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Let &$F{M) c 0>(.R + —0) denote the projectivized space of measured foliations
on a compact surface M with negative Euler characteristic, as studied by Thurston
[3], and let ^ ^ ( M ) denote the subspace consisting of those foliations in which each
boundary component is a leaf (containing at least one singularity). If M is the sum of
g tori, d disks and p projective planes, then 0>PQ{M) s S6s+3p+:w"7 and &&{M) is
the join of &&0(M) to a (d - 1 )-simplex.

There is a subcomplex Xo in ^^0{M) whose (n — l)-simplices consist of foliations
obtained by "enlarging" n disjoint simple, closed, connected curves Cl 5 . . . , Cn, none
of which bounds a disk, or is boundary parallel, and no two of which bound an
annulus. A subcomplex X of ^^(M) can be defined in much the same way, except
that we allow proper arcs as well as simple closed curves.

The complexes Xo and X have an interesting structure in their own right; since
they are preserved under diffeomorphism, their structure gives geometric insight into
the structure of automorphisms of M. Unfortunately, their structure is quite
complex, since Xo and X are rarely locally finite.

Floyd and Hatcher [2] have constructed all the low-dimensional examples (and
one of dimension 5) in the cases where M is orientable. The purpose of the present
paper is two-fold. First, we show that when M is not orientable, Xo has some
surprising qualities not found when M is orientable. Secondly, we construct the
complexes for those remaining cases in which the foliation space is of dimension one
or two. The case of the 3-punctured RP2 is particularly interesting and is the subject
of §3. In this case Xo is the complex obtained from the tetrahedron by repeated star
subdivision of all the faces but no edges. In the resulting complex the vertices
represent all the 1-sided curves, and an interior point of each edge all the 2-sided
curves.

I would like to thank David Chillingworth for his very helpful comments on the
original manuscript.

1. One-sided versus two-sided curves

The core of a M6bius band in M and the (two-sided) edge of the band enlarge to
the same foliation and hence represent the same point in &^{M). We shall say that
this point corresponds to a one-sided curve, while a point corresponding to a two-
sided curve will mean also that the point does not come from a one-sided curve.

If M is orientable, the vertices of Xo (representing connected curves) are dense in
^ . ^ ( M ) [1; 6.IV.2]. The proof uses the orientability of M quite heavily. In fact, we
have the following.
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THEOREM 1.1. ifM is not orientable the vertices ofX0 corresponding to one-sided
curves are isolated.

Proof. Let C be a one-sided curve in M. Since 3C{M) < 0, M contains a twice-
punctured RP2, denoted N, containing C, such that neither boundary component of
N is null-isotopic in M.

Figure 1 shows C lying in N, viewed as a 2-holed disk with antipodal boundary
points identified. The boundary components of N are labelled sx and s2.

A third curve s3, equivalent in 0>^{M) to RP1 a RP2, is also shown.
The topology on &&(M) is that inherited from &(R%-0), where Sf is the

collection of closed curves, by assigning to a foliation 2F the coordinate J5" on the

s

axis corresponding to s. If SF is obtained by enlarging a curve s, then instead use the
minimal number of intersection points i(s,s) of s with s. In particular, the
coordinates of C in Rsl x Rs£ x Rsl are (0,0, 2). In fact, any connected simple closed
curve in M whose coordinates (xx, x2, x2) have xl,x2 < | x 3 is isotopic to C (or to a
parallel 2-sided curve). Indeed, suppose the coordinates of a curve s4 have
xi> X2 < ix2,- Then, after isotoping s4 to minimize its intersection with s^Sj, and s3,
the intersection of s4 with N is as in Figure 2, where the end of each arc is identified
with the end (al+a2 + 2a2)/2 places to the right (or left). Note that
x, = a,, x2 = a2, and x3 = a1+a2 + 2a3 is even. Since x3 > 2xl5 2a3 > (a1—a2).
Then

Let

z =

- a j = 2y > 0.

y/2 (y even).

(y-i)/2 0>odd).

Figure 1.
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Figure 2.

We have at +2z = a2 + 2{a3 — z)in the first case or ax+2z = a2 + 2{a3 — z — 1) in the
second. Thus there is a simple closed curve in s4 for which ax = a2 = 0 and a3 = 1.
or 2 (depending on the parity of 2z). But s4 is connected, and s o x , = x2 = 0 and
x3 = 2 or 4.

As a counterpoint to Theorem 1.1 we have the following.

PROPOSITION 1.2. The closure of the vertices in Xo corresponding to one-sided
curves contains all those corresponding to two-sided curves.

