Organizing intersections with fencing and boxing systems.

Definition 2.6. Suppose F is a fencing system for a compression body H and
(Q,0Q) C (H,0,. H) is a weakly incompressible splitting surface that is in general
position with respect to F. Then F is an X-set (resp. Y-set) with respect to Q) if
some component of the boundary of @ — F is a meridian curve of X (resp. V).

Similarly, a boxing system B is an X-set (Y-set) if some component of the
boundary of @ — B is a meridian curve of X (resp. V).

Lemma 2.7. F is an X -set (resp. Y -set) with respect to the weakly incompressible
splitting surface @Q if and only if there is a parcel W so that OW contains a near
meridian disk D for X (resp. Y ). A similar statement holds for bozing systems,
with “boxes” replacing “parcels”.

Proof. Suppose F is an X-set, so a component ¢ of @ — F has a boundary curve ¢
which also bounds a meridian disk in X. Let W be the parcel in which ¢ lies. W
is a genus < 2 handlebody and the surface T' = W — 9M (in which c lies) is a
sphere, annulus, or pair of pants with m (T') — (M) injective. Since ¢ bounds a
disk in X C M, ¢ bounds a disk in 7. (See Figure 3.) Of all components of QNT
which, like ¢, are essential in @ but bound a disk in 7', let ¢’ be the innermost.
Then an innermost disk argument shows that ¢’ bounds a meridian disk for either
X or Y, and it can’t be the latter, by weak incompressibility of ). Take for D the
disk in OW bounded by ¢'.

Conversely, if such a disk D exists, then 0D, which lies on the boundary of
(@NW) C (Q—F), is a meridian curve since the component of D — @) containing
0D extends to a disk lying entirely in X. o

Since @ is weakly incompressible, no boxing system or fencing system can be
simultaneously an X-set or Y-set, nor can there simultaneously be a boxing system
built on a fencing system, for which one system is an X-set and the other a Y-set.
Generalizing this somewhat, we have:

Lemma 2.8 (Saddle-box lemma). Suppose B is a boxing system so thal By and
B_ are two bozxes with common side E. Suppose Q) is weakly incompressible, has
no unknotted torus components, and is in general position with respect to B except
for a saddle singularity in the interior of E. Let Q1 denote the surfaces obtained
by pushing the saddle singularity into By. respectively. If B is an X -set with respect
to Q- then it’s nol a Y -set with respect to Q.

FI1GURE 3
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(Saddle-fence lemma). Suppose By as above lie in different parcels Py of a
fencing system F in B. Suppose B is an X-set with respect to Q_, and F is a
Y -set with respect to Q4. Then there is a surface Q' in M with the following
properties:

1. Q' is obtained from Q_ by compressing a meridian disk of X lying in B_.

2. In Figure 4, Q_ is obtained from Q' by I-surgery on an arc. The core of the
arc is “unknotted”, i.e. parallel in Y N B_ to an arc that spans an essential
annulus component of 0Py — Q_.

3. B is neither an X -set nor a Y -set with respect to Q' .

. 4

FIGURE 4

Proof. Let = be the boundary component of Q_ — B which is a meridian of X,
and let Q. denote the component of Q. — B on which it lies. Similarly let y be

the boundary component of Q4 — B or Q. — F which is a meridian of Y, and Q,
the component of Q4 — B or Q4 — F (as relevant) on which it lies. First note
that @, must lie in B_, for otherwise « would persist in the interior of Q — B,
contradicting weak incompressibility. Next note that each component of QL NOB_
must be inessential in @), for otherwise, since 0B_ is a sphere, one would bound a
meridian disjoint from both x and y, violating weak incompressibility. So passing
through the saddle cuts an arc from the essential component ), and turns it into
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an inessential component. It follows that (), is an annulus, and, passing through
the saddle singularity, cuts it by a spanning arc.

If Bis a Y-set for Q)4 we could apply the same argument to the component @),
in B} and deduce that it’s also an essential annulus whose core curve bounds a
meridian of ¥ and for which the saddle corresponds to a spanning arc. But this
would imply that @ is reducible. The contradiction proves the saddle-box lemma.

For the saddle-fence lemma, let @’ be the surface obtained from @_ by compress-
ing z C Q, into X —B. If Fis a Y-set for @, the same contradiction would arise
as above if the band in @4 corresponding to the saddle point had only one end on
vy, or if it had both ends on y and the band was inessential in P, . So passing the
band into B_ bands y to itself in the fence, creating two parallel essential curves
in @P,. The co-core ~ of this band intersects x in one point, so ) can be recovered
from @’ by doing 1-surgery along the arc 7.

Finally, note that if B is a Y-set for @’ then it would have been a Y-set for
@Q_, and if B is an X-set for )’ then it would have been an X-set for Q). Either
contradicts weak incompressiblity of Q. o

Let (Q,0Q) C (H,04H) be a properly imbedded surface in the compression
body H so that 0@ is essential both in 0, H and in Q.

Definition 2.9. A fencing system F for H is disciplined with respect to @ if

1. @ is in general position with respect to F, and
2. no component of ¢ N F is an inessential closed curve in F.

Definition 2.10. A boxing system B is disciplined with respect to @ if the follow-
ing conditions hold:

1. @ is in general position with respect to 5.

2. The fencing system F of B is disciplined with respect to Q.

3. In any primary annulus (fence) F' of F, each post is disjoint from the arc
components of Q N F' and intersects each closed curve in () N F' exactly once.

4. In any secondary annulus A each closed curve in Q@ N A is essential in A and
intersects each post in A4 precisely once. (That is, these curves are monotonic
in A.) (See Figure 5.)

5. @ N B is a spine of Q.

As a warm-up lemma we have:

Lemma 2.11. Suppose (Q,0Q) C (H,d. H) is an incompressible splitting surface
in a compression body H. Then any special spine CUC' in O_H is the base of a
disciplined boxing system in H with respect to Q.

Proof. Construct first any fencing system F based on C. Since () is incompressible,
any closed curves in Q N F which are inessential in F are inessential also in ¢ and
so can be removed by an isotopy. Thus F is made disciplined. We can also suppose
that no subannulus of F is parallel to a subannulus of ), by repeatedly isotoping
away innermost such pairs. In each fence F' C F choose a family of spanning arcs
of the fence, each with one end on a point of (FNC’) C _F, each intersecting each
essential curve in QN F' in exactly one point, and each avoiding the arc components
of QN F (which have both ends on 8. F). Let I" be the union of all these spanning
arcs in F. In any parcel P of H — F the union of a segment of C’ N &P and the
two arcs of I' at its ends can be completed by an arc in 0, H to give a square
bounding a disk £ in P. The union of all such disks F then gives a fencing system
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on ¢’ which, together with F, makes a boxing system B for H. If we isotope the
rectangles E to eliminate all closed (hence inessential) curves of intersection with
Q, it’s easy to verify that B is disciplined. Only 2.10.4 requires a slight argument:
If in a secondary annulus A a closed curve of @ N A intersects a post more than
once, then there is a subsegment v of a post to which a component ¢ of Q — F
O-compresses. But this 0-compression converts the essential subannulus ¢ of F —Q
spanned by «y into a disk. Since the disk can’t be a compressing disk for @, it must
bound a disk in . But this means that ¢ is an annulus parallel to ¢, contradicting
our construction. o

