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UNLINKING VIA SIMULTANEOUS CROSSING CHANGES 

MARTIN SCHARLEMANN 

ABSTRACT.Given two distinct crossings of a knot or link projection, we consider 
the question: Under what conditions can we obtain the unlink by changing both 
crossings simultaneously? More generally, for which simultaneous twistings at 
the crossings is the genus reduced? Though several examples show that the 
answer must be complicated, they also suggest the correct necessary conditions 
on the twisting numbers. 

Let L be an oriented link in s3with a generic projection onto the plane R~ . 
Let a be a short arc in R2 transverse to both strands of L at a crossing, so that 
the strands pass through a in opposite directions. Then the inverse image of 
a contains a disk punctured twice, with opposite orientation, by L .  Define a 
crossing disk D for a link L in S3 to be a disk which intersects L in precisely 
two points, of opposite orientation. It is easy to see that any crossing disk arises 
in the manner described. Twisting the link q times as it passes through D is 
equivalent to doing l l q  surgery on dD in S3 and adds 29 crossings to this 
projection of L . We say that this new link L ( q )  is obtained by adding q twists 
at D . Call dD a crossing circle for L . A crossing disk D , and its boundary 
do,are essential if dD bounds no disk disjoint from L .  This is equivalent 
to the requirement that L cannot be isotoped off D in S3- OD. 

Here we examine how a link can be turned into the unlink via simultaneous 
twists on disjoint crossing disks. In particular, we prove an analogue for pairs of 
crossing disks of the following theorem, a much more general version of which 
is proven in [ST, 1.41 (see also [Gal): 

0.1. Theorem. If D is an essential crossing disk for the unlink L , then the link 
obtained by adding q # 0 twists to L at D is not the unlink. 

A moment's reflection suggests problems in finding an analogue for pairs of 
disks. Consider some examples: 

0.2. Example. Suppose K1 and K2 are two essential crossing circles for any 
link L ,and suppose that K1 and K2 are unlinked in s3and bound an annulus 
in S3 - L .  Then adding q twists at K1 and -q twists at K2 leaves L 
unchanged. In particular, if L was the unlink before the twists were added, it 
will be the unlink afterwards. 
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To see this, let D be a crossing disk for K1 . Using the annulus A we can 
findan imbedding D x I  in S3 SO that L n ( D x  I )  = ( L n D )x I and D x d I  
is the union of crossing disks at K1 and K2 . Then the operation of adding q 
twists at one end and adding -q twists at the other is clearly isotopic to the 
identity. 

0.3. Example. Let K1 and K2 be crossing disks for the unknot, as shown in 
Figure 1. Then in general adding p twists at K1 and q twists at K2 gives a 
twist knot. But if either p = 0 or q = 0 ,  then L is the unlink. Note here that 
K1 (resp. K 2 )  is inessential if and only if q = 0 (resp. p = 0 ) .  

0.4. Example. Let K1 and K2 be crossing disks for the unknot L , as shown 
in Figure 2, with r odd. Then adding p twists at K1 and q twists at K2 gives 
the pretzel knot of type (2p + 1 ,29 - 1 , r ) . According to [Bo; BZ. 12D], L is 
the unknot if and only if two of the three numbers {2p + 1 ,  29 - 1 ,  r )  have 
opposite sign and absolute value 1 . Thus, if r # f1 , L is the unknot if and 
only if ( p ,  q )  = (- 1, 1) or ( 0 ,  0 )  . If r = 1, then L is the unlink if and only 
if either p = -1 or q = 0 .  If r = - 1 , then L is the unlink if and only if 
either p = 0 or q = 1 . 

Example 0.4 suggests that the general solution could be quite complicated. 
In fact, 0.4 points to a general statement. We say that a finite set of disjoint 
crossing circles { K , )  for L is an essential set of crossing circles if no K, bounds 
a disk in S3- (L U ( U JK J ) ). TO deal with the problem raised by Example 0.2, 
define a pair d D 1, dD2 of crossing circles for L to be coannular if there is an 
annulus A ,  disjoint from L ,  such that d A  n D, = dD,  . Given L and a pair 
K1 , K2 of crossing circles for L , let L ( t l , t z )  be the link obtained from L by 
adding t l  twists at K1 and t;! twists at K2 . 



857 UNLINKING VIA SIMULTANEOUS CROSSING CHANGES 

0.5. Theorem. Let K1 , K2 be an essential pair of noncoannular crossing disks 
for a link L c S 3 .  Then there is a pair ( s l  , s2)  of integers such that whenever 
L,(tl , t 2 )  is the unlink, either tl = sl or tz = s2. 

Clearly if L itself is the unlink then one of the s, must be 0 .  In Example 
0.3 when r # f1 , we can take for ( s l, s2) either ( - 1  , 0) or (0 ,  1) . When 
r =  	1 ,  take ( s l , s 2 ) =( -1 ,  0 ) ;  when r = - 1  take ( s l , s 2 )= (0 ,  1 ) .  