Figure 3.
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Figure 4.

Proof. Let C be a simple closed 2-sided curve in the non-orientable surface M.

Case 1, when C does not separate M. Let N <= M be the connected sum of a
disk and two projective planes which contain C and a curve y0 intersecting C once
(Figure 3). Let yn be the curve obtained from y0 by twisting n times along C
(Figure 4).

Evidently, no disk in M — (yn u y0) has a boundary consisting of an interval in yn

and one in y0, and so the number of intersection points of yn and y0 is minimized at
n — 1. It follows as in [1; §3.111] that any curve /? in M can be isotoped to minimize
simultaneously the number of intersection points with y0 and yn, so that
i(P> y.) = HP n 7i)>' = 0> n- Note that y0 u yn is the image of n — 1 circles, of which
n — 2 are isotopic to C. Thus

(y0 u yj) = i( , yj

On the other hand, from the construction it follows that i(yn, /?) = #(yn n
m(C, P) + i(P,y0). Thus

(n-2)i(CJ)-i(P,y0),
or

\i(ynJ)-(n-l)i(CJ)\

After projectivizing, lim yn = C in ^(/?+—0).

Case 2, when C separates M. The proof is analogous, with these alterations: N is
a 2-punctured projective plane and the curves C, y0 and yn are as in Figure 5. The
complex y0 u yn is the image of In circles, In — 1 of which are isotopic to C; the other
is null-isotopic.
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Figure 5.

2. The elementary examples

The examples covered in this section are

(1) the punctured Klein bottle ( d i m ( ^ 0 ) = 1, dim(^»Jjr)= 2),

(2) the 2-punctured projective plane (dim(^^0) = 0, d im(^^) = 2),

(3) = 2).

The only remaining non-orientable case in which dim(^Jzr) ^ 2 is the
3-punctured projective plane. It is substantially more complicated and is treated in
the next section.

The punctured Klein bottle. On the (unpunctured) Klein bottle K there are
three isotopy classes of curves, a (two-sided) and b and c (one-sided), roughly
corresponding to the generators a, b and ab = c of the fundamental group
<«, b : abab'1 = 1> (see Figure 6a). Equivalence classes of curves in the punctured
Klein bottle (with puncture at a point *) then are represented to the images of a, b,
and c under the isotopies of K which carry * back to itself, which in turn correspond
to elements of n^K). The curves in K — * are thus the images of a, b and c under the
action of 7i1(/C). (We might view n^K) as the braid group of K on one strand.) Since
there is an isotopy from the identity lK : K -*• K to itself which carries * through the
path b2, this element ofiZy(K) acts trivially. Now the group n1{K)/(b2'y is isomorphic
to Z2 * Z2 with generators ab and b, and so any coset can be written as a" or a"b, for
n an integer. Notice, finally, that the isotopy corresponding to b has no effect on 5 or
a (the latter merely reverses orientation) and carries c to a~i(c). Thus all simple
closed curves can be obtained from a, B and c by the action of a. Finally, note that a
single Dehn twist t about a has t2 equivalent to a, and t(b) = c. Thus in fact all
curves can be obtained from a and 5 by the action of t. These are shown in Figure
6b.
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As \n\ becomes large, tn{b) approaches a in 9{R%). Xo can be viewed as lying on
the circle 0>FQ{M) as shown (Figure 7). The action of b corresponds to reflection
about the horizontal axis.

Note that each one-sided circle t"(b) is isolated, and the only 2-sided circle a is the
limit of one-sided circles—a perfect illustration of Theorem 1.1 and Proposition 1.2.
Also, t"{5) and t"~l(b) can be made disjoint on K-*, so they are joined by a
1 i l i X Th i hi1-simplex in Xo. Thus, in this case, Xo ^ ^ ( )

A similar analysis can be used on X. Any connected arc is the image of a', b' or b"
(Figure 8) under the action of t (note that b(b") = t{b")).

The arcs in K-* then are {a1, f{b'\ tn{b") \ n_ an integer}, and are shown in
Figu_re9. Note that each triple {b,b", r l{5)}, {b,b',b"}, {b',b",rl{b%
{b',b, t(b")} and {b1, t~l{b'), a'} (and so all their translates by t") can be represented
by disjoint arcs. An argument similar to that in Proposition 1.2 shows that
lim tn{b') = a. The resulting picture of X = &&{M) is Figure 10.

n — ±oo

The 2-punctured projective plane. The picture of X is shown in Figure 11,
together with illustrations of the circles and arcs representing each vertex. The left-
and right-most vertices constitute Xo s S°. (The small pictures are of RP2 with
2-holes. The outer circle has antipodal points identified.)