It will be important to understand how the properties of being an X- or Y-set
or being disciplined may change with different choices of fencing or boxing systems.
Suppose F and F’ are two fencing systems based on C. It’s easy to see that one can
move between them by a series of isotopies rel C adding or deleting a disk element
parallel to another disk element, and band-summing an annulus or disk element to
another disk element. Call such a series of operations a bandotopy. A bandotopy
will be expressed as a series (g',...,g"), where each ¢/ is a proper general position
isotopy of a fencing system F7 in H, and g] (F7) differs from g ™' (F7+1) by either
the deletion or addition of a parallel disk, or a band-sum of one element to a parallel
copy of a different disk element. Additions of parallel disks are sometimes needed
just to ensure that no parcel of the fencing system is incident to both sides of the
same disk (cf. 2.3).

We make a similar definition for boxing systems B and B’ which are both based
on C’ and which include a fixed set of posts in the same fencing system F. Then
we can move between B and B’ by isotoping the squares B — F in the parcels of F
and banding the cells to copies of disk elements of F. Each square is kept fixed on
three sides: the two posts and the subarc of C’ in its boundary.

Given a bandotopy (g1, ... ,gx,) of a fencing or boxing system, it’s often conve-
nient to think of the parameter of the isotopy g; running between (j—1)/n and j/n.
Then we can think of the bandotopy as parameterized by s € [0, 1] with “singular”
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points at each j/n,1 < j < n, when a band-sum takes place or a disk is added or
deleted.

When considering how properties of a fencing or boxing system change during a
bandotopy, the first observation is that banding an annulus or a disk element of a
fencing system F to a disk element, or adding or deleting a disk parallel to a disk
element, only adds, removes or moves arc components of Q N F, but not simple
closed curves. So there is no effect on whether F is disciplined. The effect on Q — F
is to add, delete, or move disk components, so there is no effect on whether F is an
X- or Y-set.

So any change in these properties happens during the isotopy part of a bandotopy,
necessarily when there is either a tangency point of @ with F or of 9Q with 9F.
A center tangency of @ with F or a “half-center” tangency of 0Q) with 0F will
only introduce or delete inessential curves of intersection or arcs of intersection; so,
although the former may make F no longer disciplined, neither alters the property
of being an X- or Y-set. If there is a half-saddle tangency of OF with 9Q), an arc
of intersection can become a closed curve. In one parcel incident to the tangency
point there is no change in the topology of @@ — F, and in the other a band is
added or deleted. The upshot is that such a half-saddle may change whether F is
disciplined and whether or not F is an X- or Y-set, but, because only the topology
within a single parcel is changed, it can’t change an X-set to a Y-set or vice versa.
Finally, a saddle tangency between ) and F may change an X-set into a Y-set or
vice versa. But we conclude that this is the only way such a change can happen.
Similar remarks apply to a bandotopy of a boxing system with fixed fences.

2.3. When some fencings are straight.

Definition 2.12. Suppose (Q,9Q) C (H,0H) is a weakly incompressible split-
ting surface in a compression body H. A fencing system F in H is straight (for Q)
if H —F contains both a meridian of X and a meridian of ¥ (necessarily in the
same parcel of H — F).

Proposition 2.13. Suppose (Q,0Q) C (H,0+H) is a weakly incompressible split-
ting surface in a compression body H. Suppose there is a fencing system F and a
secondary annulus A in a boxing system B extending F for which

1. F is disciplined and straight,

2. no component of Q — F is an annulus with both ends incident to the same
side of the same fence, and

3. no closed component of QN A is disjoint from the set I' of posts of B.

Then each closed component of Q@ N A that is essential in A is monotonic with
respect to ' N A.

Proof. Suppose some closed component ¢ of @ N.A that is essential in A intersects a
component of I' more than once. Then ¢ contains a subarc « which is parallel to a
subarc vy of T via a disk (called a 0-compressing disk) whose interior is disjoint from
T" and from c. If the interior is disjoint from @ as well, we say « is “outermost”.
We distinguish two cases:

Case 1. All 0-compressing disks for ¢ are outermost. In this case, at least one
O-compressing disk lies entirely in X and another entirely in Y. Fach disk defines
a d-compression of @) to F that yields a meridian of X and Y respectively, since no
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component of Q — F is a O-parallel annulus. If the subannuli of F to which they O-
compress () were adjacent in F, then the meridians could be pushed into different
parcels. If they are not adjacent, then, after the J-compressions, the meridians
would be disjoint. Either possibility contradicts weak incompressibility.

Case 2. Some O-compressing disk contains other arcs of @ N .A. Then there is
a subarc 8 of @ N A parallel to a subarc v of I', and the d-compressing disk E
between them contains only outermost arcs «s, ..., q,, in Q. 0-compress first the
a; and then 3 to F. The result is a planar surface T' in F each of whose boundary
components are essential in ), by assumption 2. The surface T lies entirely in X
or Y, say X, and all but the outermost component dyT is a meridian of Y. Then
2.5 shows there is a similar planar surface U in @Q itself.

Now undo the 0-compressions and examine the effect in (). This is most easily
described in the surface Q™ obtained by compressing @ along U —9yT. In Q~, U is
part of a disk whose interior contains disks bounded by the closed curves OU — 0yT'.
When the J-compressions are undone, a band is attached to 9yT in Q~ — U to
give an annulus B bounded by the curves in @ N F which are at the ends of (3.
Similar bands are attached to the disks bounded by U — 9yT', giving subannuli A;
of B which are essential, hence parallel to the core of B, since all curves in Q N F
are essential in (). Then each component of the complement of the A; in B is a
subannulus of @ incident at both ends to the same side of the component of F that
contains «. This contradicts our assumption 2. (See Figure 6.) o

Proposition 2.14. Suppose (Q,0Q) C (H,0;+H) is a weakly incompressible split-
ting surface, with no closed component, in a compression body H, and let C UC’
be a special spine in 0_H. Suppose further that C is the base of a disciplined and
straight fencing system for H. Then there is such a fencing system F so that
1. no component of Q — F is an annulus with both ends incident to the same
side of the same fence, and
2. F extends to a disciplined boxing system for @ based on C UC’.

FIGURE 6



700 HYAM RUBINSTEIN AND MARTIN SCHARLEMANN

Proof. Suppose W is a parcel for F and suppose there’s an annulus in W with both
ends on the same fence F'. It’s then parallel in W to a subannulus of F', since F
is incompressible in W. The annulus can therefore be removed by an isotopy of F
without affecting our assumptions about F. Indeed, such an isotopy can introduce
but not remove a meridian disk in H — JF. This establishes the first condition.