Theorem 0.5 is a consequence of a more general result, closer in spirit to [ST, 
1.41. Recall that a link in a 3-manifold is split if it is isotopic to the distant 
union of two sublinks. A link L has splitting number n if L is isotopic to the 
distant union of n nonsplittable sublinks. Suppose S is an orientable surface. 
Following Thurston [Th], define X - ( S )  to be - x ( C )  ,where C is the union of 
nonsimply connected components of S . For L a link in S 3 ,define X - ( L )  to 
be the minimal value of X - ( S )  for all oriented incompressible surfaces S in 
s3with d S  = L . Let K1 and K2 be boundaries of disjoint crossing circles for 
a link L in S 3  . L bounds an orientable surface S disjoint from K = K I  uK2 . 
Define x K ( L ) to be the minimal value of x - ( S )  for all oriented incompressible 
surfaces S in S 3  - K with d S  = L .  Let L ( t l ,  t z )  denote the link obtained 
from L by adding tl twists at K I  and tz twists at K 2 .  A pair ( t l, tz) of 
i~tegers is norm-reducing for L at K if either the splitting number of L ( t l  , t2 )  
in S 3  is greater than that of L in S 3  - ( K 1U K2)  or X-(L(tl , t 2 ) )< x K ( L ) .  
We then have: 

2.3. Theorem. Let K = K10K2 be an essential pair of noncoannular crossing 
disks for a link L c S 3 . Then there is a pair (sl , s2)  of integers so that for every 
norm-reducing pair ( t l, t 2 )  for L at K ,  either t l  = sl or t2 = s2 . 

It is easy to see that Theorem 0.5 follows from Theorem 2.3. The only single- 
component link of trivial norm is the unknot. So if a link L in S 3  -K splits 
in S 3  -K into single component knots, each of trivial norm, then L bounds 
a collection of disks in S 3  - K and K is not an essential pair for L .  Thus 
either L does not completely split in S 3  - K or one of its components is 
knotted and it has nontrivial norm. Hence, if L ( t l  , t 2 )  is the unlink, ( t ,, t 2 )  
is norm-reducing. 

The outline is as follows: In $1 we treat what is apparently a very special 
case, that of links which lie on the boundary of a genus two handlebody. In 52 
sutured manifold theory and [Sc2] are applied to the proof of 2.3, hence 0.5. It 
is shown that in fact 5 1 treated the critical case. There is also a Property P type 
theorem about surgery on strongly invertible pairs of knots. Section 3 contains 
a generalization to Dehn fillings on pairs of tori in arbitrary orientable compact 
3-manifolds. 

Much of $3 was prompted by a very helpful conversation with Abby Thomp- 
son. 

1. A SPECIAL CASE-LINKS ON A HANDLEBODY 

Let H be a genus two handlebody in S 3  with specified meridian disks pl 
and p2 . Let r c 8H be an oriented collection of disjoint simple closed curves 
such that each curve of l- intersects at least one meridian and each merid- 
ian is either disjoint from I- or intersects r twice, with opposite orientation. 
Let T ( t l, t 2 )  denote the curves obtained from r by twisting t l  times around 
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case 1 case 2 

case 3 case 4 case 5 

meridian p1 and t2 times around meridian ,us. Let X denote the closure 
of S3 -H. Let Q, be the set of pairs ( t l, t Z )  such that some component of 
T(tl , t Z )bounds a disk in X . 

1.1. Lemma. One of the following holds: 
(a) There is a pair (s l  , $ 2 )  in Q, such that (9 = { ( t l, t2)ltl = s1 or t2 = s 2 ) .  
(b) There is an sl such that (9 = { ( t l, t2)1 t l  = s l }. 
( c )  There is an $2 such that (9 = { ( t l. t2)1 t2 = s2 ). 
(d) (9 has exactly two elements ( t l  , t z ), (ti  , t i )  with It, - ti1 = 1 , i = 1 , 2 .  
(e) (9 has at most one element. 

Proof. Let Q denote the 4-punctured sphere d H  - { p , ). We may assume that 
the 1-manifold y = r n Q consists of oriented essential arcs in Q . The four 
components of d Q  may be labelled p: , i = 1, 2 ,  in the obvious manner. We 
may assume that l- n p1 contains two points. If there is a single arc of y with 
ends at p f ,  say, then, since any arc of y is essential in Q ,  y must be one of 
the configurations in Figure 3. 

If the two arcs of ./ having ends on p: have their other end on the same 
component of a Q  , then y must be one of the three configurations of Figure 4. 

If the two arcs of y having ends on p: have their other end on different 
components of d Q  then y must be one of the two configurations in Figure 5. 