Three projective planes. Another description is the connected sum of a torus
and a projective plane. The projective plane contains a circle C whose complement is
orientable.

a (a)

tn(b), n>0 t"{b), n < 0

(b)

Figure 6.
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t'\b'\ it > 0

f{b"\ n > 0

Figure 8.
t"(h'). n < 0

Figure 9.
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t(b)

Figure 10.

Figure 11.
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Figure 12.

- 2

1/2

-1 /2
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LEMMA 2.1. Any simple closed curve in M whose complement is orientable is
isotopic to C.

Proof. Suppose that s is a simple closed curve whose complement is orientable
and which has been isotoped so that it intersects C in a minimal number of points.
Then in the punctured torus complement N of C, s is a non-trivial collection of arcs.
After an automorphism of N, the intersection of s with N is as shown in Figure 12,
with ax ^ a2 ^ fl3 [2].

But since antipodal points of the boundary of N are identified in M, and s is
connected, it follows that ax ^ 1, a2 ^ a3 = 0. When ax = 1, the complement of s
is non-orientable, so ax must also be trivial and so s is equivalent to C.

Actually, the argument of Lemma 2.1 shows more. Except for the link of the
vertex corresponding to C in X, the complex X is identical to the complex arising
from the punctured torus. This has been studied by Floyd and Hatcher; it is the
standard tiling of the disk by the action of SL(2,Z), except that the vertices are
recessed away from the boundary of the disk, and whiskers run from the recessed
vertices to the corresponding vertices on the boundary. An argument like that of
Proposition 1.2 shows that the length of the whisker decreases with the area of the
largest tile to which it belongs, as shown in Figure 13.

The (isolated) vertices in the interior of the disk correspond in M to one-sided
curves intersecting C, those in the boundary to two-sided curves disjoint from C.
The complete picture of X is then that of Figure 1.4, together with the cone (to the
vertex corresponding to C) of all the vertices on the boundary of the disk. This is the
first example in which X ip ^^(M), for in the hemisphere in which X consists of the
cone on the rationals, there are no two-simplices in X.

3. The 3-punctured projective plane

This is the final and most complicated example. It is simplified by observing that
in the complement of any two-sided (non-boundary parallel) simple closed curve
there are exactly two non-isotopic one-sided curves, which intersect in a single point.
Conversely, any two non-isotopic one-sided curves which intersect once have exactly
one non-boundary parallel two-sided curve in their complement. In X, this means
that vertices representing two-sided curves appear precisely as interior points of
edges connecting those vertices in X representing one-sided curves which intersect
once in M. Thus to find X it suffices to find Y, the 1-dimensional subcomplex of
0>&'(M) whose vertices represent one-sided curves and whose edges connect those
vertices whose curves intersect precisely once.

THEOREM 3.1. Y is the 1 -skeleton of the complex obtained from a tetrahedron by
repeated stellar subdivision of the faces, but not the edges.

Proof. The easy part is to see the original tetrahedron; Figure 14 shows four
distinct one-sided curves sl,s2, s3, s4 in M, each pair of which intersects in precisely
one point. (Once again, RP2 is represented as a disk with antipodal boundary points
identified.)

In order to locate the vertex corresponding to a given one-sided curve in the
barycentric subdivision of this tetrahedron, associate to a vertex x a "length" as
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Figure 14.

follows (the length will roughly correspond to the number of subdivisions necessary
before reaching the vertex). Choose an automorphism f:M->M which carries x to
one of the sh 1 < i ^ 4. Then / extends to an automorphism / : RP2 -» RP2 which
must be isotopic to the identity. The image of the three punctures under such an
isotopy is an element w of the braid group B2(RP2). The group B2(RP)2 has a
presentation given by the generators ax, a2, o"3, rx, r2, r3 as shown (Figure 15) and
the relations (j = i + l, k = j+\ mod 3)

(i) OjOi =

(ii) rkOi = atrki

(iii) r,. = <xf ^..ff,.,

(iv) rirjlrrxri = of,

(v) r) = a) a2

Figure 15.
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(see [4] and make the substitutions a3 = aio2o^, rt = plt r3 = p^1,
r2 = cr1r1crj'1 so that the generators have a 3-fold symmetry corresponding to
adding 1 (mod 3) to all subscripts; then compose from right to left, as functions are
composed).