As in 2.11, F extends to a boxing system based on C U C’ for which the posts
I" satisfy the conditions of 2.10. We now exploit the ambiguity in the construction
of this boxing set. Let W be the parcel that contains both a meridian of X and
a meridian of ¥ (which exists since F is straight) and let E denote the collection
of (two or three) squares BN W in which the secondary annuli intersect W. Since
there are meridians of X and Y in W, there is a choice Fy of squares in BN W so
that Ey N @ contains a meridian of X and a choice F; so that F; N Q contains a
meridian of Y. (To see this, shrink the relevant meridian disk very small so that
a neighborhood of it looks like the tubular neighborhood of an arc. Then choose
a square that crosses the arc transversally.) There is a bandotopy Es,0 < s < 1,
from Ey to Ey. Let B, denote its (constant) extension to the rest of B. For any
generic value of s, let F. denote the fencing system for H consisting of the disk
components of F and the secondary annuli of Bs. Let ox C [0,1] (resp. oy) denote
the set of generic s € [0, 1] so that either B; or F, is an X-set (resp. Y-set). Then
0 € ox and 1 € oy. Notice that ox N oy = {§ by weak incompressibility.

Suppose a generic point sg is disjoint from both ox and oy. Then components
of @ N F;, that are inessential circles in ¢ and disjoint from 7 can be removed by
an isotopy of F; rel 7. An outermost arc argument then shows, from the fact that
F is disciplined, that any closed component of @ N F;  is essential in Q. If any
closed component of @ N F; were inessential in 7 then it would be a meridian
curve, contradicting our choice of sg. Then every condition except monotonicity of
essential curves in secondary annuli is automatic. Monotonicity follows from 2.13.

Finally, suppose some sg were in ax Ny . Then sy would be a non-generic value
at which @ and some fence F' in F’ have a saddle intersection. Then 2.8 can be
invoked. Such a saddle can’t convert a meridian of X in F' to a meridian of Y in
F, so with no loss we can assume that B, is an X-set. Then by the saddle-box
lemma, Bs, . can’t be a Y-set, so 7, . must be a Y-set. Then by the saddle-
parcel lemma, ) can be obtained from a surface @', for which B, is a disciplined
boxing set, by doing 1-surgery along a spanning arc «y of an annulus component of
F — @'. (Again, monotonicity of @)’ follows from 2.13).

Since no component of @ is closed, there’s a path in Q' N B from an end of v to
a point in Q). Slide the entire arc v along, keeping it always a spanning arc of the
subannulus on which its ends lie, until one of its ends lies on an arc component of
Q' NF'. At that point v can be removed without producing a meridian disk in 7.
(The fact that v can be kept a vertical spanning arc during this process strongly
uses the fact that the closed components of @' NF’ and @’ NF are both monotonic.)

o

2.4. When no fencings are straight.

Proposition 2.15. Suppose (Q,0Q) C (H,0+H) is a weakly incompressible split-
ting surface in a compression body H. Suppose, for a given cutting system C C 0_H,
there is no straight fencing system based on C. Suppose, in addition, there is a dis-
ciplined fencing system F based on 0_H and a secondary annulus A in a boxing
system extending which
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1. H — F contains no meridian disk of either X orY,

2. all closed components of QN A are essential in A, and

3. if there is a subannulus of F parallel to a subannulus of Q — F, then isotoping
one across the other creates a meridian disk in a parcel.

Then each closed component of Q@ N.A is monotonic with respect to T'N A.

Proof. Let. A be the 1-manifold Q N A. As in 2.13, if A — I" contains a subarc A
with its ends on the same component of I', then X is parallel to a subarc of I" via
a “O-compressing disk” whose interior is disjoint from I'. If the interior of the disk
is disjoint from @ as well, we say « is “outermost”. Suppose A is an arc in A — T’
which has both ends on a component v of I'. Then the component of Q — F in
which A lies is an annulus parallel to a subannulus of F, for otherwise an outermost
counterexample, when 0-compressed to F, would reveal a meridian disk in the
complement of F.

FIGURE 7

We have the following surprising conseqence: If X is an outermost arc then the
subarcs of A — I' adjacent to A have only one end on ~. For if either has both
ends on v, then the annulus « of @ — F spanned by A would be adjacent in @ to
another annulus of ) — F. Isotoping « across F could not then create a meridian
in a parcel, contradicting our assumption 3. (See Figure 7.)

Now suppose not all closed components of A are monotonic, and let ¢ be the non-
monotonic one which is nearest to 0_ H in A. For concreteness, say the component
of A— A on the 0_H side of ¢ lies in X. Consider an outermost arc -y of I' — ¢ lying
on the 0, H side of ¢ in A. Then in c there is a subarc Ay of ¢ — " (perhaps not
outermost in A — I') which is parallel to 7. Again the subarcs of A — I' adjacent to
Ay have only one end on «. For if either has both ends on «, then the annulus of
@ — F spanned by Ay would be adjacent in @) to another annulus of Q — F spanned
by a subarc of ¢ — I which is outermost in A — @, since every component of A on
the O_H side of c is monotone. This would contradict the previous remark. (See
Figure 8.)

So both segments of c—I" adjacent to Ay each have an end on another component
~" of I". Consider the disk £ bounded by Ay and a subsegment of y. We suppose
the interior of F is disjoint from A and derive a contradiction: The interior of E
must then lie entirely in Y. If we push Ay across v then we must, by assumption,
create a meridian, and by construction this meridian must be in Y. Another way
to create a meridian is to push an outermost arc of I" on the _ H side of ¢ across a
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subarc Ax of ¢, but this meridian is in X. If we do both simultaneously, we create
meridians of both X and Y disjoint from F, contradicting our assumption.
Finally, if the disk E contains other arcs of A then it’s easy to see that for each
such arc, the adjacent arcs in A —I' must each have an end on 4. Among all such
arcs in E choose one (perhaps Ay itself) so that the disk it cuts off contains only
outermost arcs. Then an argument much like Case 2 of 2.13 leads to a contradiction
of weak incompressiblity. o

Proposition 2.16. Suppose (Q,0Q) C (H,0+H) is a weakly incompressible split-
ting surface, with no closed component, in a compression body H, and let C UC’
be a special spine in O_H. Suppose QQ compresses both into X and into Y, but no
disciplined fencing system based on C is straight. Then there is a disciplined boxing
system in H based on CUC'.