In cases 3 and 4 in Figure 4, there is a component kl  of I- which intersects 
pl once and is disjoint from p2. Similarly, either l- is disjoint from p2 or 
there is a component k2 intersecting p2 once but not pl . At most one choice 
of t l  allows k l  to bound a disk in S3 - H since two different choices have 
nontrivial intersection number in d H .  Similarly, at most one choice of 22 

allows k2 to bound a disk in S3  - H .  If some such t l  and t2 exist we have 
case (a). If a choice of t l  but not t2 exists (or vice versa) we have case (b) (or 
(c)) of 1.1. If no choice of either exists, we have case (e). 
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case 6 case 7 
FIGURE5 

Almost the same argument finishes case 6 of Figure 5 ;  again we have the 
components kl and k 2 ,  but also a component kj  intersecting both meridia 
exactly once. Suppose there is a choice of tl after which kl bounds a disk in 
S3-H.  Then just as before, k3 cannot bound a disk after any twisting along 
p1 , since its algebraic intersection with the original kl would be nontrivial. 
Similarly for t2 and k2.  So the situation is the same as above. On the other 
hand, suppose there is no choice of tl or t2 allowing lcl or k2 to bound disks. 
Then we may as well discard them and consider only k3 . This is equivalent to 
case 5 of Figure 4, treated below. 

To treat the diagrams in cases 1, 2, 5 ,  and 7, a bit more is needed. Suppose 
a component k of l- = r j 0 ,  0) and a component k' of T ( t l ,  t2) bound disks 
D and D' respectively. Minimize d D nd D' by isotoping across any bigons of 
k cl k' bounding disks in d H .  A standard innermost disk argument allows us 
to assume that D and D' intersect in arcs. An outermost arc of D' nD in D' 
cuts off a subdisk F along which D may be compressed to give two disks E 
and E l ,  both disjoint from D . Both E and E' are compressing disks for d H 
in S3-H which are disjoint from D . In sum, we have the following algorithm: 
Examine successive intersection points of k' with k . Let a' be the subarc of 
k' lying between them, so a' n k = m . Let a: be either arc of k lying between 
the intersection points. Then a: U a' is a simple closed curve in H which is 
disjoint from k . At least two curves constructed in this manner bound disks 
in X .  

Apply this algorithm to the remaining diagrams: Applied to diagrams 1 or 2 
it gives a simple closed curve in Q which is parallel to ,u2 and compresses in 
S3-H .  Applied to diagram 5 ,  the algorithm gives a simple closed curve in Q 
which separates p: from p;  and which compresses in X . Neither is possible. 
hence we have case (e). 

When the algorithm is applied to diagram 7 we are only able to conclude that 
there is a compressing disk E in X so that E is disjoint from D and passes 
at most once over each meridian. 

Case 1: d E  intersects both meridians. In diagram 7, d E  appears as two arcs. 
parallel either to the vertical or horizontal arcs of d D  in the diagram, say the 
former. Then a circle in S2separating the right two disks from the left two is 
disjoint from d E  and intersects k - d D  in two points. Denote by ,u3 the disk 
this circle bounds in H . Then ,u3 is a meridian of the solid torus K obtained 
from H by attaching a 2-handle with core E . 

Subcase (i): K is unknotted. This is essentially Example 0.4 above. Both k 
and k' are pretzel knots, with an odd number of half-twists in each band. H 
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can be viewed as a regular neighborhood of the natural Seifert surfaces of these 
pretzel knots. Such a Seifert surface consists of two disks connected by three 
bands, each dual to one of the p,  and each having an odd number of half-
twists. Let h, [resp. hi] denote the number of half-twists in the band dual to 
p, , i = 1 ,  2 ,  3 .  Then k is unknotted if and only if h, = -h, = kl for some 
i # j [Bo; BZ, 12D]. If +1 = -h3 = hl or hz , then there is a compressing 
disk in X ,  disjoint from k , intersecting pl or ,uz exactly once. This case 
is essentially Case (2) below. The case in which +1 = -h3 = hi or h: is 
similar, with the roles of k and k' switched. Finally, if hl = -h2 = A1 and 
-hl , -- hi = *l , then izl  and h', , and hZ and hi each differ from each other 
by a single full twist. This is case (d) above. 

Subcase (ii): K is knotted. Then all compressing disks for knots in K may be 
taken to lie in a neighborhood of K . Thus, at the risk of introducing possibly 
new elements of Q,, we may replace K by the unknot, hence k with a pretzel 
knot as above, with hg chosen to be large. This forces, at best, case (d). But we 
observe that in case (d) above the compressions of k and k' do indeed take 
place in a neighborhood of K , so we have introduced no new elements to <D . 

Case (2): d E  intersects only one meridian. Say d E  is disjoint from pl , and 
intersects p2 once. We have r ( 0 ,  0) = k(0,  0) = k and will show that either 
(c) or (a) holds with sz = 0 .  If E were disjoint from pz and intersected p1 , 
then we would have (b) or (a) with sl = 0 .  

