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EQUIVALENCE OF 5-DIMENSIONAL s-COBORDISMS

MARTIN SCHARLEMANN

ABSTRACT. The classification of 5-dimensional h-cobordisms given
by Cappell, Lashof, and Shaneson is here strengthened and extended to

s-cobordisms when the ends of the s-cobordism are smooth.

1. Introduction. An s-cobordism between compact manifolds M and M’
will be an s-cobordism which restricts to a product cobordism between oM
and OM'. Two s-cobordisms W and W' from a compact 4-manifold to a smooth
manifold are equivalent if there are smooth s-cobordisms V and V' with a,w
=9,V, 9,W = alv’ and a homeomorphism of W U V onto W' U V' which is
the identity on M = d,W and a diffeomorphism from d,V to 82V'. Given a
smooth 4-manifold M, let M, denote the connected sum of M and & copies
of §% x §2.

Theorem. There is a k such that for any connected compact smooth
4-manifold M there is a 1-1 correspondence between HS(M, oM; Zz) and

equivalence classes of s-cobordisms of M, to a smooth manifold.

The correspondence 0 is defined as follows: Given a representative W
of an equivalence class [W] of s-cobordisms there is an obstruction a in
H4(W, ow; Zz) to extending the smooth structure on oW to all of W [2]. The
exact cohomology sequence for the triple (W, dW, oW — M,) provides a natural
isomorphism S:H3(ow, oW — My; Zz)—'H4(W, aw; Zz)' There is also an ex-
cision isomorphism e: H3 (W, W — M,; Zz) - H3(Mk, oM, ; Z,) and a “‘pro-
jection” isomorphism p*: H3(M, oM; Z,) — H3(Mk, M5 Z,). Set O([W]) =
p*'leB"l(a).

A similar theorem is proven for h-cobordisms of closed topological 4-
manifolds in [1]. There & depends on M, here it does not. In fact, if M is

orientable we may take &k = 1.
2. Proof of the Theorem. We require the following

Lemma. Let (W; M, M') be a TOP s-cobordism between compact 4-mani-
folds M and M'. Then there is a homeomorphism W Uy W— Mx L

Proof of the Lemma. The manifold W x I is a TOP s-cobordism from
W Uy W to Mx I The Lemma then follows from the high dimensional TOP
s-cobordism theorem [3].
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Case 1. For any k, 0 is injective.

Proof of Case 1. Suppose W' and W" are TOP s-cobordisms from M p o
smooth manifolds M' and M", respectively, and O([W']) = 6([W']). It follows
from the definition of 6 that W' UMk W" is a smooth s-cobordism from M’ to
M". Therefore W' and W" are equivalent s-cobordisms, for, by the Lemma,

W = (WU, WY Uy, W= (M, x 1) Uy W= W

w' Uy w' u
k k k

M
This proves Case 1.

Case 2. M is a 3-disk bundle over S!.

Proof of Case 2. By Case 1, we need only find a & such that § is onto.
The double, 2M, of M is a 3-sphere bundle over S!. There is an integer j,
depending on M, and a topological h-cobordism H from (2M)]. to a smooth
manifold (2M)" such that the natural smoothing near dH fails to extend to all
of H[1]. Let T and T' be smoothly imbedded circles in (2M)]. and (2M)',
respectively, which represent a generator of nl(H) = Z. By general position
T and T' are concordant. Remove an open tubular neighborhood v of the
concordance, chosen so that (ZM)]. -v=M.

Standard arguments now show that the resulting manifold G is an s-co-
bordism from M]. to a smooth manifold and the natural smoothing of G does
not extend to all of G. Hence O([W]) is the nontrivial element of H3(M, 8M;Zz)'
=Z,, so 0 is onto.

There are only two 3-disk bundles over S!, yielding two values for j.
The proof is completed by letting £ be the larger.

Case 3. General case, k as in Case 2.

Proof of Case 3. By Case 1 it suffices to show that 6 is onto. Given @
in H3(M, oM; Zz) let S be a smoothly imbedded circle in M representing the
Poincaré dual to @ in HI(M; Zz)’ and let (S) be a tubular neighborhood of
S. Replace v(S) xI in M x I by the s-cobordism G defined in Case 2 for the
disk bundle 1(S). The result is a topological s-cobordism W from M, to a
smooth manifold. It is easily seen that O([W]) = a.

3. Remarks. It is shown in [4] that when M is the orientable disk bun-
dle over S! we may take k = 1. Hence, in general, whenever M is an orien-
table manifold, we may take k= 1.

When M is closed, the correspondence 0~! coincides with the corre-

spondence defined in [1] up to A-cobordism.
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