Proof. The hypothesis guarantees the following special fact: If there is a meridian
of X, say, in the complement of a disciplined fencing system F based on C, then
there is no boxing system for which a secondary annulus contains a meridian of Y.
Here’s the argument: Suppose y is such a meridian curve in a secondary annulus .A.
Isotope F to eliminate all subannuli parallel to subannuli of ). This won’t affect
the meridian of X, which is already disjoint from F, and just isotopes y around
in A. The hypothesis guarantees that afterwards y still intersects I' (otherwise it
would also be disjoint from F and so F would be straight). Now d-compress y to
an outermost arc v of I'' in the disk bounded by y. This converts the subannulus
of F spanned by 7 into a meridian of ¥ which was disjoint from F before the
O-compression, also contradicting the hypothesis.
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Since H contains meridian disks for both X and Y, there is a bandotopy, pa-
rameterized by 0 < s < 1, from a fencing system containing a meridian disk of X
in a fence to one containing a meridian disk of Y. Let ox (resp. oy ) denote those
values of s for which either F; contains a meridian curve of X (resp. Y), or Fy
can be extended to a boxing system B which is an X-set (resp. Y-set) or for which
F' contains a meridian curve of X (resp. Y). Here, as in 2.14, F’ is the fencing
system consisting of the disk components of F; and the secondary annuli of B.

Case 1. There is a generic value sy which is neither in ox nor in oy. Then, as in
2.11, F,, (denoted now simply F) extends to a boxing system B based on C U’
for which the posts I' satisfy 2.10.3. No primary or secondary annulus contains
a meridian disk, by construction, so, as in 2.14, any inessential closed intersection
curve in these annuli is disjoint from I". So these can all be eliminated by an isotopy
of Brel I'. Then B satisfies all the properties of a disciplined boxing system, except
that essential closed curves in @ N’ may not be monotonic.

To ensure that they are monotonic, make the following adjustment: For any
secondary annulus A let A denote the set of curves QQ N.A. Because sy is neither in
ox nor in oy, there is no meridian of either X or Y disjoint from F. This means
that any arc in A — I" which has both ends on the same component of I" spans
an annulus component of ¢ — F (see 2.15). Push as many such annuli across F
as possible without creating a meridian of X or Y in H — F. These moves can’t
create any closed component in A, and afterwards 2.15 guarantees that A N A is
monotonic. Repeat for every secondary annulus.

Case 2. There is a generic value sy contained in both ox and oy. Then with no
loss we can assume, from the hypothesis of no straight fences, that there is no
meridian curve of Y disjoint from F, (which we henceforth denote simply F). We
can also assume there is no meridian curve of X or Y in a primary annulus, since
such a meridian (of X, say) would be disjoint from the posts, by construction, and
so disjoint from the meridian curve of Y guaranteed by sy € oy. Then we can
remove all inessential intersection curves in F by an isotopy of F rel I', making F
disciplined. Furthermore, it’s easy to see that d-compressing away the inessential
arcs in F has no relevant effect on the situation and, after these d-compressions,
there is a unique choice of posts I" in F. Now consider a bandotopy from one
collection of secondary annuli to another, with I' fixed, so that at the beginning
F' contains a meridian of Y and at the end either there’s a meridian of X in the
secondary annuli or there’s one in the complement of 5. The latter can’t happen,
by our initial remark, so during the bandotopy the meridian of ¥ in the secondary
annulus changes to a meridian of X. The meridians can’t exist simultaneously, nor
can there be a saddle singularity switching one to the other, by strong irreducibil-
ity. So there’s a generic point at which neither occurs. This establishes all but
monotonicity, and furthermore (from the initial remark) establishes that there is
no meridian of X or Y disjoint from F. Now apply 2.15 as in case 1.

Case 3. There is an isolated point sy of 7x N&y. Then the topology of Q — Fs,
must change at sg, so there is a saddle or half-saddle intersection of @) with Fj,.
The half-saddle case is similar but easier than subcases 3a and 3b below, so we
consider just the saddle case. There are three subcases to consider. (See Figure 9.)

Subcase 3a. The saddle singularity connects two arc components of @ N F. Then
a set of posts I' may be chosen to be disjoint from the saddle tangency. If there
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FIGURE 9

is any secondary annulus containing a meridian, then there is one making use of
only these posts. Passing through the saddle point would have no effect on these
meridians. So, since sg is isolated, we can assume that there are no meridian curves
in the secondary annuli at sg+e€. But this means there’s a boxing system B at sp—¢
which is an X-set, say, and some other boxing system at sy + ¢ which is a Y -set.
Blend the two: Push the saddle point to the side it’s on at sy 4+ € and consider B.
The saddle-box lemma 2.8 then guarantees that B is neither an X- nor a Y-set.
The most direct way to engineer monotonicity is to observe that at the singular
moment sq there is no meridian disk disjoint from F, so we can apply the process
of 2.15. The technical objection that F and @ are not at that moment transverse
can be overcome by a technical trick: Let a be a proper arc in F — @, with ends
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on 04 F, so that « intersects no closed curve in Q NF but a cuts off a disk F from
F that contains the saddle singularity point. (For example, choose an outermost
(in F) arc of a regular neighborhood of the singular component of F N Q at sq.)
Remove from H a neighborhood of F and the part of @ within it. The result is
a setting in which 2.15 applies, and after completing the process described in that
argument, H and @ can be restored.

Subcase 3b. The saddle singularity connects two essential curves of Q N F. There
are two possibilities: If the two curves are not parallel in @ then the singularity
creates a meridian curve of X say, in F. But this meridian was previously disjoint
from the fencing system, so a boxing system could have been chosen to contain it
in a secondary annulus. This contradicts the assumption that sg is isolated. If the
two curves are parallel in @), then passing through the saddle point is equivalent to
passing the annulus in @ across the annulus in F they bound. But any meridian
of @ which existed before the subannuli are pushed across each other will persist
afterwards, and again sg would not be isolated.

Subcase 3c. At sy the saddle singularity connects an essential curve ¢ in Q N F to
an arc component « of @QN.F (or, dually, an arc to itself by a band outside the disk
in F it cuts off). So at sg — € € ox say both ¢ and « lie in F, and at sg + ¢ € oy
they have been banded together to give a different arc component g of QN F. A
meridian in a secondary annulus at sg + € would have existed at sg — €, so there can
be no such meridian. This means that at sg + € there is a boxing system which is a
Y -set; hence there is a meridian of Y disjoint from F. Then even at sg— € there can
be no meridian in a secondary annulus, by our first observation. But this means
there’s a boxing system B at sy — € which is an X-set, say, and a boxing system at
s + € which is a Y-set, and the proof concludes much as in Subcase 3a. There are
only two alterations: The posts for B intersect the arc § and have to be pushed off
B in F. The effect on the intersection of ) with a secondary annulus A is to band
a component of @ N A to d;.A along a segment of a post, a move which cannot
create a closed component. Also, instead of a disk, use for E the subannulus of F
cut off by a. o

Corollary 2.17. Suppose (Q,0Q) C (H,0+H) is a weakly incompressible splitting
surface, with no closed component, in a compression body H, and suppose C UC’
s a special spine in O_H. Suppose ) compresses both into X and into Y. Then
there is a disciplined boxing system in H based on CUC’.