First we show that any (. , 0) lies in <D. Let K denote the solid torus with 
meridian pl obtained from H by attaching a 2-handle along E . Then k c i)K 
bounds a disk in s3-K and is null-homologous in K , so it is trivial in d K  . 
Any k(. ,0) is disjoint from d E  so it lies in d K  , and differs from k by some 
twists around the meridian of K . Hence any k(. , 0) also bounds a disk in 
d K  , so it bounds a disk in X . 

On the other hand, let ( t l  , tz) be any nontrivial element of @, so k' = 
k(tl , t2) bounds a disk D' in X . We wish to determine (tl , t2). The band 
sum of E to itself along p1 gives a separating disk F for X with d F  disjoint 
from pl and p2. F splits X into the boundary connect sum of two knot 
complements, one the unknot with longitude d E  and the other S3 -K . The 
curve d F  intersects k' in four points, so an outermost arc of F n D' in Dl 
cuts offa disk from D' which is a longitude of one of the two knots, either d E  
or a longitude of K . In the former case, tz = 0 .  In the latter, K is the unknot 
and tl must be the specific slope sl for which some arc cut off from k' by d F  
is a longitude of K . Thus if K is knotted we have (c), and if K is unknotted 
we have (a). 

2.1. Definition. Suppose M is a compact orientable 3-manifold M and P c 
dM is a possibly disconnected closed surface. We say M is a J-cobordism on 
P if H 2 ( M , D M - P ) = 0 .  

2.2. Lemma. If M is a J-cobordism on P , then genus(dM -P )  _< genus(P) . 

Proof. Let Q = BM-P . Consider the following commutative diagram induced 
by inclusion: 
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Using the fact that H 2 ( M ,Q )  = 0 and d M  - Q = P this simplifies to: 

Let p = rank HI(P), q = rank Hl ( Q ), and s = rank H 2 ( M ,d M )  . A stan-
dard argument from Poincare duality shows 2s = rank HI(dM )  = p +q . From 
the left-most vertical arrows we get s 5 p . Hence q _< p . 

2.3. Theorem. Let K = K1U K2 be an essential pair of noncoannzilar crossing 
disksfor a link L c S 3 . Then there is a pair (sl , s2) of integers so that for every 
norm-reducing pair ( t l, t2)for L at K ,  either t l  = sl or t2 = s2 . 
Proof. An innermost circle argument shows that any essential sphere in S 3  -
(I<UL )  can be isotoped off of a pair D = Dl uD2 of crossing disks bounded by 
K . If any essential sphere separates K1 from K 2 ,  then the theorem naturally 
follows from separate applications of [ST, 1.41 to K1 and K 2 .  SOsuppose no 
essential sphere separates K1 from K 2 .  Then any essential sphere in S 3  -
( LUD) splits off a sublink distant from D which is unaffected by twists at D , 
and so may be ignored. So we may henceforth assume that S 3  - ( K  U L )  is 
irreducible. 

Let q ( K )  and q ( L )  denote tubular neighborhoods of K and L respectively, 
and let M be the irreducible manifold S 3  - q(K LJ L)  . Let T, c d M  be the 
torus dq(K, ), and let A, and p, denote the longitude and meridian of dq(K, )  
respectively. Let S c M be an incompressible surface so that d S  = L and 
X- ( S )  is as low as possible, so X - ( S )= x K ( L ). 

Regard (M, d M )  as a sutured manifold (cf. [Scl]). Construct a taut sutured 
manifold hierarchy 

S
( M ,  q ( L ) )-3( M I, y l )  3 . . . ( M i ,~ j )3. . . 

so that S1= S ,and each S ,  is disjoint from T = T IUT2. By [SC~,2.6 and 4.171 
such a sequence can be extended as long as H2(Mi,d Mi-T )# 0 ,  but eventually 
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terminates in a sutured manifold (M, , y,) with H2(Mn,dM, - T) = 0 ,  i.e., a 
J-cobordism on T . Then by 2.2, genus(dM, - T) < 2 .  

The crossing disks become a pair of 2-punctured disks in M . Regard D nM 
as a parametrizing surface for the hierarchy [Scl, $71. Consider the effect of the 
decompositions in the hierarchy on a component of D n M . Take, for example, 
Q = Dl n M .  Q is a pair of pants, with two boundary components meridia of 
L and the other ,I1. Since x ( Q )  = -1 , Q has index 2, and so its remnant Q, 
in Mn is a planar surface of index no more than 2. 

2.4. Lemma. Some component of Q, is an annulus A with one boundary com-
ponent .-I1 and the other a simple closed curve on dM, - T which intersects the 
set of sutures at  most twice. 