Denote the minimal length of w written in the generators oh r,- by /( /) . Finally,
the length l(x) = min /(/). In particular l(x) = 0 if and only if x e {s,}.

/I/(*)S{*|}

Definition. Yn is the 1 -dimensional subcomplex of Y consisting of vertices of
length ^ n and the edges joining them. The closure of a component of &SF — Yn will
be called a face of Yn (though it does not belong to Yn).

It would be pleasant to prove that Yn is obtained from Yn_l by stellar subdivision
of each face; the proof of Theorem 3.1 would then be immediate. Unfortunately,
this fails (for example Yi contains only three of the four centres of the tetrahedron's
faces (see below)) but, exploiting the topology of &2F = S2 in which Yn lies, there is
the following weaker result.

PROPOSITION 3.2. (1) yn T l is obtained from Yn by stellar subdivision of some faces.

(2) For any face in Yn there is an m > n such that the intersection of Ym with that
face is its stellar subdivision.

Theorem 3.1 then follows immediately.

LEMMA 3.3. Any vertex xofY with l{x) > 0 lies in a tetrahedral 1-complex whose
other three vertices have shorter length.

Proof Throughout the proof 1 ̂  i,j,k ^ 3 and k = j + l = i + 2 (mod 3).
From Figure 15 these follow:

(a) <7,(s,) = Si; (b) <r,.(sk) = Sj; (c) a,.(s4) = s4 ;

(d) r,.(s7) = s4; (e) r^) = s(; (f) r^) = Sj- (g) o^isj) = rrl(sk).

In particular, the only three vertices in Yt not in Yo are the aJ(Sj) = <rj~x (sj)-
Suppose now that w is the word of minimal length such that w(st) = x, for some

1 ^ / ^ 4, and g the last symbol in w, so that w = wg for some w. By (c), (d) and
(f), w can only be shortest if / ^ 4, and so we may write s, as s,-. Then, by (a) and
(b), g ± ohoJt <rf \ffjT1- By (d), (e), and (f), g ± rj,rk,rrl ,r~

l. We may further
assume that g f rj1 or rt, for ri{si) = rf{sk) = ofol(sk) = of{sk) = <Ti{sJ)
and rr^Si) = r]~lak{sj) = akr]~l(Sj) = ok(s-). If g = ak then wg(sj) = w(s,\
wg(sk) = w(sk) and vvg(s4) = vv(s4) are three "shorter" vertices of a tetrahedral
1-complex containing vvgf(s,) = x. If g = ojl, then wg(Sj) = w(Sj), wg(sk) = w(s,),
and wg(s4.) — w(s4) are the required vertices.

COROLLARY 3.4. Yn is connected.

Proof. Use induction on n.

COROLLARY 3.5. Any triangle in Yn containing a vertex of length n bounds a single
face of Yn.
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Figure 16.

Proof. Let A be a triangle in Yn and x a vertex in A of length n. The triangle A
divides && £ S2 into two components. If a component contains a vertex of Yn then,
by Lemma 3.3, it contains a vertex of length zero, that is, an s,. But since all the s, are
connected in Yo, they must all be in the same component. Thus one component
contains no vertex of Yn and so is a face. The other component contains an s{ and so
is not a face.

Proof of Proposition 3.2. To prove (1) note that any vertex v of length n + \ is
connected, by Lemma 3.3, to three vertices of a triangle x l s x 2 , x 3 in Yn. By
Corollary 3.5 each triangle with vertices {v, xh Xj} bounds a face of Yn + 1. Thus the
original triangle {xl5 x2, x3} bounds a face of Yn (the union of these faces of Yn + 1) in
which v lies, and Yn+1 stellar subdivides this face.

To prove (2), suppose that {xl5 x2, x3} are vertices of a triangle bounding a face
F of Yn. Then there is a word w in B3(RP2) such that w(Si) = xh i = 1,2, 3. Both the

and wa2r'[ia2(sl) are connected to each w(Sj),

X S0
forvertices vv(s4)

w(Sl) = W(T3rf 1(73(S4X
either w(s4) or wo-3rf

10-3(5!) lies in F and, by definition of face, has length m > n.
The argument of part (1) shows that no other vertex of Ym lies in F, and so Ym

intersects F in its stellar subdivision.

Remark 3.6. Figure 16 (a picture of the Apollonian packing, suggested by Allen
Hatcher) shows a subdivision as in Theorem 3.1 which does satisfy Theorem 1.1,
based on an infinity of nested circles. Vertices on circles represent 2-sided curves.
Centres of circles represent 1-sided curves. Only one face of the tetrahedron is shown.
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