Proof. If C is the base of a disciplined straight fencing system for H, then apply
2.14. Otherwise apply 2.16. o

3. DISCIPLINED BOXING SYSTEMS
IN STRONGLY IRREDUCIBLE HEEGAARD SPLITTINGS

The goal of this section is to prove

Theorem 3.1. Suppose AUpB and X Ug Y are strongly irreducible Heegaard split-
tings of the same manifold M, with 0_A=0_X = 9yM and 0_B =0_.Y =, M.
Suppose Co,Cl and C1,C} are special spines for oM and &1 M respectively. Then
one of P or Q, say @, may be isotoped so that P N Q is a nonempty collection of
curves which are essential in both P and Q, so that there are boxing systems B4 in
A and Bp in B which are disciplined with respect to ANQ and B NQ respectively,
and so that at least one of X orY contains no meridian disks for P.
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We begin with the following construction, produced much as in [RS1, 6.5].
For F: M x I — M an isotopy of M, let f, : M — M denote F|M x {t}, and
let @, (resp. X;,Y;) denote fi(Q) (resp. fi(X), fi(Y)).

Proposition 3.2. For one of the pairs of letters A, B or X,Y (say the latter),
there is an isotopy F : M x I — M so that

1. F|Q is generic and compression-free with respect to P,

there is a meridian disk of X which is disjoint from P,

there is a meridian disk of Y1 which is disjoint from P,

every component of PN Qo and PN Q1 is essential, and

for any generic 0 <t <1, at least one of X; orY; contains no near meridian
disks for P.

Gk o

Proof. The proof is a variant on the proof of [RS1, 6.5], to which we defer for most
details. There are several steps:

Step 1. Construct a 2-parameter family of positionings of P and @ in M, deter-
mined by sweep-outs.

Let =4, Zp5, Zx and Zy be disjoint spines of A, B, X and Y in M respectively.
Then the region between yM UZ 4 and ;M U Zp is homeomorphic to P x (0,1)
and the region between yM U Ex and 9, M U Zy is homeomorphic to ¢ x (0, 1).
We can jiggle these parameterizations slightly so that they are transverse and so
that for some small e,

1. P x {¢} is transverse to @ x {e¢} and any intersection curve is parallel to an
essential curve in Jy M,

2. P x {e} and @ x {e} are disjoint from Zp and Ey respectively,

3. P x {1 —¢} is transverse to @ x {1 — ¢} and any intersection curve is parallel

to an essential curve in ) M, and

4. Px {1l —¢} and Q x {1 — e} are disjoint from =4 and Ex respectively.

Then reparameterize so that Ps,0 < s < 1, runs from P X {¢} to P x {1 — ¢}
and Q0 <t <1, runs from @ x {e} to @ x {1 — e}. Then as P sweeps from P,
to Py it will intersect both Zx and Zy, and thus there will be some value of s for
which P, — Qg contains some meridian disks of X and some value for which P; — Q1
contains some meridian disks for Y. Similarly there will be values of ¢ for which
Q, — Py and Q, — P; contain meridian disks of A and B respectively.

Just as in [RS1, 3], the interior of the square I x I = {(s,¢)[0 < s,¢ < 1}
decomposes into four types of strata, the regions, the edges, the crossing vertices,
and the birth-death vertices, depending on the nature of P, N Q. And, as there, we
will call the 1-complex T" of edges and vertices the graphic in the interior of I x I.

Step 2. Label the regions of the graphic.
Pick (s,t) in a given region of the graphic and, in this step, let P denote P; and
@ denote Q. Label the region according to the following scheme:

1. If both X and Y contain near meridian disks of A (resp. B), choose the label

A (resp. B).
2. If both A and B contain near meridian disks of X (resp. Y'), choose the label

X (resp. Y).
Observe the following: If the region is unlabelled then PN is compression-free,
for if there were a component which is essential in P but inessential in @), say, then
consider an innermost such component ¢ in . Then in @, ¢ bounds a near meridian
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disk D for either A or B, depending on whether a neighborhood of ¢ in D lies in A
or B. If for A, for example, push-offs of D would then give near meridian disks for
A in both X and Y.

The upshot is that the labelling defined here is similar to the labelling by
A, B, X,Y in [RS1, 4], except here some additional regions may be labelled. But,
just as in [RS1, 5.1], no two adjacent regions have labels A and B or labels X
and Y. For a saddle tangency in which the saddle point in P passes, say, from X
to Y cannot destroy a near meridian disk in Y or create a near meridian disk in
X. So if a label A occurred beforehand and a label B afterwards, there would, in
either position, be a meridian curve of A in ¥ and a meridian curve of B in X, a
contradiction.

We continue as in [RS1, 5]: Label a region a if all curves of PN are inessential
in both surfaces and a spine of @) lies in A. Similarly for labels b, z,y. Then, by
a slightly altered argument, [RS1, 5.3] remains true and the argument proceeds.
The goal is not to verify that there is an unlabelled region ([RS1, 5.9]), for by
construction there are typically no labels near the corners [0,0] and [1,1]. Rather
the goal is [RS1, 5.10], which describes a path through the unlabelled region from
a region labelled X to a region labelled Y. As in [RS1, 6.5], this gives an isotopy
satisfying all the conditions except perhaps the last.

To verify that the last is also satisfied, it suffices to show that in an unlabelled
region at least one of X or Y contains no near meridian disks of either A or B. But
suppose both contained such near meridian disks. If one contained a meridian curve
of A and the other a meridian curve of B, it would violate strong irreducibility. If
both contained near meridian disks of A, say, this would mean that the the region
should have been labelled A. o

For the isotopy of 3.2, let 7x C [0,1] (resp. 7y ) denote the set of ¢ € [0,1] so
that @ is transverse to P and there is a near meridian disk of X, (resp. Y;) disjoint
from P. Then 0 € 7x and 1 € 7y.

Proposition 3.3. Suppose there is a generic value ty that is in neither Tx nor
Ty. Then @ may be isotoped so that it is transverse to P, P N Q is non-empty,
each component of PN Q is essential in both surfaces, and the surface QN A (resp.
Q N B) is incompressible in A (resp. B).

Proof. First note that there is no essential curve in ¢);, that bounds a disk disjoint
from P. For if there were, then an innermost disk argument shows there’s such
a curve ¢ and a disk D it bounds which intersects @, only in inessential curves.
Then c¢ is a meridian of either X, or Y;,.

The property that there is no essential curve in )4, that bounds a disk disjoint
from P is unaffected by isotoping @ to remove all curves in P N ¢ which are
inessential (in both surfaces). Once this is done each component of PN( is essential
in both surfaces. Moreover, the surface @ N A (resp. @ N B) is incompressible in A
(resp. B). For if the boundary of any compressing disk for @ N A were inessential
in @ then the disk in @ it bounds would have to intersect P, giving an inessential
curve in PN Q. o

Proof of 3.1. In each case below, the requirement that at least one of X or YV
contains no meridian disks for P will be guaranteed by the last condition of 3.2.