Proof. First we show that some component is an annulus from A I  to a curve in 
dM, -T . This part is by induction in the sutured manifold hierarchy. We begin 
by observing that the initial Seifert surface S may be taken to intersect Q in a 
single arc connecting the two punctures (see [ST]), so Q1 is an annulus from IL1 
to a circle crossing the suture dy(L)  - d S  exactly twice. Suppose inductively 
that Q, has an annular component A with one end lIand the other end lying 
on 6'M, - T .  Examine the 1-manifold r = n A .  Since S,+lis disjoint 
from T ,  no arc of has an end on .-I1 . Since Si+1is incompressible, we 
may assume that any closed component is essential in A .  If there is a closed 
component, then the one nearest to A l  in A cuts off the required annulus from 
A . If there are no closed components, then all components are arcs with neither 
end on ill , so the component of A -S,+,containing ill remains an annulus. 

It remains to check that the final annulus A c Q, intersects sutures in diVIn-
T no more than twice. Since Q, is a parametrizing surface, no component of 
Qn can have negative index, and each component must have even index, since 
each boundary component crosses the sutures an even number of times. The 
total index is no more than index Q1 = 2 .  Hence Q, can have no more than 
one component of positive index, and it must have index 2. In particular, A 
can have index at most 2, so dA intersects the set of sutures in dM, - T at 
most twice. 

To continue the proof of Theorem 2.3, assume that (M, , y,) is taut, and that 
H2(Mn, aM, -T) = 0 .  Let (M, y )  denote the sutured manifold obtained from 
(M,, y,) by filling back in y(K,) .  More generally, let (M,y)(t l ,  tz) denote 
the sutured manifold obtained from ( M a ,  7,) by filling in a solid torus along 
dq(K,) with slope l l t ,  , that is, by attaching solid tori so that the meridian of 
each torus is homologous to t,?',,+ p,  . 

From 2.4 (applied also to Q = D2 n M ) ,  we know there are annuli A, in 
M, , each with one end on A, and with the other a curve c, in dM, - T 
intersecting y, at most twice. We can assume that Ic, fl ?,I cannot be reduced 
by an isotopy of c, . Each c, is essential in d M,  since T is incompressible. 
and the c, are not parallel in dMn since K1 and K2 are not coannular in 
Mn c M .  We know that genus(dM, - T) 5 2 ; since aM, - T contains the 
two nonparallel inessential circles c, we have that genus(dMn - T) = 2 .  That 
is, the component(s) of dM, - T containing the c, consist either of a single 
genus 2 surface, or two tori. 

Since the meridian of the filling torus at v ( K , )  intersects A, once, there is 
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a natural homeomorphism of M to M, - ?,(AlU A*) under which c, corre-
sponds to a curve parallel to A, in Mn . In fact, then, the underlying mani- 
folds of (M,y) and (G,y)(tl, tZ) are the same; the only difference is that in 
(M,y) ( t l ,  tZ) the sutures y have been altered by Dehn twists on the curves 
c, . Hence we will write ( M ,  y (tl  , tz)) instead of (%, y)(tl, t2). 

2.5. Lemma. is irreducible. If ( M ,  y ( t l , t2)) is not taut, then some suture 
in y ( t , , t2) bounds a disk in M . 
Proof. Without loss of generality, take ( 2 1 ,  t2) = (0,  0) SO y(t l ,  1 2 ) )(,g, = 

( M ,  y) . Any sphere in 2 can be pushed along the annuli A, and across the 
filling tori so that it lies in M, . Since (M, , y,) is taut. M, is irreducible, so 
the sphere bounds a ball in Mn cM .  Hence is irreducible. -

X-(dM) = 0 or 2 .  Let Rh denote the two submanifolds into which y 
divides 8 % .  Then X-(R,) = x-(R-) - iX-(a."l)= 0 or 1 . Hence each of 
R* consists of a union of annuli and one other component, either a punctured 
torus or a 3-punctured sphere. There are two possible ways in which (2,y )  
could fail to be taut: 

Suppose y bounds a surface Rl in 2 with X-(HI) < 2 - (R+). Then 
X-(R') = 0 and X-(R+) = 1 . Since X- (R*)= 1 . y has an odd number 
of components. The only way a surface with an odd number of boundary com- 
ponents can have trivial X- is if one component is a disk. 

Suppose some component of R* is compressible. If the component is not 
an annulus, then the previous case applies. If it is an annulus, then after com- 
pression it becomes disks. 0 

Remark. Lemma 2.5 requires genus(d%) 5 2 and thereby limits the methods 
here to twists on at most two crossing circles. 

2.6. Lemma. There is a pair (sl , sz) of integers so that if' (,G,y(tl , t2)) is not 
taut, then either tl = sl or t2 = $2. 