Case 1. There is a generic value ty that is in neither 7x nor 7y .
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In this case just apply 3.3 and 2.11.

Case 2. There is a generic value tg that is in 7x N7y .

In this case there are essential curves & and y which, in @, — P, bound near
meridian disks in X, and Y;, respectively. It follows from strong irreducibility
of @ that these essential curves must both be on the same side of P, say in A.
The parameter ¢ isn’t changed in the rest of the argument, so we’ll revert to @ as
notation for Q);,. We may as well eliminate by an isotopy any inessential curves
of PN @ and observe that then Q N B is incompressible in B. In particular, 2.11
demonstrates that C;UC] extends to a disciplined boxing system for QN B. Similarly
2.17 demonstrates that Cy U C{ extends to a disciplined boxing system for @ N A.

Case 3. There is an isolated point ¢y of Tx N 7Ty.

Since ty is isolated, it’s neither generic nor at a center tangency. So there is a
saddle tangency of Q:, with P. With no loss assume that as t passes from ¢y — €
to tg + €, the saddle point in ) passes from A, say, to B and that ¢y — € is in 7x
and to + € is in Ty.

By definition, there is a curve z bounding a near meridian disk D of X in
Qiy—c — P. If x lay in B then, since the saddle point passes from A to B, D
would persist to tg + ¢. But then ¢y + ¢ would also be in 7x. So we need only
consider the case in which x C A. Symmetrically, at ¢y + € there is a near meridian
disk for Y in B. Furthermore @Q;,+. N A can contain no near meridian disks, for
if it contained a meridian curve for X, the curve and y would contradict strong
irreducibility, and if it contained a near meridian disk of Y then it would persist to
Qty—c N A and contradict the isolation of ¢y. Similarly Q,—. N B can contain no
near meridian disks. Since passing the saddle point through P in either direction
destroys a meridian curve, none of the three curves of (;,+. incident to the saddle
point is inessential in either P or (). After removing by an isotopy all non-singular
inessential curves of P N Q)+, we have that Q; 1. N A is incompressible in A and
Qty—c N B is incompressible in B.

Now apply 2.11 to both A and B to get boxing systems B4 and Bp for A and B
respectively which are disciplined for Q4+ N A and @, N B respectively. Now
passing between ¢, 4. is equivalent to passing a band back and forth. Although
it doesn’t quite follow from general position that we can take this band to lie in a
single box, we can assume that the band in P never runs into the base of a post
of either B4 or Bp. So the only effect on Q@ N By in Ba (or @ N Bp in Bg) is
to add or remove some arcs of intersection disjoint from the posts. The only way
this can affect whether B4 or Bp is disciplined is if it affects the requirement that
QN (A~ Ba) (or QN (B~ Bg)) consists of disks. That is, B4 (resp. Bg) might be
an X- (resp. Y-) set for Qs —c N A (resp. Qiy+ec N B). But not both can happen,
essentially by the saddle-box lemma 2.8. So, say, B4 is not an X-set for Q¢,— N A,
so both B4 and Bp are disciplined boxing sets for Q;,—. N A and Q,—. N B. o

4. SPINES AND STABILIZATION

Lemma 4.1. Suppose (Q,0Q) C (H,01H) is a properly imbedded surface in a
compression body H and suppose some spine of () has the property that the com-
plement of its reqular neighborhood in H is also a compression body. Then the
complement in H of a regular neighborhood of any spine of Q is a compression
body.
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Proof. One can move between two spines of Q) by a sequence of operations consisting
of adding or removing edges inside complementary disks and of edge slides. The
last has no effect on the complement of the spine in H. The effect of the former
two is to stabilize or destabilize the splitting, and so the complement in H remains
a compression body. o

Proposition 4.2. Suppose (Q,0Q) C (H,0.H) is a properly imbedded incom-
pressible splitting surface, with no closed component, in a compression body H.
Then for any spine A of Q, H —n(A) is also a compression body.

Proof. By 4.1 it suffices to show this for some spine of Q.

We may as well assume @ is connected. The proof is by induction on —x(Q).
If Q is not O-compressible, then, since @ contains no closed component, @Q is a
disk and there’s nothing to prove. So suppose @ is O-compressible and let 8 be
a proper arc in ) which 0-compresses to 0y H. Let Q' be the surface obtained
by the O-compression and let A’ be a spine for Q’. By induction, H — n(A’) is a
compression body. H — n(A) is obtained by removing the neighborhood of the arc
B which is parallel to an arc in 0, (H — n(A')). ©

Lemma 4.3. Suppose (Q,0Q) C (H,0+H) is a properly imbedded surface, with no
closed component, in a compression body H and B is a disciplined boxing system
for H with respect to Q. Let A be the proper 1-complex QNB C H. Then H —n(A)
is also a compression body.

Proof. Let T" be the set of posts of the boxing system B. The strategy is to slide
edges of A over 0, H and other edges, and cancel edges of A against compressing
disks, until A consists entirely of subarcs of I', each with one end on 0, H. All
operations will leave the 0-skeleton Ag = A NI unchanged.

Before launching this strategy, let us simplify the picture somewhat. Notice
that, for F the fencing system in B, nothing is lost by doing d-compressions to
@ along the arc components of @ N F. Indeed, such moves can be regarded as
destabilizations of A and what is left of A is still a spine of the resulting surface
' since every component of Q' — B remains a disk. So we can assume that Q is
disjoint from any disk component of F and intersects each annulus component of
F only in (essential) simple closed curves.

The proof then proceeds by induction on the number of edges of A outside of I"
(see Figure 10). Suppose for some primary or secondary annulus .4 of B there is a
disk component in A — A, and let D be an innermost one. First suppose that the
interior of D is disjoint from I'. Since no component of QQ N A was an inessential
curve in A4, D can’t lie entirely in @ N .A. This means that part of 8D lies on
0+ AUT. But 04 AUT deformation retracts to 01 A, so 8D can’t lie entirely in this
complex either. Hence there’s at least one edge A in 0D which lies in A— (04 AUT).
Then D cancels A\, completing the induction.

If the interior D is not disjoint from I, then an outermost arc a of I in D cuts
off a disk D’ bounded by « and an arc 8 in AU, H. Just as before, there must
be an edge A\ € 8 which doesn’t lie in 9y H UT. Then D’ can be used to slide X to
a, completing the inductive step.

Suppose then that in each primary or secondary annulus of B the complementary
components of A are all annuli. Notice that sliding and cancelling edges does not
alter the fact (from the definition of A) that 6. H U A is connected. Unless all of
A lies in T' (in which case we are done) there is a path in A from any edge not
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cancel A \
slide A
\
FIGURE 10

in I" to 04 H. Choose a shortest such path, from an edge )\ say, and let A be the
primary or secondary annulus that contains A (and so contains the entire path).
Let A4 be the component of (AU d; H) N A containing A, hence also d;.4. Since
no component of A— A is a disk, A 4 is the union of 9, A and some trees in A each
with exactly one end in 014 € 0, H. Every vertex of A4 lies on Ay, hence in T
Since A 4 contains A and so is not contained in I', there is a path in I' — A 4 from
a vertex of A4 to 0, A. Tt follows from monotonicity of the closed components of
@ N A that the shortest such arc has interior disjoint from A and so cuts off a disk,
the rest of whose boundary lies in A 4. An outermost arc argument on pieces of '
lying in this disk gives such an arc « for which the cut-off disk has interior disjoint
from I'. Now the previous argument locates an edge \' of A — T in the boundary
of the disk which can be slid to «, completing the induction. (See Figure 11.) ¢

Corollary 4.4. Suppose (Q,0Q) C (H,0,H) is a properly imbedded weakly in-
compressible splitting surface, with no closed component, and suppose Q compresses

both into X and into Y. Then for any spine A of Q, H — n(A) is a compression
body.

Proof. By 2.17 there is a disciplined boxing system for ) in H. The result then
follows from 4.3 and 4.1. ©

slide ' \

B
o

FIGURE 11
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5. DESTABILIZING ANNULAR 1-HANDLES

Suppose H is a compression body and (A, 0A) C (H,0, H) is a finite set of 9-
compressible properly imbedded annuli all of whose boundary curves are essential in
0+ H. Suppose 7 is a set of spanning arcs for .4 and 7 is a regular neighborhood of v
in H. We view 7 as a collection of 1-handles added to P = 0 H, each corresponding
to an annulus in A. Let H' denote the closure of H — n(7). Since a spanning arc
of a J-compressible annulus in H is parallel to an arc on H, it’s apparent that H’
is also a compression body. Let P’ denote 0H'.

Proposition 5.1. There is an ordering A1, As,--- , A, of A and, for each of all
but at most —x (04 H) + x(0_-H) — |0_H| of the A; there is a properly imbedded
disk E; in H' so that the E; are all disjoint and have the following properties:

1. OF; is disjoint from the 1-handles corresponding to the annuli Ay, k > 1.

2. 0F; runs exactly once across the 1-handle corresponding to A;.

3. OF; is disjoint from any component of P — 0A which is not an annulus.

Proof. The proof is a minor variation of the rather elaborate argument of [RS1,
9.1], and we refer to that paper for the key idea and the notation n_v. Each
complementary component V of A in H is a compression body with 8_V = (_V N
0_H). The argument of [RS1, 9.1] shows that always x(V)—x(0_V)+|0-V| < 1—
n_(v) and that the set T of components V' which are not solid tori with n_(v) = 1
has no more than —x(H) + x(0—H) elements. Summing over YT, we get

> (1= n_(v)) = x(H) - x(0_H) + |0_H].

ver

As in [RS1, 9.1] we are interested in e = )|, . (n_(v)), which here satisfies
M| = e > x(H) = x(0_H) + 0_H]
or
e < |Y| = (x(H) — x(0-H) + |[0-H])
< =2x(H) +2x(0-H) = |0-H| = —x (0 H) + x(0-H) — |0_H]|

6. FINDING SPINAL SPLITTING SURFACES

If 74 and Fp are fencing systems for A and B respectively and the curve systems
Fa NP and Fg NQ are in general position in P, then F = F4 U Fg is called a
fencing system for A Up B. We denote F U P by Kx. Similarly if B4 and Bg are
boxing systems for A and B respectively, and the complexes B4 NP and BgN(Q) are
in general position in P, then B = B4 U Bg is called a boxing system for A Up B.
We denote BU P by Lg.

Definition 6.1. Suppose A4 and Apg are (not necessarily complete) collections of
meridian disks for A and B respectively, and K is the 2-complex P U A4 U Ag.
Then K has spinal intersection with @ if K NQ contains a spine of @ and, for each
disk D € (A4 UAg), DNQ is a single arc. We say that P is spinal with respect
to @ if there is some collection of meridian disks whose union with P has spinal
intersection with Q.
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Theorem 6.2. Let P and Q be Heegaard splitting surfaces in M of genus p > 2
and q¢ > 2 respectively, so that P N Q is a nonempty collection of curves which
are essential in both surfaces. Suppose there is a disciplined boxing system B for
AUp B. Then after at most 7q + 4p + x(OM) — |OM| — 11 stabilizations of P, P
1s spinal with respect to Q.

Proof. Since B is disciplined, the complex x = Ly N @ contains an entire spine of
Q. It is the union of the closed curves PN @ and the graph A = QN B. Let A’ be
obtained from A by attaching a neighborhood of A N B, let B’ be obtained from B
by attaching a neighborhood of AN A and let P’ be the surface A’ N B’. It follows
from [ST1, 2.12] and 4.2 that P’ stabilizes P. It then follows from 4.1 that the
same is true for any subgraph of AN A (resp. A N B) that is a spine for Q N A
(resp. @NB). Much as in [RS1, 10.2] (here improved slightly, since there there was
possibly a single inessential curve of intersection), such a spine would consist of a
spanning arc in each annulus of @ — P, and, in the union of the other components
of ) — P, a certain subgraph whose edges outnumber its interior vertices by 4q — 4.
Again as in [RS1, 10.2], among the curves of P N @ there are at most 3¢ — 3
distinct families of mutually parallel curves in @, and so a total of 7¢ — 7 arcs which
we will not destabilize. Now 5.1 gives a way of destabilizing the 1-handles coming
from all but 4p — 4+ x(OM) —|0M]| of the remaining annuli. So the total number of
stabilizations needed to make P spinal is 7q+4p+ x(0M) —|0M| — 11, as required.
o

7. SPINAL INTERSECTIONS AND STABILIZATION

Definition 7.1. Let S be a connected closed surface. A properly imbedded arc
a C S x I is vertical if it is properly isotopic to {point} x I.

Similarly, for H a compression body, a properly imbedded arc oo C H is vertical
if there is a complete collection A of defining 2-disks for H in the complement of
o, and « is vertical in one of the product complementary components of A.

Remark. By [F, Lemma 1.1] this is equivalent to saying that in the component of
H —n(A) in which « lies, the complement of an open regular neighborhood of « is
a handlebody.

Proposition 7.2. Suppose AUp B and X Ug Y are strongly irreducible Heegaard
splittings of the same manifold M, with - A = 0_-X = M # 0 and 0_-B =
O_Y = 01 M. Suppose PNQ is a nonempty collection of simple closed curves which
are essential in both P and Q. Suppose further that for culting systems C,C' in
OoM there are disciplined boxing systems Ba and Bx for A and X with respect to
Q and P respectively. Then for each component S in OyM there is a component 3
of PNQ and an arc o in AN X so that one end of o is on (3, the other end is on
S and « 1s vertical in both A and X .

Proof. Case 1. There are curves ¢ € CNS and ¢’ € C'NS which intersect in a single
point and, for the annuli A and A’ based on ¢ and ¢’ in B4 and Bx respectively,
neither AN Q@ nor A’ N P contains a simple closed curve.