Proof. There are two cases to consider: 

Case (1): d~ contains two lorus components, UI and U2, with c, c C: . If y 
does not intersect c, , then it is unaffected by Dehn twists at c, . No component 
of y n U, disjoint from c, can bound a disk in M , since ( M , , y,) is taut. All 
sutures in y n U, which intersect c, are parallel. If yo is such a suture, and y l  
is the image of yo by a Dehn twist along c, , then yo yl # 0 ,  so at most one 
of them can bound a disk. Hence there is at most one twisting t l  of cl and t 2  

of ~2 after which (%, y ( t l, t2)) is not taut. 
Before considering the other case, consider this. Since we only care if a 

suture in y bounds a disk in %, we may reimbed 2 in S3  with no effect 
on the problem. Excision of rl(Al U AZ) shows the first homomorphism in the 
composition H2(Mn, dMn - T) -t h2(%, d M  - (cl u c2))-t H ~ ( M ,8%) is 
surjective. Since H2(Mn, dMn - T)  = 0 ,  the second homomorphism must be 
trivial. Then for any component W of M ,there is an imbedding of W' in 
S3 SO that S3- W is a union of handlebodies H , and C = cl U cz contains a 
complete system of meridia for H [ S C ~ ] .  
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Case (2): There is a genus two component U of 8% containing C .  Let W 
be the component of ;i?, such that U c d W . Any other component of d W 
must be a sphere, since genus(dM)= 2 .  Since M is irreducible, we conclude 
that dW = U .  

We have seen that we may take S3-W to be a genus two handlebody H ,on 
which C is a pair of meridia. The sutures y intersect each c, at most twice. 
No suture disjoint from the c, compresses in W , for if it did, then it would 
compress in M ,  , and ( M , ,  y,) is taut. The proof in this case now follows 
formally from 1.1. In cases (a) and (e) the choice of sl and s2 is obvious. In 
case (b) (or (c)), the choice of sl (or s2) is given, and the other is arbitrary. In 
case (d), take sl = t l  and s2 = t; . Lemma 2.6 is proved. 

The proof of Theorem 2.3 is now immediate from Lemma 2.6 and [Scl, 
3.91. 0 

We give a modest "property P" type of application: 

2.7. Definition. Let L = L1  U L2 c S3 be a link of two components. L is 
strongly invertible if there is an involution of S3 taking each Li to itself, but 
reversing its orientation. 

2.8. Proposition. Suppose L = L 1  u L2 is strongly invertible, L 1  and L2 are 
not coannular in S 3 ,and neither component bounds a disk in the complement 
of the other. Let M ( p l  ,p2) be the marlifold obtained from s3by surgery on L 
with slope 1/2pi on each Li  . Then ,for one of the links L i  and some integer 
q # 0 ,  if M ( p l  ,p2) is simply connected then either pl =p2 = 0 or pj = q . 
Proof. The proof is modelled on [BS, 1.71. Since L is strongly invertible, the 
involution on S3 must be rotation about an unknotted axis A which pierces 
each Li twice. The axis A projects to a branch set B , which is the unknolt in 
S 3 ,  and each Liprojects to an arc ai with ends on B . 

The involution on S 3  induces an involution on M ( p l  ,p2) . If M ( p l  ,p2) is 
simply connected, then the branch set B' for this action must be the unknot 
in S3 [B]. There is a crossing circle Ki for B on the boundary of a regular 
neighborhood of ai that lifts to a longitude of Li , and B' can be viewed as 
having been obtained from B by adding pi twists at K i ,  i = 1 ,  2 (cf. [Mo, 
Li]). If K = K 1U K2 is not an essential pair, then one of the Li bounds a disk 
in the complement of the other. If K1 and K2 were coannular in S3-B , then 
the lift of the annulus would make L1  and L2 coannular in S3.Now apply 
Theorem 0.5. There is a pair of integers (ql, q2) such that B' is unknotted if 
and only if pl = ql or p2 = q2 . Since B is unknotted, one of the qi , say q2 , 
is trivial. Thus if B' is unknotted either gl := ql or p2 = 0 .  But if p2 = 0 ,  
then p, = 0 [BS]. o 

Remark. Note that for (1 /2pl, 1/2p2) surgery to give a homology 3-sphere it is 
necessary that L 1  and L2 have trivial algebraic linking. The above proposition 
can be generalized to surgeries with slopes of the form (2r+ 1/2pl , 2s + l / 2 p 2 )  
by making a different choice of crossing circles Ki near the arcs a , .  This 
might be useful in that cases where L l  and L2 have nontrivial algebraic linking 
number. 
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3. A GENERALIZATION 

3.1. Definition. Suppose M is a 3-manifold and T is a torus component 
of d M .  Let o be an essential simple closed curve in T .  Then there is a 
homeomorphism 9 :  dD2  x S1 -, T ,  well defined up to isotopy, such that 
yl(dD2)= a .  The manifold M ( a )  obtained by attaching D2 x S1 to M via 

is afilling of M at T with slope u . D2 x S1 c M ( a )  is called the $filling 
torus and (0) x S1 is called the core of the filling torus. If a and z are two 
essential simple closed curves in T , isotoped to minimize lo n zl , then (anzl 
is denoted o .z and is called the difference in slope between a and z . 