Consider, in this case, the 1-manifold AN .A’. Tt has a single boundary point on
0oM, namely ¢ N ¢’. Let o be the component of AN A’ that contains this point.
Then the other end of o must be on either 8.4 or 8,.4’, say the former. Then «
spans a spanning annulus of A and so is vertical in A. The end of o in 0.4 lies on
an arc component of P N A’. Adjoining part of this arc component to a creates a
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spanning arc o’ for A’ which is then vertical in X. But since « is the union of a
vertical arc in A and a subarc of P, it’s (properly isotopic in X to) a vertical arc
in A as well.

Case 2. Every annulus in B4 (resp. every annulus in By ) based on S contains an
essential curve of intersection with @ (resp. P).

Then the collection of all the essential simple closed curves which are closest to
S forms a spine of S in P. Since Bx is disciplined, this could be completed to give
a copy of S in P disjoint from Q. Since P is connected and intersects @ essentially,
this is impossible.

Case 3. No annulus in B4 (resp. no annulus in Bx) based on S contains an essential
curve of intersection with @ (resp. P).

In this case either there is also an annulus in Bx, based on a curve in S, whose
intersection with P contains no essential curve, and we are done by the previous
case, or every annulus in Bx based on curves in S intersects P in at least one
essential simple closed curve. Then we are done by Case 2.

Case 4. There are curves ¢ € CNS and ¢’ € C’'N S which intersect in a single point,
and, of the two annuli A and A’ based on ¢ and ¢ in B4, one intersects @ in an
essential closed curve and the other doesn’t.

Say A doesn’t and A’ does. Then the subannulus A” of A’ cut off by an outer-
most curve of intersection with @ is a spanning annulus of X. Now, as in Case 1,
the intersection of the annuli A and A” contains the required arc.

The proof then proceeds as follows: Let C4y (resp. Ca_) be the set of curves in
CUC' so that the annulus in B4 based on the curve does (resp. does not) intersect
@ in an essential simple closed curve. If either set is empty we’re done by Case 2 or
3. Together they comprise all of C U (', a connected set. So there is a (necessarily
transverse) intersection point of C44 with C4_, and Case 4 applies. o

Definition 7.3. For Heegaard splittings AUp B and X Ug Y, the oriented splitting
surfaces P has spinal intersection with the oriented splitting surface @ over 9y M if

1. P and @ are in general position except at a finite number of saddle tangencies,

2. at the points where P and @ are tangent the orientations of P and @ in M
coincide,

3. the resulting 1-complex x = P N @ contains a spine of @), and

4. for each component S of dyM there is an arc from & to S in AN X which is
vertical in both A and X.

Proposition 7.4. Suppose AUp B and X Ug Y are strongly irreducible Heegaard
splittings of the same manifold M, with O_A = 0_X = 9gM and O_B = 0_Y =
01 M. Suppose P and Q are of genus p < q respectively . Then after at most
Tq+4p+ x(OM) — |OM| — 11 stabilizations of P, P can be isotoped to have spinal
intersection with Q) over one of doM or 1M (in fact over O M if 01 M is empty).

Proof. By 3.1 one of P or Q (say @, which will give the higher bound) can be
isotoped so as to satisfy the hypotheses of 6.2. The last condition of 3.1 further
ensures that for one of X or Y, say X, PN X is incompressible in X. Then 2.11
guarantees that () satisfies the hypotheses of 7.2, so that for each component S of
0o M, there is an arc from PN Q to S in AN X which is vertical in both A and X.
This is unaffected by the 7q + 4p + x(OM) — |0M| — 11 stabilizations of P needed,
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according to 6.2, to make P spinal with respect to ). Then [RS1, 11.2] describes
how to isotope the stabilized P to make it have spinal intersection with ) over
0o M (and also over Oy M if 9; M is empty, since for this the last condition of 7.3 is
moot and no vertical arcs are required). ©

Lemma 7.5. If P has spinal intersection with Q, then there are neighborhoods
ne(k) and ng(k) of k in P and Q respectively so that, after a small ambient isotopy
of M rel k, np(k) = ng(k).

Proof. See [RS1, 11.3]. o

Proposition 7.6. Suppose P and Q are oriented splitting surfaces of genus p and
q respectively and P has spinal intersection with Q over OgyM. Let ¢’ be the minimal
number of defining 2-disks for X. Thatis, ¢ = q if OoM =0 and ¢’ = q—1+x (0o M)
if oM # () Then P and Q have a common stabilization of genus p+ ¢'.

Proof. The case in which M = () is [RS1, 11.4], so we'll assume doM # {).
Following the previous lemma, isotope a neighborhood np(k) of K = PN Q in P
so that it coincides with a neighborhood ng (k) of x in Q. For each component S
of Oy M let zg be the end point in @ of the vertical arc ag in A N X given by 7.2
for S. It is easy to find a graph = C @ so that the union of = and the vertical arcs
{as} is a spine = for X and {zs|S € dyM} are the only vertices of Z. Then =
can be isotoped rel {zg} into ng(k) = np(k) C P. Now push a small interior arc
of each of the ¢’ edges of = into B and off of P. The union H of A and a relative
regular neighborhood of these arcs in B is a compression body obtained by adding
q' trivial handles to A, so 04 H is a ¢'-fold stabilization of P.

Now imagine pulling more of each arc of Z into B until all of = except the
vertices {xs} have been pulled into B. This defines an isotopy of H after which
R = 0. H is apparently also a Heegaard splitting of the compression body Y,
homeomorphic to Y, obtained by removing a neighborhood of = from M. Indeed,
one component of Y, — R is just B with ¢’ boundary parallel arcs removed. The
other can be d-reduced along a complete family of defining disks for P to become
just R x I. Any Heegaard splitting of a compression body is just a stabilization of
the boundary [ST1, 2.7], so 0, H is then also a stabilization of @ = 8, Y. o

Theorem 7.7. Suppose A Up B and X UgY are strongly irreducible Heegaard
splittings of the same manifold M, with - A = 0_X = 0yM # 0 and 0_-B =
O_.Y =M and x(01 M) < x(OoM) if M # 0. Suppose P and Q are of genus
p < q repectively . Then there is a genus 8q + 5p + x(OM) + x (O M) — |OM| — 12
Heegaard splitting of M which stabilizes both A Up B and X Ug Y. (Or genus
8¢+ 5p + x(OM) — |OM| — 11 if " M is empty.)

Proof. 7.4 shows that, after at most 7q + 4p + x(0M) — |OM| — 11 stabilizations
of P (raising the genus of P to 7q + 5p + x(OM) — |0M| — 11), P has spinal
intersection with @ over one of 9y M or &y M (over &y M if 8y M is empty). Then 7.6
says that the new P and the old @ have a common stabilization of genus at most
8q + 5p + x(OM) + x (8o M) — |OM| — 12, or genus 8q + 5p + x (M) — [0M| — 11 if
81M = (Z) &
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