Recall the following theorem, a reformulation of [Ga, 1.81. 

3.2. Theorem. Let ( M ,  y )  be a connected taut sutured manifold with 7 # 0, 
and T c d M  a torus such that y n T = a .  Suppose the only J-cobordism 
on T contained in M is 1 x I .  Then there is at most one slope a for which 
(M(a), y)  is not taut. 

Subsequent discoveries now allow a variant of this theorem, with the hypoth-
esis on J-cobordisms removed, and the conclusion only slightly weakened: 

3.3. Theorem. Let ( M ,  y) be a connected taut sutured manifold with y # 0, 
and T c d M  a torus such that y n T = a .  Then there are at most three slopes 
a for which ( M ( a ) ,  y) is not taut. Indeed, i f  u and z are such exceptional 
slopes, then o z < 1 . At most one of the exceptional M ( o )  is irreducible. 
Proof. Special case: M is a J-cobordism on T such that d M - T is a torus 
T' . Since ( M ,  y)  is taut, all the sutures y are essential in T' , thus are parallel 
essential curves. Now ( M ( a ) ,y )  can fail to be taut for two reasons: either 
M ( a )  is reducible, or the annuli T' - y compress in M ( a )  . The latter can 
happen for at most one slope a .  

If T' - y compresses in M ( a )  for slope a ,  and M ( a f )  is reducible for slope 
a ' ,  then it follows from [Sc3, 6.11 that the core of the filling torus in M(o)  is 
a cabled knot k in M ( a )  and a' is the slope of a cabling annulus A ' .  In 
particular, a .a' = 1 . Suppose there were another slope a" for which M(al') 
is reducible. Then the slope a'' is that of another cabling annulus A" for k . 
A sitnple combinatorial argument on the intersection of A' and A" shows this 
contradicts, for example, the irreducibility of M . Hence only the fillings a 
and a' can possibly produce nontaut sutured manifolds. 

Suppose now that T' - 7 does not compress in any M ( a )  , so the only way 
in which ( M ( o ) ,  y )  can fail to be taut is if M ( a )  is reducible. Gordon and 
Luecke [GL] have shown that any two fillings of T which produce reducible 
3-manifolds differ in slope by at most one. 

General case: The proof in general follows from the special case just as in 
[Ga, 1.81: If M itself is not a J-cobordism on T ,  then one can construct 
a taut sutured manifold hierarchy of ( M ,  y) , using always surfaces disjoint 
from T ,  until we reach a sutured manifold of the form (M, , 7,) with M, 
a J-cobordism on T .  Then, by 2.2, dM, - T has genus at most one. Since 
( M ,  y) is taut, M is irreducible, so any sphere boundary component of M, 
must bound a ball. Since M is connected, the component W of M, containing 
T must have other boundary components, hence its boundary is the union of 
T and another torus T' containing sutures. As in [Ga, 1.81, (M(o), 7) is taut 
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if the sutured manifold obtained from W by filling with slope a at T is taut. 
The proof now follows from the special case applied to W . 0 

Below we shall present a theorem for simultaneous fillings on the union of 
two tori T = TI U TZ which combines features of both 3.2 and 3.3. We begin 
with some remarks about J-cobordisms on tori. 

3.4. Definition. Suppose W is a J-cobordisms on a torus T such that 3W -
T is a torus T' . Then W is called a J-cobordism between T and T' . 

3.5. Lemma. Suppose W is a J-cobordism on a torus T such that d lV - T 
is a torus T ' .  Then W is also a J-cobordism on 7''. 

There is an intersection-pairing preserving isomorphism 

defined by the requirement that @(a)is homologous to a in HI( W , Q) . 
Proof. This is an elementary consequence of Poinlcare duality. See, for example, 
[@a, 1.51. 

3.6. Definition. A J-cobordism as in 3.5 is called a J-cobordism between T 
and TI .  

3.7. Lemma. Let W be a J-cobordisrn between tori T and TI.  Suppose ,u 
and iZ are simple closed curves in T' so that p J. = 1 . Suppose o and z are 
fillings at T so that ,u compresses in W(o) and A compresses in W(z) . Then 
0(p) = + o ,  0(A) = f z ,  and o - r  = 1 .  

Proof. Let D, be a compressing disk for p in W(CJ). Then D, n W is a 
homology between p and coo, where o is an integer. Hence 0(p)  = w o .  
Similarly, 0(A) = w'z for some integer o' . Then p.J. = 0(,u).0(1)= Iww1lIcr.z . 
Since , u . A = l ,  I w l = l c o 1 l = ~ . z = I .  O 

As in 3.2, a simplifying assumption about J-cobordisms on T in M will be 
needed: A J-cobordism W on 7' = TI U T2 is split if it is either the disjoint 
union or the boundary connected sum of J-cobordisms Wl on TI and W2 on 
T2 

3.8. Definition. Let ( M ,  j )  be a taut connected sutured manifold and T = 
TI u T2 c d M  the union of tori TI and T2 such that ;) n T = 0 .  Let 
(M(ol, 02) ,y )  denote the sutured manifold obtained from (144, y )  by filling 
T, with slope o, . Then we say the pair (01 , 0 2 )  is norm-reducing for !I4 if 
(M(a l, 0 2 ) ,y) is not taut. 

3.9. Theorem. Let ( M ,  y )  be a connected taut sutured manifold with y f 0 ,  

and T = TI U T2 c d M  the union of tori TI and T2 such that 7 n T = 0 .  

Suppose any J-cobordism on T contained in M is split. Then there are slopes 
zl and 7 2  such that for any norm-reducing slope pair (a1, 02) for M ,  either 
o l e z l5 1 or 0 2 . r 2 5  1 .  

I f any  M ( o l ,  02) is reducible, so is M ( z l  , r 2 ) .  

Note that if no M(o l  , 0 2 )  is reducible, the theorem does not claim that 
(1-1, 72) is necessarily norm-reducing for M . 
Proof. Special case: M itselfis a split J-cobordism on T . If M is the disjoint 
union of J-cobordisms on TI and T2,just apply 3.3. 
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Suppose M is the boundary connected sum of J-cobordisms Wl on TI and 
W2 on T2 along a disk E . Since M is irreducible, no boundary component 
is a sphere. Then d M  - T is a genus two surface F . Let Fl and F2 denote 
the punctured tori into which d E  divides F . Then d M  = TI U T2 U F , and 
F = Fl U ~ EF 2 .  

Consider the J-cobordism Wl on TI . y T: Fi is a set of disjoint essential 
arcs and circles in Fl . Let 61 be the set of simple closed curves in the torus 
f i  u E obtained by connecting the ends of each essential arc of y nFi by an 
arc across E . Two curves in J1 intersect in at most one point. 

Similarly define a set 62 of simple closed curves in the torus F2UE c d F.ti . 
Rule 1 .  If there is a filling cr of 7; which makes W, reducible take z, = a .  
Rule 2. If W, remains irreducible after any filling of 7; . but there is a slope 

a of T, such that some curve in 6, compresses in W,(o), take z, to be one 
such slope a .  

Rule 3. If none of the S, compress and remains irreducible after any 
filling of T ,  take z, to be any slope at all. 

Suppose (al,02) is a norm-reducing slope pair. 
]If M ( a l ,  a2) is reducible then an innermost disk argument on the inter-

section of a reducing sphere with E shows that either Wl(ol) or W2(a2) is 
reducible. Then by [GL] and Rule 1 either a1 .zl 5 1 or 0-2 - 2 2  5 1 and we 
are done. 

Suppose that M(crl , a2) is irreducible. 

3.10. Lemma. Either some component of S1 compresses in WI(01) or some 
component of 82 compresses in W2(a2). 
Proof. By 2.5 some component c, of y compresses in M(a l  , a 2 ) .  Let D c 
M ( a l  , 02) be a compressing disk for c, , chosen so as to minimize the number 
of components of intersection with the splitting disk E in M cM ( a ) .  Then 
a standard innermost disk argument shows that D n E consists only of arcs. If 
D nE = m , then c, n d E = 0 , so c, is either in dl or 62 ,proving the lemma. 
If D r7 E # 0,  an outermost arc er of d, nE in D cuts off from d D  = c, an 
arc j3 so that p is essential in either (FL, d E )  or (F2,d E )  , say the former. 
Then a U P is in 61 and the subdisk of D which a cuts off is a compressing 
diskfor a U P  in Wl(ol) .  

To resume the proof of Theorem 3.9 we will assume without loss of generality 
that some component of 61 compresses in W ( a l ) .  

If there is a slope zl so that W1(.rl) is reducible (so Rule 1 applies), then 
01 T I  4 1 by [Sc3, 6.11. If there is no such slope, so Rule 2 applies, then some 
(possibly different) component c, of compresses in Wl( T I ) .Since c, and 
c, arebothin 61, c u e c , =  1 .  Then,by3.7, o l . z i  = I .  

General case. If ( M ,  y )  is not itself a J-cobordhsm, then construct a taut 
sutu.red manifold hierarchy 

so that each S, is disjoint from T = TI U T2. By [Scl, 2.6 and 4.171 such a 
sequence eventually terminates in a taut sutured manifold (M,, y,,) with 
H2(M,, 3M, - T) = 0 ,  i.e., M, is a J-cobordism on T . Moreover, 
( M ( a l ,a2) , y )  is taut if (Mn(crl,a 2 ) ,7,) is taut. The proof now follows by 
applying the special case to ( M , ( ~ I, a 2 ) ,7,). 
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